Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine

Author(s): Hua Shen, Xiaoyi Huang , Jie Min, Shiguan Le, Qing Wang , Xi Wang, Asli Aybike Dogan, Xiangsheng Liu, Pengfei Zhang , Mohamed S. Draz* and Jian Xiao*

Volume 19, Issue 27, 2019

Page: [2507 - 2523] Pages: 17

DOI: 10.2174/1568026619666191024170212

Price: $65

Abstract

The rapid development of nanotechnology has a great influence on the fields of biology, physiology, and medicine. Over recent years, nanoparticles have been widely presented as nanocarriers to help the delivery of gene, drugs, and other therapeutic agents with cellular targeting ability. Advances in the understanding of gene delivery and RNA interference (RNAi)-based therapy have brought increasing attention to understanding and tackling complex genetically related diseases, such as cancer, cardiovascular and pulmonary diseases, autoimmune diseases and infections. The combination of nanocarriers and DNA/RNA delivery may potentially improve their safety and therapeutic efficacy. However, there still exist many challenges before this approach can be practiced in the clinic. In this review, we provide a comprehensive summary on the types of nanoparticle systems used as nanocarriers, highlight the current use of nanocarriers in recombinant DNA and RNAi molecules delivery, and the current landscape of gene-based nanomedicine-ranging from diagnosis to therapeutics. Finally, we briefly discuss the biosafety concerns and limitations in the preclinical and clinical development of nanoparticle gene systems.

Keywords: Nanoparticle, RNAi, Recombinant DNA, Gene delivery, Cancer, Cardiovascular diseases, Infectious diseases.

« Previous
Graphical Abstract
[1]
Mulligan, R.C. The basic science of gene therapy. Science, 1993, 260(5110), 926-932.
[http://dx.doi.org/10.1126/science.8493530] [PMID: 8493530]
[2]
Griesenbach, U.; Ferrari, S.; Geddes, D.M.; Alton, E.W. Gene therapy progress and prospects: cystic fibrosis. Gene Ther., 2002, 9(20), 1344-1350.
[http://dx.doi.org/10.1038/sj.gt.3301791] [PMID: 12364999]
[3]
Burton, E.A.; Glorioso, J.C.; Fink, D.J. Gene therapy progress and prospects: Parkinson’s disease. Gene Ther., 2003, 10(20), 1721-1727.
[http://dx.doi.org/10.1038/sj.gt.3302116] [PMID: 12939638]
[4]
Karponi, G.; Zogas, N.; Domvri, K.; Zarogoulidis, P.; Trakada, G.; Roumeliotis, S.; Hohenforst-Schmidt, W.; Darwiche, K.; Freitag, L.; Zarogoulidis, K. Prospects of gene therapy for pulmonary diseases: progress and limitations. Med. Chem., 2017.
[http://dx.doi.org/10.2174/1573406413666170209122131] [PMID: 28185539]
[5]
Martinez, T.; Gonzalez, M.V.; Roehl, I.; Wright, N.; Paneda, C.; Jimenez, A.I. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol. Ther., 2014, 22(1), 81-91.
[http://dx.doi.org/10.1038/mt.2013.216]
[6]
Yasuda, M.; Gan, L.; Chen, B.; Kadirvel, S.; Yu, C.; Phillips, J.D.; New, M.I.; Liebow, A.; Fitzgerald, K.; Querbes, W.; Desnick, R.J. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proc. Natl. Acad. Sci. USA, 2014, 111(21), 7777-7782.
[http://dx.doi.org/10.1073/pnas.1406228111] [PMID: 24821812]
[7]
Nemunaitis, J.; Barve, M.; Orr, D.; Kuhn, J.; Magee, M.; Lamont, J.; Bedell, C.; Wallraven, G.; Pappen, B.O.; Roth, A.; Horvath, S.; Nemunaitis, D.; Kumar, P.; Maples, P.B.; Senzer, N. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver. Oncology, 2014, 87(1), 21-29.
[http://dx.doi.org/10.1159/000360993] [PMID: 24968881]
[8]
Xin, Y; Huang, M; Guo, WW; Huang, Q; Zhang, LZ; Jiang, G Nano-based delivery of RNAi in cancer therapy., 2017, 16(1), 134.
[http://dx.doi.org/10.1186/s12943-017-0683-y]
[9]
Wang, Y.; Huang, L. Composite nanoparticles for gene delivery. Adv. Genet., 2014, 88, 111-137.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00005-5] [PMID: 25409605]
[10]
Aguiar, S.; van der Gaag, B.; Cortese, F.A.B. RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA. Transl. Neurodegener., 2017, 6, 30.
[http://dx.doi.org/10.1186/s40035-017-0101-9] [PMID: 29209494]
[11]
Herweijer, H.; Wolff, J.A. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther., 2003, 10(6), 453-458.
[http://dx.doi.org/10.1038/sj.gt.3301983] [PMID: 12621449]
[12]
Wells, D.J. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther., 2004, 11(18), 1363-1369.
[http://dx.doi.org/10.1038/sj.gt.3302337] [PMID: 15295618]
[13]
Newman, C.M.; Bettinger, T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther., 2007, 14(6), 465-475.
[http://dx.doi.org/10.1038/sj.gt.3302925] [PMID: 17339881]
[14]
Wang, W.; Li, W.; Ma, N.; Steinhoff, G. Non-viral gene delivery methods. Curr. Pharm. Biotechnol., 2013, 14(1), 46-60.
[PMID: 23437936]
[15]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[16]
Waehler, R.; Russell, S.J.; Curiel, D.T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet., 2007, 8(8), 573-587.
[http://dx.doi.org/10.1038/nrg2141] [PMID: 17607305]
[17]
Relph, K.; Harrington, K.; Pandha, H. Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ, 2004, 329(7470), 839-842.
[http://dx.doi.org/10.1136/bmj.329.7470.839] [PMID: 15472267]
[18]
Check, E. Harmful potential of viral vectors fuels doubts over gene therapy. Nature, 2003, 423(6940), 573-574.
[http://dx.doi.org/10.1038/423573a] [PMID: 12789298]
[19]
Marshall, E. Gene therapy. Viral vectors still pack surprises. Science, 2001, 294(5547), 1640.
[http://dx.doi.org/10.1126/science.294.5547.1640] [PMID: 11721031]
[20]
Strayer, D.S. Viral vectors for gene therapy: past, present and future. Drug News Perspect., 1998, 11(5), 277-286.
[http://dx.doi.org/10.1358/dnp.1998.11.5.863673] [PMID: 15616647]
[21]
Burnight, E.R.; Wiley, L.A.; Mullins, R.F.; Stone, E.M.; Tucker, B.A. Gene therapy using stem cells. Cold Spring Harb. Perspect. Med., 2014, 5(4)a017434
[http://dx.doi.org/10.1101/cshperspect.a017434] [PMID: 25395375]
[22]
Simara, P.; Motl, J.A.; Kaufman, D.S. Pluripotent stem cells and gene therapy. Transl. Res., 2013, 161(4), 284-292.
[http://dx.doi.org/10.1016/j.trsl.2013.01.001] [PMID: 23353080]
[23]
Li, S.D.; Huang, L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther., 2006, 13(18), 1313-1319.
[http://dx.doi.org/10.1038/sj.gt.3302838] [PMID: 16953249]
[24]
Niidome, T.; Huang, L. Gene therapy progress and prospects: nonviral vectors. Gene Ther., 2002, 9(24), 1647-1652.
[http://dx.doi.org/10.1038/sj.gt.3301923] [PMID: 12457277]
[25]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C. Diverse applications of nanomedicine. ACS Nano, 2017, 11(3), 2313-2381.
[http://dx.doi.org/10.1021/acsnano.6b06040]
[26]
Soni, S. Handbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering; IGI Global: Pennsylvania, 2014.
[27]
Draz, M.S.; Fang, B.A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K.C.; Gray, J.W.; Chen, F.F. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 2014, 4(9), 872-892.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[28]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[29]
Keles, E.; Song, Y.; Du, D.; Dong, W.J.; Lin, Y. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci., 2016, 4(9), 1291-1309.
[http://dx.doi.org/10.1039/C6BM00441E] [PMID: 27480033]
[30]
Kim, M.H.; Na, H.K.; Kim, Y.K.; Ryoo, S.R.; Cho, H.S.; Lee, K.E.; Jeon, H.; Ryoo, R.; Min, D.H. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano, 2011, 5(5), 3568-3576.
[http://dx.doi.org/10.1021/nn103130q] [PMID: 21452883]
[31]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[32]
McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 2008, 3(2), 169-180.
[PMID: 18686777]
[33]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559] [PMID: 16709779]
[34]
Ragelle, H.; Vandermeulen, G.; Preat, V. Chitosan-based siRNA delivery systems. J. Control. Release, 2013, 172(1), 207-218.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.005]
[35]
Zhao, Y.Z.; Jin, R.R.; Yang, W.; Xiang, Q.; Yu, W.Z.; Lin, Q.; Tian, F.R.; Mao, K.L.; Lv, C.Z.; Wáng, Y.X.; Lu, C.T. Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS One, 2016, 11(2)e0148848
[http://dx.doi.org/10.1371/journal.pone.0148848] [PMID: 26894626]
[36]
Wang, S.; Zhao, X.; Wang, S.; Qian, J.; He, S. Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(37), 24368-24384.
[http://dx.doi.org/10.1021/acsami.6b05907] [PMID: 27564325]
[37]
Zhu, K.; Li, J.; Wang, Y.; Lai, H.; Wang, C. Nanoparticles-assisted stem cell therapy for ischemic heart disease. Stem Cells Int., 2016, 20161384658
[http://dx.doi.org/10.1155/2016/1384658] [PMID: 26839552]
[38]
Duan, J.; Yu, Y.; Li, Y.; Yu, Y.; Sun, Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials, 2013, 34(23), 5853-5862.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.032] [PMID: 23663927]
[39]
Godin, B.; Sakamoto, J.H.; Serda, R.E.; Grattoni, A.; Bouamrani, A.; Ferrari, M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci., 2010, 31(5), 199-205.
[http://dx.doi.org/10.1016/j.tips.2010.01.003] [PMID: 20172613]
[40]
Niu, J.; Azfer, A.; Rogers, L.M.; Wang, X.; Kolattukudy, P.E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res., 2007, 73(3), 549-559.
[http://dx.doi.org/10.1016/j.cardiores.2006.11.031] [PMID: 17207782]
[41]
Wong, Y.; Markham, K.; Xu, Z.P.; Chen, M.; Max Lu, G.Q.; Bartlett, P.F.; Cooper, H.M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials, 2010, 31(33), 8770-8779.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.077] [PMID: 20709387]
[42]
Roy, I.; Stachowiak, M.K.; Bergey, E.J. Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine (Lond.), 2008, 4(2), 89-97.
[http://dx.doi.org/10.1016/j.nano.2008.01.002] [PMID: 18313990]
[43]
Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11539-11544.
[http://dx.doi.org/10.1073/pnas.0504926102] [PMID: 16051701]
[44]
Liu, Y.; An, S.; Li, J.; Kuang, Y.; He, X.; Guo, Y.; Ma, H.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials, 2016, 80, 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[45]
Huang, R.; Ma, H.; Guo, Y.; Liu, S.; Kuang, Y.; Shao, K.; Li, J.; Liu, Y.; Han, L.; Huang, S.; An, S.; Ye, L.; Lou, J.; Jiang, C. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm. Res., 2013, 30(10), 2549-2559.
[http://dx.doi.org/10.1007/s11095-013-1005-8] [PMID: 23703371]
[46]
Lin, G.; Zhang, H.; Huang, L. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm., 2015, 12(2), 314-321.
[http://dx.doi.org/10.1021/mp500656v] [PMID: 25531409]
[47]
Semkina, A.S.; Abakumov, M.A.; Skorikov, A.S.; Abakumova, T.O.; Melnikov, P.A.; Grinenko, N.F.; Cherepanov, S.A.; Vishnevskiy, D.A.; Naumenko, V.A.; Ionova, K.P.; Majouga, A.G.; Chekhonin, V.P. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine (Lond.), 2018, 14(5), 1733-1742.
[http://dx.doi.org/10.1016/j.nano.2018.04.019] [PMID: 29730399]
[48]
Ray, S.; Li, Z.; Hsu, C.H.; Hwang, L.P.; Lin, Y.C.; Chou, P.T.; Lin, Y.Y. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics, 2018, 8(22), 6322-6349.
[http://dx.doi.org/10.7150/thno.27828] [PMID: 30613300]
[49]
Yang, Y.; Jing, L.; Li, X.; Lin, L.; Yue, X.; Dai, Z. Hyaluronic acid conjugated magnetic prussian blue@quantum dot nanoparticles for cancer theranostics. Theranostics, 2017, 7(2), 466-481.
[http://dx.doi.org/10.7150/thno.17411] [PMID: 28255343]
[50]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[51]
Chen, Y.; Zhu, X.; Zhang, X.; Liu, B.; Huang, L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther., 2010, 18(9), 1650-1656.
[http://dx.doi.org/10.1038/mt.2010.136]
[52]
Choi, S.H.; Jin, S.E.; Lee, M.K.; Lim, S.J.; Park, J.S.; Kim, B.G.; Ahn, W.S.; Kim, C.K. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur. J. Pharm. Biopharm., 2008, 68(3), 545-554.
[http://dx.doi.org/10.1016/j.ejpb.2007.07.011]
[53]
Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.018] [PMID: 17161865]
[54]
Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8] [PMID: 16887483]
[55]
Lu, W.; Sun, Q.; Wan, J.; She, Z.; Jiang, X.G. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res., 2006, 66(24), 11878-11887.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2354] [PMID: 17178885]
[56]
Lemos, H.; Huang, L.; McGaha, T.; Mellor, A.L. STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Rev. Clin. Immunol., 2015, 11(1), 155-165.
[http://dx.doi.org/10.1586/1744666X.2015.995097] [PMID: 25521938]
[57]
Liu, Q.; Chen, X.; Jia, J.; Zhang, W.; Yang, T.; Wang, L.; Ma, G. pH-Responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response. ACS Nano, 2015, 9(5), 4925-4938.
[http://dx.doi.org/10.1021/nn5066793] [PMID: 25898266]
[58]
Lee, S.J.; Lee, A.; Hwang, S.R.; Park, J.S.; Jang, J.; Huh, M.S.; Jo, D.G.; Yoon, S.Y.; Byun, Y. Kim, SH TNF-alpha gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol. Ther., 2014, 22(2), 397-408.
[59]
Dumortier, H. When carbon nanotubes encounter the immune system: desirable and undesirable effects. Adv. Drug Deliv. Rev., 2013, 65(15), 2120-2126.
[http://dx.doi.org/10.1016/j.addr.2013.09.005] [PMID: 24056183]
[60]
Basha, G.; Novobrantseva, T.I.; Rosin, N.; Tam, Y.Y.; Hafez, I.M.; Wong, M.K.; Sugo, T.; Ruda, V.M.; Qin, J.; Klebanov, B. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol. Ther., 2011, 19(12), 2186-2200.
[http://dx.doi.org/10.1038/mt.2011.190]
[61]
Ragelle, H.; Vandermeulen, G.; Preat, V. Chitosan-based siRNA delivery systems. J. Control. Release, 2013, 172(1), 207-218.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.005]
[62]
Haussecker, D. The business of RNAi therapeutics in 2012. Mol. Ther. Nucleic Acids, 2012, 1e8
[http://dx.doi.org/10.1038/mtna.2011.9] [PMID: 23344723]
[63]
Shen, C.; Li, J.; Zhang, Y.; Li, Y.; Shen, G.; Zhu, J.; Tao, J. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. Int. J. Nanomedicine, 2017, 12, 5443-5460.
[http://dx.doi.org/10.2147/IJN.S137980] [PMID: 28814862]
[64]
Wu, J.; Chen, Y.; Wang, Y.; Yin, H.; Zhao, Z.; Liu, N.; Xie, M.; Chen, Y. Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta, 2017, 172, 53-60.
[http://dx.doi.org/10.1016/j.talanta.2017.05.035] [PMID: 28602303]
[65]
Devulapally, R.; Lee, T.; Barghava-Shah, A.; Sekar, T.V.; Foygel, K.; Bachawal, S.V.; Willmann, J.K.; Paulmurugan, R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond.), 2018, 13(9), 1051-1066.
[http://dx.doi.org/10.2217/nnm-2017-0328] [PMID: 29790803]
[66]
Chanphai, P.; Tajmir-Riahi, H.A. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles. Mol. Cell. Biochem., 2018, 449(1-2), 157-166.
[http://dx.doi.org/10.1007/s11010-018-3352-6] [PMID: 29786764]
[67]
Einafshar, E.; Asl, A.H.; Nia, A.H.; Mohammadi, M.; Malekzadeh, A.; Ramezani, M. New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite. Carbohydr. Polym., 2018, 194, 103-110.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.102] [PMID: 29801817]
[68]
Morales, J.O.; Valdés, K.; Morales, J.; Oyarzun-Ampuero, F. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine (Lond.), 2015, 10(2), 253-269.
[http://dx.doi.org/10.2217/nnm.14.159] [PMID: 25600970]
[69]
Sáez, M.I.; Vizcaíno, A.J.; Alarcón, F.J.; Martínez, T.F. Feed pellets containing chitosan nanoparticles as plasmid DNA oral delivery system for fish: In vivo assessment in gilthead sea bream (Sparus aurata) juveniles. Fish Shellfish Immunol., 2018, 80, 458-466.
[http://dx.doi.org/10.1016/j.fsi.2018.05.055] [PMID: 29859312]
[70]
Honma, K.; Ochiya, T.; Nagahara, S.; Sano, A.; Yamamoto, H.; Hirai, K.; Aso, Y.; Terada, M. Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions. Biochem. Biophys. Res. Commun., 2001, 289(5), 1075-1081.
[http://dx.doi.org/10.1006/bbrc.2001.6133] [PMID: 11741301]
[71]
Shafaei, Z.; Ghalandari, B.; Vaseghi, A.; Divsalar, A.; Haertlé, T.; Saboury, A.A.; Sawyer, L. β-Lactoglobulin: An efficient nanocarrier for advanced delivery systems. Nanomedicine (Lond.), 2017, 13(5), 1685-1692.
[http://dx.doi.org/10.1016/j.nano.2017.03.007] [PMID: 28343017]
[72]
Céspedes, M.V.; Unzueta, U.; Álamo, P.; Gallardo, A.; Sala, R.; Casanova, I.; Pavón, M.A.; Mangues, M.A.; Trías, M.; López-Pousa, A.; Villaverde, A.; Vázquez, E.; Mangues, R. Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4+ colorectal cancer models. Nanomedicine (Lond.), 2016, 12(7), 1987-1996.
[http://dx.doi.org/10.1016/j.nano.2016.04.003] [PMID: 27085904]
[73]
Höbel, S.; Aigner, A. Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Methods Mol. Biol., 2010, 623, 283-297.
[http://dx.doi.org/10.1007/978-1-60761-588-0_18] [PMID: 20217558]
[74]
Bire, S.; Gosset, D.; Jégot, G.; Midoux, P.; Pichon, C.; Rouleux-Bonnin, F. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol., 2013, 13, 75.
[http://dx.doi.org/10.1186/1472-6750-13-75] [PMID: 24070093]
[75]
Tong, W.Y.; Alnakhli, M.; Bhardwaj, R.; Apostolou, S.; Sinha, S.; Fraser, C.; Kuchel, T.; Kuss, B.; Voelcker, N.H. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J. Nanobiotechnology, 2018, 16(1), 38.
[http://dx.doi.org/10.1186/s12951-018-0365-y] [PMID: 29653579]
[76]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 5177-5181.
[http://dx.doi.org/10.1073/pnas.96.9.5177] [PMID: 10220439]
[77]
Nayak, T.R.; Krasteva, L.K.; Cai, W. Multimodality imaging of RNA interference. Curr. Med. Chem., 2013, 20(29), 3664-3675.
[http://dx.doi.org/10.2174/0929867311320290012] [PMID: 23745567]
[78]
Wu, D.; Zhang, Y.; Xu, X.; Guo, T.; Xie, D.; Zhu, R.; Chen, S.; Ramakrishna, S.; He, L. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater., 2018, 72, 266-277.
[http://dx.doi.org/10.1016/j.actbio.2018.03.030] [PMID: 29578088]
[79]
Liu, C.; Liu, F.; Feng, L.; Li, M.; Zhang, J.; Zhang, N. The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials, 2013, 34(10), 2547-2564.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.038] [PMID: 23332321]
[80]
Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater., 2016, 15(3), 353-363.
[http://dx.doi.org/10.1038/nmat4497] [PMID: 26641016]
[81]
Zhang, S.; Zhao, B.; Jiang, H.; Wang, B.; Ma, B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release, 2007, 123(1), 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.016]
[82]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(2), 129-138.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[83]
Kedmi, R.; Ben-Arie, N.; Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 2010, 31(26), 6867-6875.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.027] [PMID: 20541799]
[84]
Tao, W.; Mao, X.; Davide, J.P.; Ng, B.; Cai, M.; Burke, P.A.; Sachs, A.B. Sepp-Lorenzino, L Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol. Ther., 2011, 19(3), 567-575.
[http://dx.doi.org/10.1038/mt.2010.282]
[85]
Peng, C.C.; Yang, M.H.; Chiu, W.T.; Chiu, C.H.; Yang, C.S.; Chen, Y.W.; Chen, K.C.; Peng, R.Y. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromol. Biosci., 2008, 8(4), 316-327.
[http://dx.doi.org/10.1002/mabi.200700188] [PMID: 18072182]
[86]
Illum, L.; Farraj, N.F.; Davis, S.S. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res., 1994, 11(8), 1186-1189.
[http://dx.doi.org/10.1023/A:1018901302450] [PMID: 7971722]
[87]
Guo, X.; Zhuang, Q.; Ji, T.; Zhang, Y.; Li, C.; Wang, Y.; Li, H.; Jia, H.; Liu, Y.; Du, L. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydr. Polym., 2018, 195, 311-320.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.087] [PMID: 29804982]
[88]
Song, H.; Oh, B.; Choi, M.; Oh, J.; Lee, M. Delivery of anti-microRNA-21 antisense-oligodeoxynucleotide using amphiphilic peptides for glioblastoma gene therapy. J. Drug Target., 2015, 23(4), 360-370.
[http://dx.doi.org/10.3109/1061186X.2014.1000336] [PMID: 25572456]
[89]
Ji, Y.; Liu, X.; Huang, M.; Jiang, J.; Liao, Y-P.; Liu, Q.; Chang, C.H.; Liao, H.; Lu, J.; Wang, X.; Spencer, M.J.; Meng, H. Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials, 2019, 192, 416-428.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.027] [PMID: 30500723]
[90]
Neely, A.; Perry, C.; Varisli, B.; Singh, A.K.; Arbneshi, T.; Senapati, D.; Kalluri, J.R.; Ray, P.C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano, 2009, 3(9), 2834-2840.
[http://dx.doi.org/10.1021/nn900813b] [PMID: 19691350]
[91]
Ghaderi, S.; Tabatabaei, S.R.; Varzi, H.N.; Rashno, M. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice. J. Toxicol. Sci., 2015, 40(2), 263-275.
[http://dx.doi.org/10.2131/jts.40.263] [PMID: 25786530]
[92]
Seia, M.A.; Pereira, S.V.; Fernández-Baldo, M.A.; De Vito, I.E.; Raba, J.; Messina, G.A. Zinc oxide nanoparticles based microfluidic immunosensor applied in congenital hypothyroidism screening. Anal. Bioanal. Chem., 2014, 406(19), 4677-4684.
[http://dx.doi.org/10.1007/s00216-014-7882-9] [PMID: 24908405]
[93]
Abhinayaa, R.; Jeevitha, G.; Mangalaraj, D.; Ponpandian, N.; Vidhya, K.; Angayarkanni, J. Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells. Colloids Surf. B Biointerfaces, 2018, 169, 395-403.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.040] [PMID: 29803155]
[94]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[95]
Sela, H.; Cohen, H.; Elia, P.; Zach, R.; Karpas, Z.; Zeiri, Y. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J. Nanobiotechnology, 2015, 13, 71.
[http://dx.doi.org/10.1186/s12951-015-0133-1] [PMID: 26489846]
[96]
Huo, S.; Jin, S.; Ma, X.; Xue, X.; Yang, K.; Kumar, A.; Wang, P.C.; Zhang, J.; Hu, Z.; Liang, X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano, 2014, 8(6), 5852-5862.
[http://dx.doi.org/10.1021/nn5008572] [PMID: 24824865]
[97]
Xue, H.Y.; Liu, Y.; Liao, J.Z.; Lin, J.S.; Li, B.; Yuan, W.G.; Lee, R.J.; Li, L.; Xu, C.R.; He, X.X. Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget, 2016, 7(52), 86675-86686.
[http://dx.doi.org/10.18632/oncotarget.13431] [PMID: 27880727]
[98]
Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: review of the literature. Burns, 2007, 33(2), 139-148.
[http://dx.doi.org/10.1016/j.burns.2006.06.010]
[99]
Brown, P.K.; Qureshi, A.T.; Moll, A.N.; Hayes, D.J.; Monroe, W.T. Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano, 2013, 7(4), 2948-2959.
[http://dx.doi.org/10.1021/nn304868y] [PMID: 23473419]
[100]
Frimpong, R.A.; Hilt, J.Z. Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine (Lond.), 2010, 5(9), 1401-1414.
[http://dx.doi.org/10.2217/nnm.10.114] [PMID: 21128722]
[101]
Sun, X.C.; Gutierrez, A.; Yacaman, M.J.; Dong, X.L.; Jin, S. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2000, 286(1), 157-160.
[http://dx.doi.org/10.1016/S0921-5093(00)00628-6]
[102]
Giri, J.; Pradhan, P.; Somani, V.; Chelawat, H.; Chhatre, S.; Banerjee, R.; Bahadur, D. Synthesis and characterizations of water-based ferrofluids of substituted ferrites Fe1-xBxFe2O4, B=Mn, Co (x=0-1) for biomedical applications. J. Magn. Magn. Mater., 2008, 320(5), 724-730.
[http://dx.doi.org/10.1016/j.jmmm.2007.08.010]
[103]
Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol., 2008, 21(9), 1726-1732.
[http://dx.doi.org/10.1021/tx800064j] [PMID: 18710264]
[104]
Meka, A.K.; Niu, Y.; Karmakar, S.; Hartono, S.B.; Zhang, J.; Lin, C.X.C.; Zhang, H.; Whittaker, A.; Jack, K.; Yu, M. Facile synthesis of large-pore bicontinuous cubic mesoporous silica nanoparticles for intracellular gene delivery. ChemNanoMat, 2016, 2(3), 220-225.
[http://dx.doi.org/10.1002/cnma.201600021]
[105]
Kam, N.W.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005, 127(36), 12492-12493.
[http://dx.doi.org/10.1021/ja053962k] [PMID: 16144388]
[106]
Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo), 2017, 15(3), 369-375.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[107]
Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H.P. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Control. Release, 2002, 82(2-3), 441-454.
[http://dx.doi.org/10.1016/S0168-3659(02)00129-3]
[108]
Orson, F.M.; Song, L.; Gautam, A.; Densmore, C.L.; Bhogal, B.S.; Kinsey, B.M. Gene delivery to the lung using protein/polyethylenimine/plasmid complexes. Gene Ther., 2002, 9(7), 463-471.
[http://dx.doi.org/10.1038/sj.gt.3301666] [PMID: 11938461]
[109]
Jia, S.F.; Worth, L.L.; Densmore, C.L.; Xu, B.; Zhou, Z.; Kleinerman, E.S. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther., 2002, 9(3), 260-266.
[http://dx.doi.org/10.1038/sj.cgt.7700432] [PMID: 11896442]
[110]
Zhang, Z; Wan, T; Chen, Y; Chen, Y; Sun, H; Cao, T; Songyang, Z; Tang, G; Wu, C Ping, Y Cationic polymer-mediated CRISPR/Cas9 plasmid delivery for genome editing. 2018, 40(5), e1800068.
[111]
Richardson, S.C.; Kolbe, H.V.; Duncan, R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm., 1999, 178(2), 231-243.
[http://dx.doi.org/10.1016/S0378-5173(98)00378-0] [PMID: 10205643]
[112]
Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12), 6017-6084.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[113]
Chandy, T.; Sharma, C.P. Chitosan--as a biomaterial. Biomater. Artif. Cells Artif. Organs, 1990, 18(1), 1-24.
[http://dx.doi.org/10.3109/10731199009117286] [PMID: 2185854]
[114]
Xu, X.; Capito, R.M.; Spector, M. Plasmid size influences chitosan nanoparticle mediated gene transfer to chondrocytes. J. Biomed. Mater. Res. A, 2008, 84(4), 1038-1048.
[http://dx.doi.org/10.1002/jbm.a.31479] [PMID: 17685397]
[115]
Kulkarni, J.A.; Myhre, J.L.; Chen, S.; Tam, Y.Y.C.; Danescu, A.; Richman, J.M.; Cullis, P.R. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine (Lond.), 2017, 13(4), 1377-1387.
[http://dx.doi.org/10.1016/j.nano.2016.12.014] [PMID: 28038954]
[116]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[117]
Pursell, N.; Gierut, J.; Zhou, W.; Dills, M.; Diwanji, R.; Gjorgjieva, M.; Saxena, U.; Yang, J.S.; Shah, A.; Venkat, N. Inhibition of glycogen synthase II with RNAi prevents liver injury in mouse models of glycogen storage diseases. Mol. Ther., 2018, 26(7), 1771-1728.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.023]
[118]
Pauley, K.M.; Cha, S. RNAi Therapeutics in autoimmune disease. Pharmaceuticals (Basel), 2013, 6(3), 287-294.
[http://dx.doi.org/10.3390/ph6030287] [PMID: 24276020]
[119]
Majmudar, M.D.; Keliher, E.J.; Heidt, T.; Leuschner, F.; Truelove, J.; Sena, B.F.; Gorbatov, R.; Iwamoto, Y.; Dutta, P.; Wojtkiewicz, G.; Courties, G.; Sebas, M.; Borodovsky, A.; Fitzgerald, K.; Nolte, M.W.; Dickneite, G.; Chen, J.W.; Anderson, D.G.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation, 2013, 127(20), 2038-2046.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000116] [PMID: 23616627]
[120]
Musacchio, T.; Vaze, O.; D’Souza, G.; Torchilin, V.P. Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem., 2010, 21(8), 1530-1536.
[http://dx.doi.org/10.1021/bc100199c] [PMID: 20669936]
[121]
Heidel, J.D.; Yu, Z.; Liu, J.Y.; Rele, S.M.; Liang, Y.; Zeidan, R.K.; Kornbrust, D.J.; Davis, M.E. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5715-5721.
[http://dx.doi.org/10.1073/pnas.0701458104] [PMID: 17379663]
[122]
Morrissey, D.V.; Lockridge, J.A.; Shaw, L.; Blanchard, K.; Jensen, K.; Breen, W.; Hartsough, K.; Machemer, L.; Radka, S.; Jadhav, V.; Vaish, N.; Zinnen, S.; Vargeese, C.; Bowman, K.; Shaffer, C.S.; Jeffs, L.B.; Judge, A.; MacLachlan, I.; Polisky, B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol., 2005, 23(8), 1002-1007.
[http://dx.doi.org/10.1038/nbt1122] [PMID: 16041363]
[123]
Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release, 2010, 145(3), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036]
[124]
Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T.; Takayama, T.; Niitsu, Y. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol., 2008, 26(4), 431-442.
[http://dx.doi.org/10.1038/nbt1396] [PMID: 18376398]
[125]
Che, H.L.; Lee, H.J.; Uto, K.; Ebara, M.; Kim, W.J.; Aoyagi, T.; Park, I.K. Simultaneous drug and gene delivery from the biodegradable Poly(ε-caprolactone) nanofibers for the treatment of liver cancer. J. Nanosci. Nanotechnol., 2015, 15(10), 7971-7975.
[http://dx.doi.org/10.1166/jnn.2015.11233] [PMID: 26726449]
[126]
Cheng, C.J.; Saltzman, W.M. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol. Pharm., 2012, 9(5), 1481-1488.
[http://dx.doi.org/10.1021/mp300081s] [PMID: 22482958]
[127]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[128]
Santos-Carballal, B.; Aaldering, L.J.; Ritzefeld, M.; Pereira, S.; Sewald, N.; Moerschbacher, B.M.; Götte, M.; Goycoolea, F.M. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Sci. Rep., 2015, 5, 13567.
[http://dx.doi.org/10.1038/srep13567] [PMID: 26324407]
[129]
Wang, S.; Cao, M.; Deng, X.; Xiao, X.; Yin, Z.; Hu, Q.; Zhou, Z.; Zhang, F.; Zhang, R.; Wu, Y.; Sheng, W.; Zeng, Y. Degradable hyaluronic acid/protamine sulfate interpolyelectrolyte complexes as miRNA-delivery nanocapsules for triple-negative breast cancer therapy. Adv. Healthc. Mater., 2015, 4(2), 281-290.
[http://dx.doi.org/10.1002/adhm.201400222] [PMID: 25044638]
[130]
Wang, X.; Yu, B.; Ren, W.; Mo, X.; Zhou, C.; He, H.; Jia, H.; Wang, L.; Jacob, S.T. Lee, RJ Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. J. Control. Release, 2013, 172(3), 690-698.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.027]
[131]
Xiao, Y.; Jaskula-Sztul, R.; Javadi, A.; Xu, W.; Eide, J.; Dammalapati, A.; Kunnimalaiyaan, M.; Chen, H.; Gong, S. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy. Nanoscale, 2012, 4(22), 7185-7193.
[http://dx.doi.org/10.1039/c2nr31853a] [PMID: 23070403]
[132]
Conde, J.; Ambrosone, A.; Sanz, V.; Hernandez, Y.; Marchesano, V.; Tian, F.; Child, H.; Berry, C.C.; Ibarra, M.R.; Baptista, P.V.; Tortiglione, C.; de la Fuente, J.M. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano, 2012, 6(9), 8316-8324.
[http://dx.doi.org/10.1021/nn3030223] [PMID: 22882598]
[133]
Yin, P.T.; Shah, B.P.; Lee, K.B. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small, 2014, 10(20), 4106-4112.
[http://dx.doi.org/10.1002/smll.201400963] [PMID: 24947843]
[134]
Bertucci, A.; Prasetyanto, E.A.; Septiadi, D.; Manicardi, A.; Brognara, E.; Gambari, R.; Corradini, R.; De Cola, L. Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small, 2015, 11(42), 5687-5695.
[http://dx.doi.org/10.1002/smll.201500540] [PMID: 26395266]
[135]
Ma, X.; Zhao, Y.; Ng, K.W.; Zhao, Y. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chemistry, 2013, 19(46), 15593-15603.
[http://dx.doi.org/10.1002/chem.201302736] [PMID: 24123533]
[136]
Zhao, J.; Castranova, V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(8), 593-632.
[http://dx.doi.org/10.1080/10937404.2011.615113] [PMID: 22008094]
[137]
Hobson, D.W. Nanotoxicology: The toxicology of nanomaterials and nanostructures. Int. J. Toxicol., 2016, 35(1), 3-4.
[http://dx.doi.org/10.1177/1091581816631729] [PMID: 26957537]
[138]
Senzer, N.; Nemunaitis, J.; Nemunaitis, D.; Bedell, C.; Edelman, G.; Barve, M.; Nunan, R.; Pirollo, K.F.; Rait, A.; Chang, E.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther., 2013, 21(5), 1096-1103.
[139]
Pirollo, K.F.; Nemunaitis, J.; Leung, P.K.; Nunan, R.; Adams, J.; Chang, E.H. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: A phase 1b study. Mol. Ther., 2016, 24(9), 1697-1706.
[140]
Lu, C.; Stewart, D.J.; Lee, J.J.; Ji, L.; Ramesh, R.; Jayachandran, G.; Nunez, M.I.; Wistuba, I.I.; Erasmus, J.J.; Hicks, M.E.; Grimm, E.A.; Reuben, J.M.; Baladandayuthapani, V.; Templeton, N.S.; McMannis, J.D.; Roth, J.A. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One, 2012, 7(4)e34833
[http://dx.doi.org/10.1371/journal.pone.0034833] [PMID: 22558101]
[141]
Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(2), 180-188.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[142]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R., Jr; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[143]
van der Valk, F.M.; van Wijk, D.F.; Lobatto, M.E.; Verberne, H.J.; Storm, G.; Willems, M.C.; Legemate, D.A.; Nederveen, A.J.; Calcagno, C.; Mani, V.; Ramachandran, S.; Paridaans, M.P.; Otten, M.J.; Dallinga-Thie, G.M.; Fayad, Z.A.; Nieuwdorp, M.; Schulte, D.M.; Metselaar, J.M.; Mulder, W.J.; Stroes, E.S. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine (Lond.), 2015, 11(5), 1039-1046.
[http://dx.doi.org/10.1016/j.nano.2015.02.021] [PMID: 25791806]
[144]
Von Hoff, D.D.; Mita, M.M.; Ramanathan, R.K.; Weiss, G.J.; Mita, A.C.; LoRusso, P.M.; Burris, H.A., 3rd; Hart, L.L.; Low, S.C. Parsons, DM phase I study of PSMA-targeted docetaxel-containing nanoparticle bind-014 in patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(13), 3157-3163.
[145]
Yilmaz, A.; Dengler, M.A.; van der Kuip, H.; Yildiz, H.; Rösch, S.; Klumpp, S.; Klingel, K.; Kandolf, R.; Helluy, X.; Hiller, K.H.; Jakob, P.M.; Sechtem, U. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur. Heart J., 2013, 34(6), 462-475.
[http://dx.doi.org/10.1093/eurheartj/ehs366] [PMID: 23103659]
[146]
Cortial, A.; Nosbaum, A.; Rozières, A.; Baeck, M.; de Montjoye, L.; Grande, S.; Briançon, S.; Nicolas, J.F.; Vocanson, M. Encapsulation of hydrophobic allergens into nanoparticles improves the in vitro immunological diagnosis of allergic contact dermatitis. Nanomedicine (Lond.), 2015, 11(4), 1029-1033.
[http://dx.doi.org/10.1016/j.nano.2015.02.001] [PMID: 25687579]
[147]
Wilson, S.R.; Sabatine, M.S.; Braunwald, E.; Sloan, S.; Murphy, S.A.; Morrow, D.A. Detection of myocardial injury in patients with unstable angina using a novel nanoparticle cardiac troponin I assay: observations from the PROTECT-TIMI 30 Trial. Am. Heart J., 2009, 158(3), 386-391.
[http://dx.doi.org/10.1016/j.ahj.2009.06.011] [PMID: 19699861]
[148]
Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P.N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; Munisamy, M.; Falzone, R.; Harrop, J.; Cehelsky, J.; Bettencourt, B.R.; Geissler, M.; Butler, J.S.; Sehgal, A.; Meyers, R.E.; Chen, Q.; Borland, T.; Hutabarat, R.M.; Clausen, V.A.; Alvarez, R.; Fitzgerald, K.; Gamba-Vitalo, C.; Nochur, S.V.; Vaishnaw, A.K.; Sah, D.W.; Gollob, J.A.; Suhr, O.B. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med., 2013, 369(9), 819-829.
[http://dx.doi.org/10.1056/NEJMoa1208760] [PMID: 23984729]
[149]
Huang, L.; Wan, J.; Wei, X.; Liu, Y.; Huang, J.; Sun, X.; Zhang, R.; Gurav, D.D.; Vedarethinam, V.; Li, Y.; Chen, R.; Qian, K. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun., 2017, 8(1), 220.
[http://dx.doi.org/10.1038/s41467-017-00220-4] [PMID: 28790311]
[150]
Reynolds, JL; Law, WC; Mahajan, SD; Aalinkeel, R; Nair, B
Sykes, D.E.; Yong, K.T.; Hui, R.; Prasad, P.N.; Schwartz, S.A. Nanoparticle based galectin-1 gene silencing, implications in meth-amphetamine regulation of HIV-1 infection in monocyte derived macrophages. J. Neuroimmune Pharmacol., 2012, 7(3), 673-685.
[151]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl., 2007, 46(12), 2023-2027.
[http://dx.doi.org/10.1002/anie.200604295] [PMID: 17290476]
[152]
Gaspar, M.M.; Calado, S.; Pereira, J.; Ferronha, H.; Correia, I.; Castro, H.; Tomás, A.M.; Cruz, M.E. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine (Lond.), 2015, 11(7), 1851-1860.
[http://dx.doi.org/10.1016/j.nano.2015.06.008] [PMID: 26169150]
[153]
Pastor, M.; Basas, J.; Vairo, C.; Gainza, G.; Moreno-Sastre, M.; Gomis, X.; Fleischer, A.; Palomino, E.; Bachiller, D.; Gutiérrez, F.B.; Aguirre, J.J.; Esquisabel, A.; Igartua, M.; Gainza, E.; Hernandez, R.M.; Gavaldà, J.; Pedraz, J.L. Safety and effectiveness of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) against P. Aeruginosa: In vitro and in vivo studies following pulmonary and intramuscular administration. Nanomedicine (Lond.), 2019, 18, 101-111.
[http://dx.doi.org/10.1016/j.nano.2019.02.014] [PMID: 30849549]
[154]
Carmona, S.; Jorgensen, M.R.; Kolli, S.; Crowther, C.; Salazar, F.H.; Marion, P.L.; Fujino, M.; Natori, Y.; Thanou, M.; Arbuthnot, P.; Miller, A.D. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm., 2009, 6(3), 706-717.
[http://dx.doi.org/10.1021/mp800157x] [PMID: 19159285]
[155]
Geisbert, T.W.; Lee, A.C.; Robbins, M.; Geisbert, J.B.; Honko, A.N.; Sood, V.; Johnson, J.C.; de Jong, S.; Tavakoli, I.; Judge, A.; Hensley, L.E.; Maclachlan, I. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet, 2010, 375(9729), 1896-1905.
[http://dx.doi.org/10.1016/S0140-6736(10)60357-1] [PMID: 20511019]
[156]
Ursic-Bedoya, R.; Mire, C.E.; Robbins, M.; Geisbert, J.B.; Judge, A.; MacLachlan, I.; Geisbert, T.W. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J. Infect. Dis., 2014, 209(4), 562-570.
[http://dx.doi.org/10.1093/infdis/jit465] [PMID: 23990568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy