Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Methods to Access 2-aminobenzimidazoles of Medicinal Importance

Author(s): Alejandro Cruz*, Itzia I. Padilla Martínez and Angel A. Ramos-Organillo

Volume 23, Issue 23, 2019

Page: [2573 - 2597] Pages: 25

DOI: 10.2174/1385272823666191023150201

Price: $65

Abstract

Benzimidazole (BI) and derivatives are interesting because several of these compounds have been found to have a diversity of biological activities with clinical applications. In view of their importance, the synthesis of BI and its derivatives is still considered as a challenge for synthetic chemists. Examples of compounds used in medicinal chemistry containing BI, as important nucleus, are Astemizole (antihistaminic), Omeprazole (antiulcerative) and Rabendazole (fungicide), some of these compounds have the 2- aminobenzimidazole (2ABI) as base nucleus. The structure of 2ABI derivatives contains a cyclic guanidine moiety, which is interesting because of its free lone pairs, labile hydrogen atoms and planar delocalized structure. The delocalized 10-π electron system and the extension of the electron conjugation with the exocyclic amino group, in 2ABI, making these heterocycles to have amphoteric character. The 2ABI has been used as building blocks for the synthesis of several BI derivatives as medicinally important molecules. On these bases, herein, we present a bibliographic review concerning the recent methodologies used in the synthesis of 2ABIs, including the substituted ones.

Keywords: 2-aminobenzimidazoles, 2-mercaptobenzimidazoles, 2-chlorobenzimidazoles, phenylcarbodiimides, o-phenylendiamines, phenylguanidines.

Graphical Abstract
[1]
(a) Enumula, S.; Pangal, A.; Gazge, M.; Javed, A.; Shaikh, J.A.; Ahmed, K. Diverse pharmacological aspects of benzimidazole derivatives: A review. Res. J. Chem. Sci., 2014, 4, 78-88.
(b) Srestha, N.; Banerjee, J.; Srivastava, S. A review on chemistry and biological significance of benzimidazole nucleus. IOSR J. Pharm., 2014, 4, 28-41.
(c) Yerragunta, V.; Patil, P.; Srujana, S.; Devi, R.; Srujana, G.R.; Divya, A. Benzimidazole derivatives and its biological importance: A review. PharmaTutor, 2014, 2, 109-113.
(d) Hamiduzzaman, M.; Mannan, S.J.; Dey, A.; and Rahman, A.S.M. Evaluation of analgesic, antipyretic, hypoglycemic and CNS depressant activity of 2-bromopopylamine hydrobromide, 3-bromopopyl ammonium bromide, ortho-amino aniline and benzimidazole-2-thiol in animal model. Der Pharm. Lett., 2014, 6, 47-53.
(e) Arulmurugan, S.; Kavitha, H.P.; Sathishkumar, S.; Arulmozhi, R. Biologically active benzimidazole derivatives. Mini Rev. Org. Chem., 2015, 12, 178-195.
[http://dx.doi.org/10.2174/1570193X1202150225153403]
(f) Naga, P.K.; Kumar, K.R. Green synthesis of benzimidazole derivatives: An overview of bulk drug synthesis. Int. J. Pharm. Tech. Res., 2015, 8, 60-68.
(g) Wang, Y-T.; Qin, Y-J.; Yang, N.; Zhang, Y-L.; Liu, C.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.021] [PMID: 26070164]
(h) Fatmah, A. S. Evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules,, 2015, 20, 15206-15223.
(i) Maiti, B.; Chanda, K. Diversity oriented synthesis of benzimidazolebased biheterocyclic molecules by combinatorial approach: A critical review. RSC Adv, 2016, 6, 50384-50413.
[http://dx.doi.org/10.1039/C6RA06930D]
(j) Gaba, M.; Mohan, C.H. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25, 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
(k) Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazolecore as an antimycobacterial agent. Pharmacol. Rep., 2016, 68, (6), 1254- 1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965]
(l) Aishwarya, M.N.L.; Rao, E.A.; Babu, M.N. A Review on gastro-intestinal drug esomeprazole. Pharm. Tutor, 2017, 5, 19-26.
(m) Rajasekhar, S.; Maiti, B.; Balamurali, M.M.; Chanda, K. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth, 2017, 14, 40-60.
[http://dx.doi.org/10.2174/1570179413666160818151932]
(n) Alaqueel, Sh.I. Synthetic approaches to benzimidazoles from ophenylenediamine: A literature review. J. Saudi Chem. Soc, 2017, 21, 229- 237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001]
[2]
(a) Al-Muhaimeed, H. A parallel-group comparison of astemizole and loratadine for the treatment of perennial allergic rhinitis. J. Int. Med. Res., 1997, 25(4), 175-181.
[http://dx.doi.org/10.1177/030006059702500401] [PMID: 9283989]
(b) Ramalingan, C.; Balasubramanian, S.; Kabilan, S. A convenient synthesis of novel 1-[2-(benzimidazol-2-yl)ethoxy]-2,6-diarylpiperidin-4-ones. Synth. Commun., 2004, 34, 1105-1116.
[http://dx.doi.org/10.1081/SCC-120028643]
[3]
(a) Martin, R.J. Modes of action of anthelmintic drugs. Vet. J., 1997, 154, 11-34.
(b) Pittman, J.S. Effect of fenbendazole on shedding and embryonation of Ascaris suum eggs in naturally infected gestating sows; 2014.
[4]
Wahe, H.; Asobo, P.F.; Cherkasov, R.A.; Nkengfack, A.E.; Folefoc, G.N.; Fomumb, Z.T.; Doepp, D. Heterocycles of biological importance. Part 6. The formation of novel biologically active pyrimido [1,2-a] benzimidazoles from electron deficient alkynes and 2-aminobenzimidazoles. ARKIVOC, 2003, 14, 170-177.
[5]
Beaulieu, C.; Wang, Z.; Denis, D.; Greig, G.; Lamontagne, S.; O’Neill, G.; Slipetz, D.; Wang, J. Benzimidazoles as new potent and selective DP antagonists for the treatment of allergic rhinitis. Bioorg. Med. Chem. Lett., 2004, 14, 3195-3199.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.005]
[6]
(a) Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R.A.; Luyckx, M.; Janssen, P.A. New antihistaminic N-heterocyclic 4-piperidinamines. 1. Synthesis and antihistaminic activity of N-(4-piperidinyl)-1H-benzimidazol-2-amines. J. Med. Chem., 1985, 28(12), 1925-1933.
[http://dx.doi.org/10.1021/jm00150a028] [PMID: 4068010]
(b) Mor, M.; Bordi, F.; Silva, C.; Rivara, S.; Zuliani, V.; Vacondio, F.; Rivara, M.; Barocelli, E.; Bertoni, S.; Ballabeni, V.; Magnanini, F.; Impicciatore, M.; Plazzi, P.V. Synthesis, biological activity, QSAR and QSPR study of 2-aminobenzimidazole derivatives as potent H3-antagonists. Bioorg. Med. Chem., 2004, 12(4), 663-674.
[http://dx.doi.org/10.1016/j.bmc.2003.11.030] [PMID: 14759727]
[7]
Nawrocka, W.; Zimecki, M. Synthesis and immunotropic activity of some 2-aminobenzimidazoles, Part 4. Arch. Pharm. (Weinheim), 1998, 331(7-8), 249-253.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199807)331:7/8<249:AID-ARDP249>3.0.CO;2-B] [PMID: 9747181]
[8]
Sethi, P.; Bansal, Y.; Bansal, G. Synthesis and PASS-assisted evaluation of coumarin-benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res., 2018, 27, 61-71.
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[9]
Charifson, P.S.; Grillot, A-L.; Grossman, T.H.; Parsons, J.D.; Badia, M.; Steve Bellon, S.; David, D.; Deininger, D.D.; Drumm, J.E.; Gross, Ch. H., LeTiran, A., Liao, Y., Mani, N., Nicolau, D.P., Perola, E., Ronkin, S., Shannon, D., Swenson, L. L., Tang, Q., Tessier, P.R., Tian, S-K., Trudeau, M., Wang, T., Wei, Y., Zhang, H., Dean Stamos, D. Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: Intelligent design and evolution through the judicious use of structure-guided design and stucture-activity relationships. J. Med. Chem., 2008, 51, 5243-5263.
[http://dx.doi.org/10.1021/jm800318d] [PMID: 18690678]
[10]
(a) Middleton, T.; Lim, H.B.; Montgomery, D.; Rockway, T.; Tang, H.; Cheng, X.; Lu, L.; Mo, H.; Kohlbrenner, W.E.; Molla, A.; Kati, W.M. Inhibition of human immunodeficiency virus type I integrase by naphthamidines and 2-aminobenzimidazoles. Antiviral Res., 2004, 64(1), 35-45.
[http://dx.doi.org/10.1016/j.antiviral.2004.04.007] [PMID: 15451177]
(b) Dayam, R.; Deng, J.; Neamati, N. HIV-1 integrase inhibitors: 2003-2004 update. Med. Res. Rev., 2006, 26(3), 271-309.
[http://dx.doi.org/10.1002/med.20054] [PMID: 16496343]
[11]
(a) Kling, A.; Backfisch, G.; Delzer, J.; Geneste, H.; Graef, C.; Hornberger, W.; Lange, U.E.; Lauterbach, A.; Seitz, W.; Subkowski, T. Design and synthesis of 1,5- and 2,5-substituted tetrahydrobenzazepinones as novel potent and selective integrin alphaVbeta3 antagonists. Bioorg. Med. Chem., 2003, 11(7), 1319-1341.
[http://dx.doi.org/10.1016/S0968-0896(02)00616-8] [PMID: 12628659]
(b) Carpenter, R.D.; Andrei, M.; Lau, E.Y.; Lightstone, F.C.; Liu, R.; Lam, K.S.; Kurth, M.J.; Kurth, M.J. Highly potent, water soluble benzimidazole antagonist for activated alpha 4 beta 1 integrin. J. Med. Chem., 2007, 50(23), 5863-5867.
[http://dx.doi.org/10.1021/jm070790o] [PMID: 17948981]
(c) Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M-H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[12]
(a) de Dios, A.; Shih, C.; López de Uralde, B.; Sánchez, C.; del Prado, M.; Cabrejas, L.M.M.; Pleite, S.; Blanco-Urgoiti, J.; Lorite, M.J.; C, Nevill., Jr R., Bonjouklian, R., York, J., Vieth, M., Wang, Y., Magnus, N., Campbell, R.M., Anderson, B.D., McCann, D.J., Giera, D.D., Lee, P.A., Schultz, R.M., Li, L.C., Johnson, L.M. and Wolos, J.A. “Design of potent and selective 2-aminobenzimidazoles-based p38alpha MAP kinase inhibitors with excellent in vivo efficacy. J. Med. Chem., 2005, 48, 2270-2273.
(b) Zhong, M.; Bui, M.; Shen, W.; Baskaran, S.; Allen, D.A.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.J.; Heumann, S.A.; Hoch, U.; Ivy, S.H.N.; Jacobs, J.W.; Lam, S.; Lee, H.; McDowell, R.S.; Oslob, J.D.; Purkey, H.E.; Romanowski, M.J.; Silverman, J.A.; Tangonan, B.T.; Taverna, P.; Yang, W.; Yoburn, J.C.; Yu, Ch.H.; Zimmerman, K.M.; O’Brien, T.; Lew, W. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 5158-5161.
(c) Cee, V.J.; Cheng, A.C.; Romero, K.; Bello, S.; Mohr, C.H.; Whittington, D.A.; Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; Deak, J.L.; Fretland, J.; Gu, Y.; Hodousa, B.L.; Huang, X.; Kim, J.L.; Lin, J.; Long, A.M.; Nguyen, H.; Olivieri, P.H.R.; Patel, V.F.; Wang, L.; Zhou, Y.; Hughes, P. Geuns-Meyer, S. Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett., 2009, 19(2), 424-427.
[13]
Fujita, M.; Nakao, Y.; Matsunaga, S.; Seiki, M.; Itoh, Y.; Yamashita, J.; Van Soest, R.W.M.; Fusetani, N.; Ageladine, A. An antiangiogenic matrix metalloproteinase inhibitor from the marine sponge Agelas nakamurai. J. Am. Chem. Soc., 2003, 125(51), 15700-15701.
[http://dx.doi.org/10.1021/ja038025w] [PMID: 14677933]
[14]
(a) Chassaing, C.; Berger, M.; Heckeroth, A.; Ilg, T.; Jaeger, M.; Kern, C.; Schmid, K.; Uphoff, M. Highly water-soluble prodrugs of anthelmintic benzimidazole carbamates: Synthesis, pharmacodynamics, and pharmacokinetics. J. Med. Chem., 2008, 51(5), 1111-1114.
[http://dx.doi.org/10.1021/jm701456r] [PMID: 18271517]
(b) Mpamhanga, C.P.; Spinks, D.; Tulloch, L.B.; Shanks, E.J.; Robinson, D.A.; Collie, I.T.; Fairlamb, A.H.; Wyatt, P.G.; Frearson, J.A.; Hunter, W.N.; Gilbert, I.H.; Brenk, R. One scaffold, three binding modes: Novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. J. Med. Chem., 2009, 52(14), 4454-4465.
[http://dx.doi.org/10.1021/jm900414x] [PMID: 19527033]
(c) Bharti, N. Shailendra; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Saleem, K.; Naqvi, F.; Maurya, M.R.; Azam, A. Synthesis, characterization and antiamoebic activity of benzimidazole derivatives and their vanadium and molybdenum complexes. Bioorg. Med. Chem. Lett., 2002, 12(6), 869-871.
[http://dx.doi.org/10.1016/S0960-894X(02)00034-3] [PMID: 11958982]
(d) Ravina, E.; Sanchez-Alonso, R.; Fueyo, J.; Baltar, M.P.; Bos, J.; Iglesias, R.; Sanmartin, M.L. Synthesis and potential anthelmintic activity of methyl-5-(4-salicyloyl-piperazin-1-yl)-benzimidazole-2-carbamates. Arzneimittelforschung, 1993, 43(6), 689-694.
[PMID: 8352825]
(e) Townsend, L.B.; Wise, D.S. The synthesis and chemistry of certain anthelmintic benzimidazoles. Parasitol. Today, 1990, 6, 107-112.
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[15]
Clément, M.J.; Rathinasamy, K.; Adjadj, E.; Toma, F.; Curmi, P.A.; Panda, D. Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: Evidence of distinct binding sites for these agents in tubulin. Biochemistry, 2008, 47(49), 13016-13025.
[http://dx.doi.org/10.1021/bi801136q] [PMID: 19049291]
[16]
Yenjerla, M.; Cox, C.; Wilson, L.; Jordan, M.A. Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J. Pharmacol. Exp. Ther., 2009, 328(2), 390-398.
[http://dx.doi.org/10.1124/jpet.108.143537] [PMID: 19001156]
[17]
(a) Zhao, Y.; Pourgholami, M.H.; Morris, D.L.; Collins, J.G.; Day, A.I. Enhanced cytotoxicity of benzimidazole carbamate derivatives and solubilisation by encapsulation in cucurbit[n]uril. Org. Biomol. Chem., 2010, 8(14), 3328-3337.
[http://dx.doi.org/10.1039/c003732j] [PMID: 20523944]
(b) Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394]
(c) Laryea, D.; Gullbo, J.; Isaksson, A.; Larsson, R.; Nygren, P. Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anticancer Drugs, 2010, 21, 33-42.
(d) Doudican, N.; Rodriguez, A.; Osman, I.; Orlow, S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res., 2008, 6(8), 1308-1315.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2159] [PMID: 18667591]
(e) Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neur Oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
[18]
(a) Podunavac-Kuzmanović, S.O.; Cvetković, D.M.; Ćetković, G.S. Antimicrobial activity of cobalt (II) complexes with 2-Aminobenzimidazoles derivatives. 2004, 35, 231-237.
[http://dx.doi.org/10.2298/APT0435231P]
(b) Kukalenko, S.S.; Udovenko, V.A.; Borysova, V.P.; Kulugina, N.L.; Burmakin, N.M.; Andreeva, E.L.U.S.S.R. SU 1,636,414. Odkrytiya Izobret, 11. 1999, 75.
[19]
Nikolova, A.; Ivanov, D.; Buyukliev, R.; Konstantinov, S.; Karaivanova, M. Preparation, physicochemical characterization and pharmacological study of novel ruthenium(III) complexes with imidazole and benzimidazole derivatives. Arzneimittelforschung, 2001, 51(9), 758-762.
[PMID: 11642009]
[20]
(a) Sudha, S.; Karabacak, M.; Kurt, M.; Cinar, M.; Sundaraganesan, N. Molecular structure, vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 2-aminobenzimidazole. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 84(1), 184-195.
[http://dx.doi.org/10.1016/j.saa.2011.09.028] [PMID: 21981941]
(b) Jornet, D.; Bartovský, P.; Domingo, L.R.; Tormos, R.; Miranda, M.A. Experimental and theoretical studies on the mechanism of photochemical hydrogen transfer from 2-aminobenzimidazole to nπ* and ππ* aromatic ketones. J. Phys. Chem. B, 2010, 114(36), 11920-11926.
[http://dx.doi.org/10.1021/jp1053327] [PMID: 20735030]
(c) Ivanova, B.B. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N(1)-protonated salts. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(1-3), 58-65.
[http://dx.doi.org/10.1016/j.saa.2004.12.011] [PMID: 16257693]
[21]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[22]
Nájera, C.; Yus, M. Chiral benzimidazoles as hydrogen bonding organocatalysts. Tetrahedron Lett., 2015, 56, 2623-2633.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.099]
[23]
Cruz, A.; Padilla-Martínez, I.I.; García-Báez, E.V.; Guerrero-Muñoz, G. Synthesis and structure of sulfur derivatives from 2-aminobenzimidazole. Molecules, 2014, 19(9), 13878-13893.
[http://dx.doi.org/10.3390/molecules190913878] [PMID: 25255762]
[24]
Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208]
[25]
Simonov, A.M.; Anisimova, V.A. Synthesis and transformation of 2-aminobenzimidazoles. (review). Chem. Heter. Comp., 1979, 15, 705-723.
[http://dx.doi.org/10.1007/BF00473548]
[26]
Rastogi, R. Synthesis, 1983, 11, 861-882.
[http://dx.doi.org/10.1055/s-1983-30546]
[27]
Mavrova, A.Ts.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem., 2007, 15(18), 6291-6297.
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[28]
Lan, P.F.; Romero, A.; Malcolm, T.S.; Stevens, B.D.; Wodka, D.; Makara, G.M. An efficient method to access 2-substituted benzimidazoles under solvent-free conditions. Tetrahedron Lett., 2008, 49, 1910-1914.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.100]
[29]
Iemura, R.; Kawashima, T.; Fukuda, T.; Ito, K.; Tsukamoto, G. Synthesis of 2-(4-substituted-1-piperazinyl)benzimidazoles as H1-antihistaminic agents. J. Med. Chem., 1986, 29(7), 1178-1183.
[http://dx.doi.org/10.1021/jm00157a010] [PMID: 2879912]
[30]
Orjales, A.; Mosquera, R.; Labeaga, L.; Rodes, R. New 2-piperazinylbenzimidazole derivatives as 5-HT3 antagonists. Synthesis and pharmacological evaluation. J. Med. Chem., 1997, 40(4), 586-593.
[http://dx.doi.org/10.1021/jm960442e] [PMID: 9046349]
[31]
Hong, Y.; Tanoury, G.J.; Wilkinson, S.H.; Bakale, R.P.; Wald, S.A.; Senanayake, C.H. Palladium catalyzed amination of 2-chloro-l,3-azole derivatives: Mild entry to potent H I- antihistaminic norastemizole. Tetrahedron Lett., 1997, 38, 5607-5610.
[http://dx.doi.org/10.1016/S0040-4039(97)01273-2]
[32]
Hong, Y.; Senanayake, Ch.H.; Xiang, T.; Vandenbossche, Ch.P.; Tanoury, G.J.; Bakale, R.P.; Wald, S.A. Remarkably selective palladium-catalyzed amination process: Rapid assembly of multiamino based structures. Tetrahedron Lett., 1998, 39, 3121-3124.
[http://dx.doi.org/10.1016/S0040-4039(98)00517-6]
[33]
Barrett, I.C.; Kerr, M.A. The high-pressure SNAr reaction of N-p-fluorobenzyl-2-chlorobenzimidazole with amines; An approach to norastemizole and analogues. Tetrahedron Lett., 1999, 40, 2439-2442.
[http://dx.doi.org/10.1016/S0040-4039(99)00290-7]
[34]
Senanayake, C.H.H.; Hong, Y.; Xiang, T.; Wilkinson, H.S.; Bakale, R.E.; Jurgens, A.R.; Pippert, M.E.; Butler, H.T.; Wald, S.A. Properly tuned first fluoride-catalyzed TGME-mediated amination process for chloroimidazoles: Inexpensive technology for antihistaminic norastemizole. Tetrahedron Lett., 1999, 40, 6875-6879.
[http://dx.doi.org/10.1016/S0040-4039(99)01350-7]
[35]
Hooper, M.W.; Utsunomiya, M.; Hartwig, J.F. Scope and mechanism of palladium-catalyzed amination of five-membered heterocyclic halides. J. Org. Chem., 2003, 68(7), 2861-2873.
[http://dx.doi.org/10.1021/jo0266339] [PMID: 12662063]
[36]
Wang, X.; Bhatia, P.A.; Daanen, J.F.; Latsaw, S.P.; Rohde, J.; Kolasa, T.; Hakeem, A.A.; Matulenko, M.A.; Nakane, M.; Uchic, M.E.; Miller, L.N.; Chang, R.; Moreland, R.B.; Brioni, J.D.; Stewart, A.O. Synthesis and evaluation of 3-aryl piperidine analogs as potent and efficacious dopamine D4 receptor agonists. Bioorg. Med. Chem., 2005, 13(15), 4667-4678.
[http://dx.doi.org/10.1016/j.bmc.2005.04.060] [PMID: 15896964]
[37]
Pagano, M.A.; Andrzejewska, M.; Ruzzene, M.; Sarno, S.; Cesaro, L.; Bain, J.; Elliott, M.; Meggio, F.; Kazimierczuk, Z.; Pinna, L.A. Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7-tetrabromobenzi-midazole. J. Med. Chem., 2004, 47(25), 6239-6247.
[http://dx.doi.org/10.1021/jm049854a] [PMID: 15566294]
[38]
Schneider, C.C.; Kartarius, S.; Montenarh, M.; Orzeszko, A.; Kazimierczuk, Z. Modified tetrahalogenated benzimidazoles with CK2 inhibitory activity are active against human prostate cancer cells LNCaP in vitro. Bioorg. Med. Chem., 2012, 20(14), 4390-4396.
[http://dx.doi.org/10.1016/j.bmc.2012.05.038] [PMID: 22698781]
[39]
Keurulainen, L.; Vahermo, M.; Puente-Felipe, M.; Sandoval-Izquierdo, E.; Crespo-Fernández, B.; Guijarro-López, L.; Huertas-Valentín, L.; de las Heras-Dueña, L.; Leino, T.O.; Siiskonen, A.; Ballell-Pages, L.; Sanz, L.M.; Castañeda-Casado, P.; Jiménez-Díaz, M.B.; Martínez-Martínez, M.S.; Viera, S.; Kiuru, P.; Calderón, F.; Yli-Kauhaluoma, J. A developability-focused optimization approach allows identification of in vivo fast-acting antimalarials: N-[3-[(Benzimidazol-2-yl)amino]propyl]amides. J. Med. Chem., 2015, 58(11), 4573-4580.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00114] [PMID: 25906200]
[40]
Rivara, M.; Zuliani, V.; Cocconcelli, G.; Morini, G.; Comini, M.; Rivara, S.; Mor, M.; Bordi, F.; Barocelli, E.; Ballabeni, V.; Bertoni, S.; Plazzi, P.V. Synthesis and biological evaluation of new non-imidazole H3-receptor antagonists of the 2-aminobenzimidazole series. Bioorg. Med. Chem., 2006, 14(5), 1413-1424.
[http://dx.doi.org/10.1016/j.bmc.2005.09.063] [PMID: 16263297]
[41]
Ognyanov, V.I.; Balan, C.; Bannon, A.W.; Bo, Y.; Dominguez, C.; Fotsch, C.; Gore, V.K.; Klionsky, L.; Ma, V.V.; Qian, Y.X.; Tamir, R.; Wang, X.; Xi, N.; Xu, S.; Zhu, D.; Gavva, N.R.; Treanor, J.J.; Norman, M.H.; Norman, M.H. Design of potent, orally available antagonists of the transient receptor potential vanilloid 1. Structure-activity relationships of 2-piperazin-1-yl-1H-benzimidazoles. J. Med. Chem., 2006, 49(12), 3719-3742.
[http://dx.doi.org/10.1021/jm060065y] [PMID: 16759115]
[42]
Shao, B.; Huang, J.; Sun, Q.; Valenzano, K.J.; Schmid, L.; Nolan, S. 4-(2-Pyridyl)piperazine-1-benzimidazoles as potent TRPV1 antagonists. Bioorg. Med. Chem. Lett., 2005, 15(3), 719-723.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.021] [PMID: 15664844]
[43]
Sørensen, U.S.; Strøbaek, D.; Christophersen, P.; Hougaard, C.; Jensen, M.L.; Nielsen, E.Ø.; Peters, D.; Teuber, L. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators of small conductance Ca2+-activated K+ channels. J. Med. Chem., 2008, 51(23), 7625-7634.
[http://dx.doi.org/10.1021/jm800809f] [PMID: 18998663]
[44]
Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H-R.; Hong, X. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21(14), 4218-4224.
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[45]
Oh, S.; Kim, S.; Kong, S.; Yang, G.; Lee, N.; Han, D.; Goo, J.; Siqueira-Neto, J.L.; Freitas-Junior, L.H.; Song, R. Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi. Eur. J. Med. Chem., 2014, 84, 395-403.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.038] [PMID: 25036797]
[46]
Tamura, Y.; Omori, N.; Kouyama, N.; Nishiura, Y.; Hayashi, K.; Watanabe, K.; Tanaka, Y.; Chiba, T.; Yukioka, H.; Sato, H.; Okuno, T. Identification of a novel and orally available benzimidazole derivative as an NPY Y5 receptor antagonist with in vivo efficacy. Bioorg. Med. Chem. Lett., 2012, 22(21), 6554-6558.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.025] [PMID: 23025998]
[47]
Lv, X.; Bao, W. Copper-catalyzed cascade addition/cyclization: an efficient and versatile synthesis of N-substituted 2-heterobenzimidazoles. J. Org. Chem., 2009, 74(15), 5618-5621.
[http://dx.doi.org/10.1021/jo900743y] [PMID: 19719252]
[48]
Yuan, G.; Liu, H.; Gao, J.; Yang, K.; Niu, Q.; Mao, H.; Wang, X.; Lv, X. Copper-catalyzed domino addition/double cyclization: an approach to polycyclic benzimidazole derivatives. J. Org. Chem., 2014, 79(4), 1749-1757.
[http://dx.doi.org/10.1021/jo402742k] [PMID: 24490887]
[49]
Shena, G.; Bao, W. Synthesis of benzoxazole and benzimidazole derivatives via ligand-free copper(i)-catalyzed cross-coupling reaction of o-halophenols or o-haloanilines with carbodiimides. Adv. Synth. Catal., 2010, 352, 981-986.
[http://dx.doi.org/10.1002/adsc.201000022]
[50]
Wang, F.; Cai, S.; Liao, Q.; Xi, C. A protocol to 2-aminobenzimidazoles via copper-catalyzed cascade addition and cyclization of o-haloanilines and carbodiimides. J. Org. Chem., 2011, 76(9), 3174-3180.
[http://dx.doi.org/10.1021/jo200014v] [PMID: 21413745]
[51]
He, H-F.; Wang, Z-J.; Bao, W. Copper(II) acetate/oxygen-mediated nucleophilic addition and intramolecular c-h activation/C-N or C-C bond formation: One-pot synthesis of benzimidazoles or quinazolines. Adv. Synth. Catal., 2010, 352, 2905-2912.
[http://dx.doi.org/10.1002/adsc.201000469]
[52]
Tran, L.Q.; Li, J.; Neuville, L. Copper-catalyzed domino three-component approach for the assembly of 2-aminated benzimidazoles and quinazolines. J. Org. Chem., 2015, 80(12), 6102-6108.
[http://dx.doi.org/10.1021/acs.joc.5b00614] [PMID: 26056863]
[53]
(a) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Direct amination of azoles via catalytic C-H, N-H coupling. Org. Lett., 2009, 11(7), 1607-1610.
[http://dx.doi.org/10.1021/ol900298e] [PMID: 19254040]
(b) Monguchi, D.; Yamamura, A.; Fujiwara, T.; Somete, T.; Mori, A. Oxidative dimerization of azoles via copper(II)/silver(I)-catalyzed CH homocoupling. Tetrahedron Lett., 2010, 51, 850-852.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.016]
(c) Mitsuda, Sh.; Fujiwara, T.; Kimigafukuro, K.; Monguchi, D.; Mori, A. Copper-catalyzed oxidative C‒H, N‒H coupling of azoles and thiophenes. Tetrahedron, 2012, 68, 3585-3590.
[http://dx.doi.org/10.1016/j.tet.2012.03.001]
(d) Wang, Q.; Schreiber, S.L. Copper-mediated amidation of heterocyclic and aromatic C-H bonds. Org. Lett., 2009, 11(22), 5178-5180.
[http://dx.doi.org/10.1021/ol902079g] [PMID: 19860425]
(e) Armstrong, A.; Collins, J.C. Direct azole amination: C-H functionalization as a new approach to biologically important heterocycles. Angew. Chem. Int. Ed. Engl., 2010, 49(13), 2282-2285.
[http://dx.doi.org/10.1002/anie.200906750] [PMID: 20186895]
[54]
Xu, J.; Li, J.; Wei, Zh.; Zhang, Q.; Shi, D. Direct amination of azoles using CuCl2 complexes of amines under mild conditions. RSC Advances, 2013, 3, 9622-9624.
[http://dx.doi.org/10.1039/c3ra41496e]
[55]
Wagh, Y.S.; Bhanage, B.M. Cu(acac)2 catalyzed oxidative C–H bond amination of azoles with amines under base-free conditions. Tetrahedron Lett., 2012, 53, 6500-6503.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.064]
[56]
McDonald, S.L.; Hendrick, C.E.; Wang, Q. Copper-catalyzed electrophilic amination of heteroarenes and arenes by C-H zincation. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4667-4670.
[http://dx.doi.org/10.1002/anie.201311029] [PMID: 24668522]
[57]
Hendrick, C.E.; Bitting, K.J.; Cho, S.; Wang, Q. Site-selective copper-catalyzed amination and azidation of arenes and heteroarenes via deprotonative zincation. J. Am. Chem. Soc., 2017, 139(33), 11622-11628.
[http://dx.doi.org/10.1021/jacs.7b07661] [PMID: 28753007]
[58]
Deng, X.; McAllister, H.; Mani, N.S. CuI-catalyzed amination of arylhalides with guanidines or amidines: a facile synthesis of 1-H-2-substituted benzimidazoles. J. Org. Chem., 2009, 74(15), 5742-5745.
[http://dx.doi.org/10.1021/jo900912h] [PMID: 19527012]
[59]
Evindar, G.; Batey, R.A. Copper- and palladium-catalyzed intramolecular aryl guanidinylation: an efficient method for the synthesis of 2-aminobenzimidazoles. Org. Lett., 2003, 5(2), 133-136.
[http://dx.doi.org/10.1021/ol027061h] [PMID: 12529123]
[60]
Hu, Z.; Li, S-D.; Hong, P-Z.; Wu, Zh. Copper(I)-catalyzed intramolecular C-N coupling reactions to form 1-cyanobenzimidazoles. ARKIVOC, 2011, (xi), 147-155.
[61]
Hu, Z.; Ou, L.; Li, S.; Yang, L. Synthesis and biological evaluation of 1-cyano-2-aminobenzimidazole derivatives as a novel class of antitumor agents. Med. Chem. Res., 2014, 23, 3029-3038.
[http://dx.doi.org/10.1007/s00044-013-0888-6]
[62]
Saha, P.; Ramana, T.; Purkait, N.; Ali, M.A.; Paul, R.; Punniyamurthy, T. Ligand-free copper-catalyzed synthesis of substituted benzimidazoles, 2-aminobenzimidazoles, 2-aminobenzothiazoles, and benzoxazoles. J. Org. Chem., 2009, 74(22), 8719-8725.
[http://dx.doi.org/10.1021/jo901813g] [PMID: 19908912]
[63]
Chi, Y.; Zhang, W-X.; Xi, Z. Oxidant-switchable selective synthesis of 2-aminobenzimidazoles via C-H amination/acetoxylation of guanidines. Org. Lett., 2014, 16(24), 6274-6277.
[http://dx.doi.org/10.1021/ol502815p] [PMID: 25474397]
[64]
Tran, M.Q.; Ermolenko, L.; Retailleau, P.; Nguyen, T.B.; Al-Mourabit, A. Reaction of quinones and guanidine derivatives: simple access to bis-2-aminobenzimidazole moiety of benzosceptrin and other benzazole motifs. Org. Lett., 2014, 16(3), 920-923.
[http://dx.doi.org/10.1021/ol403672p] [PMID: 24479902]
[65]
Daswani, U.; Dubey, N.; Sharma, P.; Kumar, A. A new NBS/oxone promoted one pot cascade synthesis of 2-aminobenzimidazoles/2-aminobenzoxazoles: a facile approach. New J. Chem., 2016, 40, 8093-8099.
[http://dx.doi.org/10.1039/C6NJ00478D]
[66]
Taniguchi, K.; Shigenaga, S.; Ogahara, T.; Fujitsu, T.; Matsuo, M. Synthesis and antiinflammatory and analgesic properties of 2-amino-1H-benzimidazole and 1,2-dihydro-2-iminocycloheptimidazole derivatives. Chem. Pharm. Bull. (Tokyo), 1993, 41(2), 301-309.
[http://dx.doi.org/10.1248/cpb.41.301] [PMID: 8500198]
[67]
(a) Perkins, J.J.; Zartman, A.E.; Meissner, R.S. Synthesis of 2-(Alkyl-amino)benzimidazoles. Tetrahedron Lett., 1999, 40, 1103-1106.
(b) Beaulieu, C.; Wang, Z.; Denis, D.; Greig, G.; Lamontagne, S.; O’Neill, G.; Slipetz, D.; Wang, J. Benzimidazoles as new potent and selective DP antagonists for the treatment of allergic rhinitis. Bioorg. Med. Chem. Lett., 2004, 14, 3195-3199.
(c) Kling, A.; Backfisch, G.; Delzer, J.; Geneste, H.; Graef, C.; Holzenkamp, U.; Hornberger, W.; Lange, U.E.W.; Lauterbach, A.; Mack, H.; Seitz, W.; Subkowski, T. Synthesis and SAR of N-substituted dibenzazepinone derivatives as novel potent and selective RV3 antagonists. Bioorg. Med. Chem. Lett., 2002, 12, 441-446.
(d) Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.; Göbel, M.W. Metal-free catalysts for the hydrolysis of RNA derived from guanidines, 2-aminopyridines, and 2-aminobenzimidazoles. J. Am. Chem. Soc., 2005, 127, 2211-2217.
[68]
Sasikumar, T.K.; Qiang, L.; Burnett, D.A.; Greenlee, W.J.; Hawes, B.E.; Kowalski, T.J.; O’Neill, K.; Spar, B.D.; Weig, B. Novel aminobenzimidazoles as selective MCH-R1 antagonists for the treatment of metabolic diseases. Bioorg. Med. Chem. Lett., 2006, 16, 5427-5431.
[69]
Snow, R.J.; Cardozo, M.G.; Morwick, T.M.; Busacca, C.A.; Dong, Y.; Eckner, R.J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G.W.; Peterson, J.D.; Prokopowicz, A.S., III; Sellati, R.; Tolbert, R.M.; Tschantz, M.A.; Moss, N. Discovery of 2-phenylamino-imidazo[4,5-h]iso-quinolin-9-ones: a new class of inhibitors of lck kinase. J. Med. Chem., 2002, 45(16), 3394-3405.
[http://dx.doi.org/10.1021/jm020113o] [PMID: 12139450]
[70]
Sasikumar, T.K.; Qiang, L.; Burnett, D.A.; Greenlee, W.J.; Hawes, B.E.; Kowalski, T.J.; O’Neill, K.; Spar, B.D.; Weig, B. Novel aminobenzimidazoles as selective MCH-R1 antagonists for the treatment of metabolic diseases. Bioorg. Med. Chem. Lett., 2006, 16(20), 5427-5431.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.058] [PMID: 16889961]
[71]
Bendale, P.M.; Sun, C-M. Rapid microwave-assisted liquid-phase combinatorial synthesis of 2-(arylamino)benzimidazoles. J. Comb. Chem., 2002, 4(4), 359-361.
[http://dx.doi.org/10.1021/cc0200080] [PMID: 12099854]
[72]
Heinelt, U.; Schultheis, D.; Jäger, S.; Lindenmaier, M.; Pollex, A.; Beckmann, H.S.G. A convenient method for the synthesis of 2-amino substituted aza-heterocycles from N,N´-disubstituted thioureas using TsCl/NaOH. Tetrahedron, 2004, 60, 9883-9888.
[http://dx.doi.org/10.1016/j.tet.2004.08.031]
[73]
Wang, X-J.; Zhang, L.; Xu, Y.; Krishnamurthy, D.; Senanayake, C.H. A practical synthesis of 2-(N-substituted)-aminobenzimidazoles utilizing CuCl-promoted intramolecular cyclization of N-(2-aminoaryl)thioureas. Tetrahedron Lett., 2004, 45, 7167-7170.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.042]
[74]
Cee, V.J.; Downing, N.S. A one-pot method for the synthesis of 2-aminobenzimidazoles and related heterocycles. Tetrahedron Lett., 2006, 47, 3747-3750.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.112]
[75]
Charton, J.; Girault-Mizzi, S.; Debreu-Fontaine, M-A.; Foufelle, F.; Hainault, I.; Bizot-Espiard, J-G.; Caignard, D-H.; Sergheraert, C. Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg. Med. Chem., 2006, 14(13), 4490-4518.
[http://dx.doi.org/10.1016/j.bmc.2006.02.028] [PMID: 16513356]
[76]
Carpenter, R.D.; Deberdt, P.B.; Lam, K.S.; Kurth, M.J. Carbodiimide-based benzimidazole library method. J. Comb. Chem., 2006, 8(6), 907-914.
[http://dx.doi.org/10.1021/cc060106b] [PMID: 17096580]
[77]
Ghosh, H.; Yella, R.; Nath, J.; Patel, B.K. Desulfurization mediated by hypervalent iodine(III): A novel strategy for the construction of heterocycles. Eur. J. Org. Chem., 2008, 6189-6196.
[http://dx.doi.org/10.1002/ejoc.200800901]
[78]
Yella, R.; Patel, B.K. One-pot synthesis of five and six membered N, O, S-heterocycles using a ditribromide reagent. J. Comb. Chem., 2010, 12(5), 754-763.
[http://dx.doi.org/10.1021/cc100124q] [PMID: 20718465]
[79]
Xie, Y.; Zhang, F.; Li, J.; Shi, X. Novel synthesis of 2-aminobenzimidazoles from isoselenocyanates. Synlett, 2010, (6), 901-904.
[http://dx.doi.org/10.1055/s-0029-1219395]
[80]
Wan, Z-K.; Ousman, E.F.; Papaioannou, N.; Saiah, E. Phosphonium-mediated cyclization of N-(2-aminophenyl)thioureas: efficient synthesis of 2-aminobenzimidazoles. Tetrahedron Lett., 2011, 52, 4149-4152.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.146]
[81]
Phakhodee, W.; Duangkamol, C.H.; Wiriya, N.; Pattarawarapan, M. Ultrasound-assisted synthesis of substituted 2-aminobenzimidazoles, 2-aminobenzoxazoles, and related heterocycles. Tetrahedron Lett., 2016, 57, 5290-5293.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.060]
[82]
Krasikovs, A.; Ozola, V.; Dax, S.L.; Suna, E. Iodoacetic acid is an efficient reagent for the synthesis of amino acid derived 2-aminobenzimidazoles. Synthesis, 2013, 45, 683-693.
[http://dx.doi.org/10.1055/s-0032-1316849]
[83]
Wang, Z.; Zhao, Q.; Hou, J.; Yu, W. Chang, J. Iodine-mediated direct synthesis of multifunctional 2-aminobenzimidazoles from N-substituted o-diaminoarenes and isothiocyanates. Tetrahedron, 2018, 74, 2324-2329.
[http://dx.doi.org/10.1016/j.tet.2018.03.049]
[84]
Kondraganti, L.; Babu, S.; Dittakavi, M. Synthesis of benzimidazoles via domino intra and intermolecular C-N cross-coupling reaction. Chem. Select, 2018, 42, 11744-11748.
[http://dx.doi.org/10.1002/slct.201802754]
[85]
Das, P.; Kumar, C.K.; Kumar, K.N.; Innus, Md.; Iqbal, J.; Srinivas, N. Dithiocarbamate and CuO promoted one-pot synthesis of 2-(N-substituted)-aminobenzimidazoles and related heterocycles. Tetrahedron Lett., 2008, 49, 992-995.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.022]
[86]
Su, Y-S.H.; Sun, C.H-M. Microwave-assisted benzimidazole cyclization by bismuth chloride. Synlett, 2005, (8), 1243-1246.
[87]
Hua, Z.; Huang, X.; Bregman, H.; Chakka, N.; DiMauro, E.F.; Doherty, E.M.; Goldstein, J.; Gunaydin, H.; Huang, H.; Mercede, S.; Newcomb, J.; Patel, V.F.; Turci, S.M.; Yan, J.; Wilson, C.; Martin, M.W. 2-Phenylamino-6-cyano-1H-benzimidazole-based isoform selective casein kinase 1 gamma (CK1γ) inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(17), 5392-5395.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.046] [PMID: 22877629]
[88]
Ramachandran, S.; Hameed, P. S.; Srivastava, A.; Shanbhag, G.; Morayya, S.; Rautela, N.; Awasthy, D.; Kavanagh, S.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Saralaya, R.; Nanduri, R.; Raichurkar, A.; Menasinakai, S.; Achar, V.; Jiménez-Díaz, M.B.; Martínez, M.S.; Angulo-Barturen, I.; Ferrer, S.; Sanz, L.M.; Gamo, F.J.; Duffy, S.; Avery, V.M.; Waterson, D.; Lee, M.C.; Coburn-Flynn, O.; Fidock, D.A.; Iyer, P.S.; Narayanan, S.; Hosagrahara, V.; Sambandamurthy, V.K. N-aryl-2-aminobenzimidazoles: Novel, efficacious, antimalarial lead compounds. J. Med. Chem., 2014, 57(15), 6642-6652.
[http://dx.doi.org/10.1021/jm500715u] [PMID: 25007124]
[89]
Kutschy, P.; Ficeri, V.; Dzurilla, M. Synthesis of 2-Acylaminobenzi-midazoles from Acyl Isothiocyanates and o-Phenylenediamine. Chem. Pap., 1994, 48, 39-42.
[90]
Seth, P.P.; Robinson, D.E.; Jefferson, E.A.; Swayze, E.E. Efficient solution phase synthesis of 2-(N-acyl)-aminobenzimidazoles. Tetrahedron Lett., 2002, 43, 7303-7306.
[http://dx.doi.org/10.1016/S0040-4039(02)01754-9]
[91]
Ding, K.; Wang, A.; Boerneke, M.A.; Dibrov, S.M.; Hermann, T. Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site. Bioorg. Med. Chem. Lett., 2014, 24(14), 3113-3117.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.009] [PMID: 24856063]
[92]
Emilia, L.; Zbigniew, W. Simple Synthesis of 2-Aminoarylimino-phosphoranes from N-Aryl-2-nitrosoanilines and Their Application in 2-Aminobenzimidazoles Synthesis. Synlett, 2014, 25, 217-220.
[93]
Deasy, R.E.; Slattery, C.N.; Maguire, A.R.; Kjell, D.P.; Hawk, M.K.; Joo, J.M.; Gu, R.L.; Moynihan, H. Preparation of 2-aminopyridoimidazoles and 2-aminobenzimidazoles via phosphorus oxychloride-mediated cyclization of aminoureas. J. Org. Chem., 2014, 79(8), 3688-3695.
[http://dx.doi.org/10.1021/jo500360k] [PMID: 24641629]
[94]
Vidavalur, S.; Gajula, M.B.; Tadikonda, R.; Nakka, M.; Dega, S.; Yadav, S.K.; Voosala, Ch. PTSA catalyzed straightforward protocol for the synthesis of 2-(N-acyl)aminobenzimidazoles and 2-(N-acyl) aminobenzothiazoles in PEG. Tetrahedron Lett., 2014, 55, 2691-2694.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.040]
[95]
Pollock, J.A.; Kim, S.H.; Katzenellenbogen, J.A. Imidoyl dichlorides as new reagents for the rapid formation of 2-aminobenzimidazoles and related azoles. Tetrahedron Lett., 2015, 56(44), 6097-6099.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.076] [PMID: 26516292]
[96]
Wang, W.; Kong, D.; Cheng, H.; Tan, L.; Zhang, Z.; Zhuang, X.; Long, H.; Zhou, Y.; Xu, Y.; Yang, X.; Ding, K. New benzimidazole-2-urea derivates as tubulin inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4250-4253.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.035] [PMID: 25091926]
[97]
Nematpour, M.; Abedi, E.; Abedi, E. A novel one-pot protocol for the Cu-catalyzed synthesis of nine 2-aminobenzimidazoles derivatives from o-phenylenediamine and trichloroacetonitrile. Lett. Org. Chem., 2019, 16, 99-103.
[http://dx.doi.org/10.2174/1570178615666180914114010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy