Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Indolyl Pyrazole Scaffolds as Potential Anti-cancer Agents and their Molecular Modelling Studies

Author(s): Ganga Reddy Gaddam, Pramod Kumar Dubey and Venkata Ramana Reddy Chittireddy*

Volume 17, Issue 7, 2020

Page: [828 - 839] Pages: 12

DOI: 10.2174/1570180816666191024103534

Price: $65

Abstract

Background: Indole and pyrazoles are one of the prime structural units in the field of medicinal chemistry and have been reported to exhibit a variety of biological activities specifically anti-cancer. In view of their medicinal significance, we synthesized a conjugate of the two moieties to get access to newer and potential anti-cancer agents.

Methods: Indolyl pyrazoles [3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-(1-methyl-1H-indole-3-carbon yl)acrylonitriles] (4a-l) were synthesized by adopting simple and greener protocol and all the synthesized derivatives were docked against Bcl-2 protein and the selected chemical moieties were screened for their cytotoxicity by using the MTT assay.

Results: All the synthesized compounds were docked against BCL-2 protein in order to understand their binding pattern. Among the 12 compounds docked, 4d, 4f, 4h, 4j, and 4l compounds exhibited better protein binding interactions and the same were screened for their anti-cancer activity against A549 (lung) cancer cell lines at a concentration of 100 μM using Doxorubicin as standard. Substitutions such as N-benzyl, N-ethyl groups and halogen groups such as Br, Cl on indole ring showed moderate activity against A-549 cell lines.

Conclusion: Among the 5 indolyl pyrazole derivatives screened, compounds 4h and 4j showed significantly better activity with an IC50 of 33.12 and 34.24 μM, respectively. Further, structural tweaking of the synthesized new chemical entities may lead to potential hit/lead-like molecules.

Keywords: Indolyl pyrazole, knoevenogal condensation, pyrazole-4-carbaldehyde, N-alkylation, molecular modelling, anti-cancer activity.

Graphical Abstract
[1]
Beaulieu, P.L.; Anderson, P.C.; Bethell, R.; Bös, M.; Bousquet, Y.; Brochu, C.; Cordingley, M.G.; Fazal, G.; Garneau, M.; Gillard, J.R.; Kawai, S.; Marquis, M.; McKercher, G.; Poupart, M.A.; Stammers, T.; Thavonekham, B.; Wernic, D.; Duan, J.; Kukolj, G. Discovery of BI 207524, an indole diamide NS5B thumb pocket 1 inhibitor with improved potency for the potential treatment of chronic hepatitis C virus infection. J. Med. Chem., 2014, 57(23), 10130-10143.
[http://dx.doi.org/10.1021/jm501532z] [PMID: 25393851]
[2]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[3]
Özdemir, A.; Altintop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, İ.; Alataş, Ö.; Kaplancikli, Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem., 2015, 89, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.056] [PMID: 25462246]
[4]
Vo, Q.V.; Trenerry, C.; Rochfort, S.; Wadeson, J.; Leyton, C.; Hughes, A.B. Synthesis and anti-inflammatory activity of indole glucosinolates. Bioorg. Med. Chem., 2014, 22(2), 856-864.
[http://dx.doi.org/10.1016/j.bmc.2013.12.003] [PMID: 24360830]
[5]
Famiglini, V.; La Regina, G.; Coluccia, A.; Pelliccia, S.; Brancale, A.; Maga, G.; Crespan, E.; Badia, R.; Riveira-Muñoz, E.; Esté, J.A.; Ferretti, R.; Cirilli, R.; Zamperini, C.; Botta, M.; Schols, D.; Limongelli, V.; Agostino, B.; Novellino, E.; Silvestri, R. Indolylarylsulfones carrying a heterocyclic tail as very potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Med. Chem., 2014, 57(23), 9945-9957.
[http://dx.doi.org/10.1021/jm5011622] [PMID: 25418038]
[6]
Tzvetkov, N.T.; Hinz, S.; Küppers, P.; Gastreich, M.; Müller, C.E. Indazole- and indole-5-carboxamides: selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J. Med. Chem., 2014, 57(15), 6679-6703.
[http://dx.doi.org/10.1021/jm500729a] [PMID: 24955776]
[7]
Shaveta; Singh, P. Structural optimization of indole based compounds for highly promising anti-cancer activities: structure activity relationship studies and identification of lead molecules. Eur. J. Med. Chem., 2014, 74, 440-450.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.047] [PMID: 24487192]
[8]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg. Med. Chem., 2014, 22(7), 2060-2079.
[http://dx.doi.org/10.1016/j.bmc.2014.02.028] [PMID: 24629450]
[9]
Zhuang, S.H.; Lin, Y.C.; Chou, L.C.; Hsu, M.H.; Lin, H.Y.; Huang, C.H.; Lien, J.C.; Kuo, S.C.; Huang, L.J. Synthesis and anticancer activity of 2,4-disubstituted furo[3,2-b]indole derivatives. Eur. J. Med. Chem., 2013, 66, 466-479.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.012] [PMID: 23831809]
[10]
Raja, V.J.; Lim, K.H.; Leong, C.O.; Kam, T.S.; Bradshaw, T.D. Novel antitumour indole alkaloid, Jerantinine A, evokes potent G2/M cell cycle arrest targeting microtubules. Invest. New Drugs, 2014, 32(5), 838-850.
[http://dx.doi.org/10.1007/s10637-014-0126-1] [PMID: 24927857]
[11]
Dweedar, H.E.; Mahrous, H.; Ibrahim, H.S.; Abdel-aziz, H.A. Analogue-based design, synthesis and biological evaluation of anticancer agents. Eur. J. Med. Chem., 2014, 78, 275-280.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.058] [PMID: 24686014]
[12]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo[2,3-b]quinazolinones: synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[13]
Gurkan-Alp, A.S.; Mumcuoglu, M.; Andac, C.A.; Dayanc, E.; Cetin-Atalay, R.; Buyukbingol, E. Synthesis, anticancer activities and molecular modeling studies of novel indole retinoid derivatives. Eur. J. Med. Chem., 2012, 58, 346-354.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.013] [PMID: 23142674]
[14]
Almagro, L.; Fernández-Pérez, F.; Pedreño, M.A. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules, 2015, 20(2), 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[15]
Kumar, D.; Rawat, D.S. Marine natural Alkaloids as Anticancer Agents; Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry, Research Signpost: Kerala, India, 2011, pp. 213-268.
[16]
Mirzaei, H.; Shokrzadeh, M.; Modanloo, M.; Ziar, A.; Riazi, G.H.; Emami, S. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg. Chem., 2017, 75, 86-98.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.005] [PMID: 28922629]
[17]
Mirzaei, H.; Emami, S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur. J. Med. Chem., 2016, 121, 610-639.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.067] [PMID: 27318983]
[18]
Bradner, W.T.; Mitomycin, C. Mitomycin C: a clinical update. Cancer Treat. Rev., 2001, 27(1), 35-50.
[http://dx.doi.org/10.1053/ctrv.2000.0202] [PMID: 11237776]
[19]
Negm, N.A.; Said, M.M.; Morsy, S.M. Pyrazole derived cationic surfactants and their tin and copper complexes: Synthesis, surface activity, antibacterial and antifungal efficacy. J. Surfactants Deterg., 2010, 13, 521-528.
[http://dx.doi.org/10.1007/s11743-009-1178-7]
[20]
Rathish, G.; Javed, K.; Ahmad, S.; Bano, S.; Alam, M.S.; Pillai, K.K.; Singh, S.; Bagchi, V. Synthesis and anti-inflammatory activity of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide. Bioorg. Med. Chem. Lett., 2008, 21, 212-213.
[PMID: 19010670]
[21]
Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36(6), 539-543.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[22]
Ozdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A. Novel analogues of 2-pyrazoline: Synthesis, characterization, and antimycobacterial evaluation. Turk. J. Chem., 2008, 32, 529-538.
[23]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[24]
Thaker, K.M.; Ghetiya, R.M.; Tala, S.D.; Dodiya, B.L.; Joshi, K.A.; Dubal, K.L.; Joshi, H.S. Synthesis of oxadiazoles and pyrazolones as antimicabacterial and antimicrobial agents. Indian J. Chem., 2011, 50, 738-744.
[25]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[26]
Betts, L.M.; Tam, N.C.; Kabir, S.M.H.; Langler, R.F.; Crandall, I. Ether aryl sulfonic acid esters with improved antimalarial/anticancer activities. Aust. J. Chem., 2006, 59, 277-282.
[http://dx.doi.org/10.1071/CH04299]
[27]
Saad, H.A.; Osman, N.A.; Moustafa, A.H. Synthesis and analgesic activity of some new pyrazoles and triazoles bearing a 6,8-dibromo-2-methylquinazoline moiety. Molecules, 2011, 16(12), 10187-10201.
[http://dx.doi.org/10.3390/molecules161210187] [PMID: 22157581]
[28]
Anandarajagopal, K.; Illavarasu, A.; Thangavelpandian, N.; Kalirajan, R. Antiepileptic and antimicrobial activities of novel 1-(unsubstituted/substituted)-3,5-dimethyl-1H-pyrazole derivatives. Int. J. Chemtech Res., 2010, 2, 45-49.
[29]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem., 2015, 97, 732-746.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.023] [PMID: 25549911]
[30]
Küçükgüzel, S.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[31]
Zhang, W-M.; Xing, M.; Zhao, T-T.; Ren, Y-J.; Yang, X-H.; Yang, Y-S.; Lv, P-C.; Zhu, H-L. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Advances, 2014, 4, 37197-37207.
[http://dx.doi.org/10.1039/C4RA05257A]
[32]
Mesa, R.A. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs, 2010, 13(6), 394-403.
[PMID: 20506062]
[33]
Pardanani, A.; Tefferi, A. Targeting myeloproliferative neoplasms with JAK inhibitors. Curr. Opin. Hematol., 2011, 18(2), 105-110.
[http://dx.doi.org/10.1097/MOH.0b013e3283439964] [PMID: 21245760]
[34]
Awad, M.M.; Shaw, A.T. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol., 2014, 12(7), 429-439.
[PMID: 25322323]
[35]
Ku, B. M.; Bae, Y.H.; Lee, K. Y.; Lee, J. M. S.S.; Ahn, J. S.; Park, K.; Ju Ahn, M. Entrectinib resistance mechanisms in ROS1-rearranged non-small cell lung cancer. Invest. New Drugs, 2020.
[http://dx.doi.org/10.1007/s10637-019-00795-3] [PMID: 31124056]
[36]
Cory, S.; Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[37]
Tsujimoto, Y.; Gorham, J.; Cossman, J.; Jaffe, E.; Croce, C.M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science, 1985, 229(4720), 1390-1393.
[http://dx.doi.org/10.1126/science.3929382] [PMID: 3929382]
[38]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[39]
Xu, G.; Liu, T.; Zhou, Y.; Yang, X.; Fang, H. 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: Design, synthesis, and preliminary biological evaluation. Bioorg. Med. Chem., 2017, 25(20), 5548-5556.
[http://dx.doi.org/10.1016/j.bmc.2017.08.024] [PMID: 28866374]
[40]
Schroeder, G.M.; Wei, D.; Banfi, P.; Cai, Z.W.; Lippy, J.; Menichincheri, M.; Modugno, M.; Naglich, J.; Penhallow, B.; Perez, H.L.; Sack, J.; Schmidt, R.J.; Tebben, A.; Yan, C. Zh ang, L.; Galvani, A.; Lombardo, L. J.; Borzilleri, R. M. Pyrazole and pyrimidine phenyl acylsulfonamides as dual Bcl-2/Bcl-xL antagonists. Bioorg. Med. Chem. Lett., 2012, 22, 3951-3956.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.106] [PMID: 22608393]
[41]
He, L.; Tang, Z.; Cun, L.F.; Mi, A.Q.; Jiang, Y Z. Gong, L. Z, L-Proline amide-catalyzed direct asymmetric aldol reaction of aldehydes with chloroacetone. Tetrahedron, 2006, 62, 346.
[http://dx.doi.org/10.1016/j.tet.2005.09.061]
[42]
Meghana, S.R.; Mahesh, K.P.; Swapnil, S.M.; Manikrao, M.S. An ionic liquid influenc ed l-proline catalysed asymmetric Michael addition of ketones to nitrostyrene. J. Mol. Catal., 2005, 235, 267.
[http://dx.doi.org/10.1016/j.molcata.2005.03.024]
[43]
Sabitha, G.; Kumar, M.R.; Reddy, M.S.K.; Yadav, J.S.; Krishna, K.V.S.R.; Kunwar, A.C.A. A d,l-proline catalyzed diastereoselective trimolecular condensation: An approach to the one-pot synthesis of perhydrofuro[3,2-b]pyran-5-ones. Tetrahedron Lett., 2005, 46, 1659.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.071]
[44]
List, B. Proline-catalyzed asymmetric reactions. Tetrahedron, 2002, 58, 5573.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy