Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Systematic Review Article

Detailed Molecular Biochemistry for Novel Therapeutic Design Against Nipah and Hendra Virus: A Systematic Review

Author(s): Shreya Bhattacharya, Shreyeshi Dhar, Arundhati Banerjee and Sujay Ray*

Volume 13, Issue 2, 2020

Page: [108 - 125] Pages: 18

DOI: 10.2174/1874467212666191023123732

Price: $65

Abstract

Background: Nipah virus (NiV) and Hendra virus (HeV) of genus Henipavirus are the deadliest zoonotic viruses, which cause severe respiratory ailments and fatal encephalitis in humans and other susceptible animals. The fatality rate for these infections had been alarmingly high with no approved treatment available to date. Viral attachment and fusion with host cell membrane is essential for viral entry and is the most essential event of viral infection. Viral attachment is mediated by interaction of Henipavirus attachment glycoprotein (G) with the host cell receptor: Ephrin B2/B3, while viral fusion and endocytosis are mediated by the combined action of both viral glycoprotein (G) and fusion protein (F).

Conclusion: This review highlights the mechanism of viral attachment, fusion and also explains the basic mechanism and pathobiology of this infection in humans. The drugs and therapeutics used either experimentally or clinically against NiV and HeV infection have been documented and classified in detail. Some amino acid residues essential for the functionality of G and F proteins were also emphasized. Therapeutic designing to target and block these residues can serve as a promising approach in future drug development against NiV and HeV.

Keywords: Nipah virus, hendra virus, viral pathogenesis, host cell entry, animal models, current therapeutics, proposed drug targets.

Graphical Abstract
[1]
Chua, K.B.; Bellini, W.J.; Rota, P.A.; Harcourt, B.H.; Tamin, A.; Lam, S.K.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Shieh, W.; Goldsmith, C.S.; Gubler, D.J.; Roehrig, J.T.; Eaton, B.; Gould, A.R.; Olson, J.; Field, H.; Daniels, P.; Ling, A.E.; Peters, C.J.; Anderson, L.J.; Mahy, B.W. Nipah virus: a recently emergent deadly paramyxovirus. Science, 2000, 288(5470), 1432-1435.
[http://dx.doi.org/10.1126/science.288.5470.1432] [PMID: 10827955]
[2]
Goh, K.J.; Tan, C.T.; Chew, N.K.; Tan, P.S.K.; Kamarulzaman, A.; Sarji, S.A.; Wong, K.T.; Abdullah, B.J.J.; Chua, K.B.; Lam, S.K. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med., 2000, 342(17), 1229-1235.
[http://dx.doi.org/10.1056/NEJM200004273421701] [PMID: 10781618]
[3]
Epstein, J.H.; Prakash, V.; Smith, C.S.; Daszak, P.; McLaughlin, A.B.; Meehan, G.; Field, H.E.; Cunningham, A.A. Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg. Infect. Dis., 2008, 14(8), 1309-1311.
[http://dx.doi.org/10.3201/eid1408.071492] [PMID: 18680665]
[4]
Olson, J.G.; Rupprecht, C.; Rollin, P.E.; An, U.S.; Niezgoda, M.; Clemins, T.; Walston, J.; Ksiazek, T.G. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerg. Infect. Dis., 2002, 8(9), 987-988.
[http://dx.doi.org/10.3201/eid0809.010515] [PMID: 12194780]
[5]
Hsu, V.P.Nipah and.; Hendra, Viruses. Perspectives in Medical Virology Emerging Viruses in Human Populations, 2006, 16, 179-199.
[http://dx.doi.org/10.1016/S0168-7069(06)16009-7]
[6]
Selvey, L.A.; Wells, R.M.; McCormack, J.G.; Ansford, A.J.; Murray, K.; Rogers, R.J.; Lavercombe, P.S.; Selleck, P.; Sheridan, J.W. Infection of humans and horses by a newly described morbillivirus. Med. J. Aust., 1995, 162(12), 642-645.
[http://dx.doi.org/10.5694/j.1326-5377.1995.tb126050.x] [PMID: 7603375]
[7]
Eaton, B.T.; Broder, C.C.; Wang, L.F. Hendra and Nipah viruses: pathogenesis and therapeutics. Curr. Mol. Med., 2005, 5(8), 805-816.
[http://dx.doi.org/10.2174/156652405774962308] [PMID: 16375714]
[8]
Bossart, K.N.; Crameri, G.; Dimitrov, A.S.; Mungall, B.A.; Feng, Y-R.; Patch, J.R.; Choudhary, A.; Wang, L-F.; Eaton, B.T.; Broder, C.C. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol., 2005, 79(11), 6690-6702.
[http://dx.doi.org/10.1128/JVI.79.11.6690-6702.2005] [PMID: 15890907]
[9]
Lee, B. Update on the Nipah Virus Outbreak in Kerala. GVN 2018 http://gvn.org/update-on-the-nipah-virus-outbreak-in-kerala-india/ (accessed Jun 15, 2019).
[10]
Sharma, N.C. Surveillance lag may be behind Nipah's recurrence https://www.livemint.com/news/india/nipah-virus-hits-kerala-again-did-india-lag-in-surveillance-1559710754138.html (accessed Jun 15, 2019).
[11]
Chong, H.T.; Kunjapan, S.R.; Thayaparan, T.; Tong, J.M.G.; Petharunam, V.; Jusoh, M.R.; Tan, C.T. Nipah Encephalitis Outbreak in Malaysia, Clinical Features in Patients from Seremban Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 2002, 29, 83-87.
[12]
Paton, N.I.; Leo, Y.S.; Zaki, S.R.; Auchus, A.P.; Lee, K.E.; Ling, A.E.; Chew, S.K.; Ang, B.; Rollin, P.E.; Umapathi, T.; Sng, I.; Lee, C.C.; Lim, E.; Ksiazek, T.G. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet, 1999, 354(9186), 1253-1256.
[http://dx.doi.org/10.1016/S0140-6736(99)04379-2] [PMID: 10520634]
[13]
Rockx, B.; Winegar, R.; Freiberg, A.N. Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res., 2012, 95(2), 135-149.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.008] [PMID: 22643730]
[14]
Nor, M.M.; Gan, C.; Ong, B. Nipah Virus Infection of Pigs in Peninsular Malaysia. Revue Scientifique et Technique de lOIE, 2000, 19, 160-165.
[15]
Hossain, M.J.; Gurley, E.S.; Montgomery, J.M.; Bell, M.; Carroll, D.S.; Hsu, V.P.; Formenty, P.; Croisier, A.; Bertherat, E.; Faiz, M.A.; Azad, A.K.; Islam, R.; Molla, M.A.R.; Ksiazek, T.G.; Rota, P.A.; Comer, J.A.; Rollin, P.E.; Luby, S.P.; Breiman, R.F. Clinical presentation of nipah virus infection in Bangladesh. Clin. Infect. Dis., 2008, 46(7), 977-984.
[http://dx.doi.org/10.1086/529147] [PMID: 18444812]
[16]
Gurley, E.S.; Montgomery, J.M.; Hossain, M.J.; Bell, M.; Azad, A.K.; Islam, M.R.; Molla, M.A.R.; Carroll, D.S.; Ksiazek, T.G.; Rota, P.A.; Lowe, L.; Comer, J.A.; Rollin, P.; Czub, M.; Grolla, A.; Feldmann, H.; Luby, S.P.; Woodward, J.L.; Breiman, R.F. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg. Infect. Dis., 2007, 13(7), 1031-1037.
[http://dx.doi.org/10.3201/eid1307.061128] [PMID: 18214175]
[17]
Harit, A.K.; Ichhpujani, R.L.; Gupta, S.; Gill, K.S.; Lal, S.; Ganguly, N.K.; Agarwal, S.P. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J. Med. Res., 2006, 123(4), 553-560.
[PMID: 16783047]
[18]
Clayton, B.A. Nipah virus: transmission of a zoonotic paramyxovirus. Curr. Opin. Virol., 2017, 22, 97-104.
[http://dx.doi.org/10.1016/j.coviro.2016.12.003] [PMID: 28088124]
[19]
Yadav, P.D.; Raut, C.G.; Shete, A.M.; Mishra, A.C.; Towner, J.S.; Nichol, S.T.; Mourya, D.T. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am. J. Trop. Med. Hyg., 2012, 87(3), 576-578.
[http://dx.doi.org/10.4269/ajtmh.2012.11-0416] [PMID: 22802440]
[20]
Reynes, J-M.; Counor, D.; Ong, S.; Faure, C.; Seng, V.; Molia, S.; Walston, J.; Georges-Courbot, M.C.; Deubel, V.; Sarthou, J-L. Nipah virus in Lyle’s flying foxes, Cambodia. Emerg. Infect. Dis., 2005, 11(7), 1042-1047.
[http://dx.doi.org/10.3201/eid1107.041350] [PMID: 16022778]
[21]
Field, H.; de Jong, C.E.; Halpin, K.; Smith, C.S. Henipaviruses and fruit bats, Papua New Guinea. Emerg. Infect. Dis., 2013, 19(4), 670-671.
[http://dx.doi.org/10.3201/eid1904.111912] [PMID: 23750833]
[22]
Breed, A.C.; Yu, M.; Barr, J.A.; Crameri, G.; Thalmann, C.M.; Wang, L.F. Prevalence of henipavirus and rubulavirus antibodies in pteropid bats, Papua New Guinea. Emerg. Infect. Dis., 2010, 16(12), 1997-1999.
[http://dx.doi.org/10.3201/eid1612.100879] [PMID: 21122242]
[23]
Sendow, I.; Field, H.E.; Adjid, A.; Ratnawati, A.; Breed, A.C.; Darminto, ; Morrissy, C.; Daniels, P. Screening for Nipah virus infection in West Kalimantan province, Indonesia. Zoonoses Public Health, 2010, 57(7-8), 499-503.
[http://dx.doi.org/10.1111/j.1863-2378.2009.01252.x] [PMID: 19638160]
[24]
Sendow, I.; Ratnawati, A.; Taylor, T.; Adjid, R.M.A.; Saepulloh, M.; Barr, J.; Wong, F.; Daniels, P.; Field, H. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS One, 2013, 8(7) e69544
[http://dx.doi.org/10.1371/journal.pone.0069544] [PMID: 23894501]
[25]
Wacharapluesadee, S.; Boongird, K.; Wanghongsa, S.; Ratanasetyuth, N.; Supavonwong, P.; Saengsen, D.; Gongal, G.N.; Hemachudha, T. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis., 2010, 10(2), 183-190.
[http://dx.doi.org/10.1089/vbz.2008.0105] [PMID: 19402762]
[26]
Hasebe, F.; Thuy, N.T.T.; Inoue, S.; Yu, F.; Kaku, Y.; Watanabe, S.; Akashi, H.; Dat, D.T.; Mai, T.Q.; Morita, K. Serologic evidence of nipah virus infection in bats, Vietnam. Emerg. Infect. Dis., 2012, 18(3), 536-537.
[http://dx.doi.org/10.3201/eid1803.111121] [PMID: 22377109]
[27]
Marsh, G.A.; Todd, S.; Foord, A.; Hansson, E.; Davies, K.; Wright, L.; Morrissy, C.; Halpin, K.; Middleton, D.; Field, H.E.; Daniels, P.; Wang, L-F. Genome sequence conservation of Hendra virus isolates during spillover to horses, Australia. Emerg. Infect. Dis., 2010, 16(11), 1767-1769.
[http://dx.doi.org/10.3201/eid1611.100501] [PMID: 21029540]
[28]
Middleton, D. Hendra virus. Vet. Clin. North Am. Equine Pract., 2014, 30(3), 579-589.
[http://dx.doi.org/10.1016/j.cveq.2014.08.004] [PMID: 25281398]
[29]
Ching, P.K.G.; de los Reyes, V.C.; Sucaldito, M.N.; Tayag, E.; Columna-Vingno, A.B.; Malbas, F.F., Jr; Bolo, G.C., Jr; Sejvar, J.J.; Eagles, D.; Playford, G.; Dueger, E.; Kaku, Y.; Morikawa, S.; Kuroda, M.; Marsh, G.A.; McCullough, S.; Foxwell, A.R. Outbreak of henipavirus infection, Philippines, 2014. Emerg. Infect. Dis., 2015, 21(2), 328-331.
[http://dx.doi.org/10.3201/eid2102.141433] [PMID: 25626011]
[30]
Chadha, M.S.; Comer, J.A.; Lowe, L.; Rota, P.A.; Rollin, P.E.; Bellini, W.J.; Ksiazek, T.G.; Mishra, A. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg. Infect. Dis., 2006, 12(2), 235-240.
[http://dx.doi.org/10.3201/eid1202.051247] [PMID: 16494748]
[31]
Harcourt, B.H.; Lowe, L.; Tamin, A.; Liu, X.; Bankamp, B.; Bowden, N.; Rollin, P.E.; Comer, J.A.; Ksiazek, T.G.; Hossain, M.J.; Gurley, E.S.; Breiman, R.F.; Bellini, W.J.; Rota, P.A. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis., 2005, 11(10), 1594-1597.
[http://dx.doi.org/10.3201/eid1110.050513] [PMID: 16318702]
[32]
Eaton, B.T.; Broder, C.C.; Middleton, D.; Wang, L-F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol., 2006, 4(1), 23-35.
[http://dx.doi.org/10.1038/nrmicro1323] [PMID: 16357858]
[33]
Luby, S.P.; Gurley, E.S.; Hossain, M.J. Transmission of human infection with Nipah virus. Clin. Infect. Dis., 2009, 49(11), 1743-1748.
[http://dx.doi.org/10.1086/647951] [PMID: 19886791]
[34]
Luby, S.P.; Rahman, M.; Hossain, M.J.; Blum, L.S.; Husain, M.M.; Gurley, E.; Khan, R.; Ahmed, B-N.; Rahman, S.; Nahar, N.; Kenah, E.; Comer, J.A.; Ksiazek, T.G. Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis., 2006, 12(12), 1888-1894.
[http://dx.doi.org/10.3201/eid1212.060732] [PMID: 17326940]
[35]
Rahman, M.A.; Hossain, M.J.; Sultana, S.; Homaira, N.; Khan, S.U.; Rahman, M.; Gurley, E.S.; Rollin, P.E.; Lo, M.K.; Comer, J.A.; Lowe, L.; Rota, P.A.; Ksiazek, T.G.; Kenah, E.; Sharker, Y.; Luby, S.P. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis., 2012, 12(1), 65-72.
[http://dx.doi.org/10.1089/vbz.2011.0656] [PMID: 21923274]
[36]
Guillaume, V.; Contamin, H.; Loth, P.; Georges-Courbot, M-C.; Lefeuvre, A.; Marianneau, P.; Chua, K.B.; Lam, S.K.; Buckland, R.; Deubel, V.; Wild, T.F. Nipah virus: vaccination and passive protection studies in a hamster model. J. Virol., 2004, 78(2), 834-840.
[http://dx.doi.org/10.1128/JVI.78.2.834-840.2004] [PMID: 14694115]
[37]
Hyatt, A.D.; Zaki, S.R.; Goldsmith, C.S.; Wise, T.G.; Hengstberger, S.G. Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect., 2001, 3(4), 297-306.
[http://dx.doi.org/10.1016/S1286-4579(01)01383-1] [PMID: 11334747]
[38]
Chan, Y.P.; Chua, K.B.; Koh, C.L.; Lim, M.E.; Lam, S.K. Complete nucleotide sequences of Nipah virus isolates from Malaysia. J. Gen. Virol., 2001, 82(Pt 9), 2151-2155.
[http://dx.doi.org/10.1099/0022-1317-82-9-2151] [PMID: 11514724]
[39]
Wang, L.F.; Yu, M.; Hansson, E.; Pritchard, L.I.; Shiell, B.; Michalski, W.P.; Eaton, B.T. The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J. Virol., 2000, 74(21), 9972-9979.
[http://dx.doi.org/10.1128/JVI.74.21.9972-9979.2000] [PMID: 11024125]
[40]
Harcourt, B.H.; Tamin, A.; Ksiazek, T.G.; Rollin, P.E.; Anderson, L.J.; Bellini, W.J.; Rota, P.A. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology, 2000, 271(2), 334-349.
[http://dx.doi.org/10.1006/viro.2000.0340] [PMID: 10860887]
[41]
Basler, C.F. Nipah and Hendra Virus Interactions with the Innate Immune System; Current Topics in Microbiology and Immunology Henipavirus, 2012, pp. 123-152.
[http://dx.doi.org/10.1007/82_2012_209]
[42]
Park, M-S.; Shaw, M.L.; Muñoz-Jordan, J.; Cros, J.F.; Nakaya, T.; Bouvier, N.; Palese, P.; García-Sastre, A.; Basler, C.F. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol., 2003, 77(2), 1501-1511.
[http://dx.doi.org/10.1128/JVI.77.2.1501-1511.2003] [PMID: 12502864]
[43]
Tamin, A.; Harcourt, B.H.; Ksiazek, T.G.; Rollin, P.E.; Bellini, W.J.; Rota, P.A. Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology, 2002, 296(1), 190-200.
[http://dx.doi.org/10.1006/viro.2002.1418] [PMID: 12036330]
[44]
Bonaparte, M.I.; Dimitrov, A.S.; Bossart, K.N.; Crameri, G.; Mungall, B.A.; Bishop, K.A.; Choudhry, V.; Dimitrov, D.S.; Wang, L-F.; Eaton, B.T.; Broder, C.C. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10652-10657.
[http://dx.doi.org/10.1073/pnas.0504887102] [PMID: 15998730]
[45]
Lee, B.; Ataman, Z.A. Modes of paramyxovirus fusion: a Henipavirus perspective. Trends Microbiol., 2011, 19(8), 389-399.
[http://dx.doi.org/10.1016/j.tim.2011.03.005] [PMID: 21511478]
[46]
Saha, C.K.; Mahbub Hasan, M.; Saddam Hossain, M.; Asraful Jahan, M.; Azad, A.K. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac. J. Trop. Med., 2017, 10(6), 529-538.
[http://dx.doi.org/10.1016/j.apjtm.2017.06.016] [PMID: 28756915]
[47]
Pager, C.T.; Dutch, R.E.; Cathepsin, L. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J. Virol., 2005, 79(20), 12714-12720.
[http://dx.doi.org/10.1128/JVI.79.20.12714-12720.2005] [PMID: 16188974]
[48]
Pager, C.T.; Craft, W.W., Jr; Patch, J.; Dutch, R.E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology, 2006, 346(2), 251-257.
[http://dx.doi.org/10.1016/j.virol.2006.01.007] [PMID: 16460775]
[49]
Smith, E.C.; Popa, A.; Chang, A.; Masante, C.; Dutch, R.E. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J., 2009, 276(24), 7217-7227.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07401.x] [PMID: 19878307]
[50]
Marsh, G.A.; Wang, L.F. Hendra and Nipah viruses: why are they so deadly? Curr. Opin. Virol., 2012, 2(3), 242-247.
[http://dx.doi.org/10.1016/j.coviro.2012.03.006] [PMID: 22483665]
[51]
Escaffre, O.; Borisevich, V.; Rockx, B. Pathogenesis of Hendra and Nipah virus infection in humans. J. Infect. Dev. Ctries., 2013, 7(4), 308-311.
[http://dx.doi.org/10.3855/jidc.3648] [PMID: 23592639]
[52]
Wong, K.T.; Grosjean, I.; Brisson, C.; Blanquier, B.; Fevre-Montange, M.; Bernard, A.; Loth, P.; Georges-Courbot, M-C.; Chevallier, M.; Akaoka, H.; Marianneau, P.; Lam, S.K.; Wild, T.F.; Deubel, V. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol., 2003, 163(5), 2127-2137.
[http://dx.doi.org/10.1016/S0002-9440(10)63569-9] [PMID: 14578210]
[53]
Chua, K.B.; Lam, S.K.; Goh, K.J.; Hooi, P.S.; Ksiazek, T.G.; Kamarulzaman, A.; Olson, J.; Tan, C.T. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J. Infect., 2001, 42(1), 40-43.
[http://dx.doi.org/10.1053/jinf.2000.0782] [PMID: 11243752]
[54]
Aljofan, M.; Saubern, S.; Meyer, A.G.; Marsh, G.; Meers, J.; Mungall, B.A. Characteristics of Nipah virus and Hendra virus replication in different cell lines and their suitability for antiviral screening. Virus Res., 2009, 142(1-2), 92-99.
[http://dx.doi.org/10.1016/j.virusres.2009.01.014] [PMID: 19428741]
[55]
Wong, K.T.; Shieh, W.J.; Zaki, S.R.; Tan, C.T. Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin. Immunopathol., 2002, 24(2), 215-228.
[http://dx.doi.org/10.1007/s00281-002-0106-y] [PMID: 12503066]
[56]
Maisner, A.; Neufeld, J.; Weingartl, H. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb. Haemost., 2009, 102(6), 1014-1023.
[PMID: 19967130]
[57]
Weingartl, H.; Czub, S.; Copps, J.; Berhane, Y.; Middleton, D.; Marszal, P.; Gren, J.; Smith, G.; Ganske, S.; Manning, L.; Czub, M. Invasion of the central nervous system in a porcine host by nipah virus. J. Virol., 2005, 79(12), 7528-7534.
[http://dx.doi.org/10.1128/JVI.79.12.7528-7534.2005] [PMID: 15919907]
[58]
Playford, E.G.; McCall, B.; Smith, G.; Slinko, V.; Allen, G.; Smith, I.; Moore, F.; Taylor, C.; Kung, Y.H.; Field, H. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg. Infect. Dis., 2010, 16(2), 219-223.
[http://dx.doi.org/10.3201/eid1602.090552] [PMID: 20113550]
[59]
Alimonti, J.; Leung, A.; Jones, S.; Gren, J.; Qiu, X.; Fernando, L.; Balcewich, B.; Wong, G.; Ströher, U.; Grolla, A.; Strong, J.; Kobinger, G. Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory. Sci. Rep., 2014, 4, 5824.
[http://dx.doi.org/10.1038/srep05824] [PMID: 25059478]
[60]
Negrete, O.A.; Wolf, M.C.; Aguilar, H.C.; Enterlein, S.; Wang, W.; Mühlberger, E.; Su, S.V.; Bertolotti-Ciarlet, A.; Flick, R.; Lee, B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog., 2006, 2(2) e7
[http://dx.doi.org/10.1371/journal.ppat.0020007] [PMID: 16477309]
[61]
Kullander, K.; Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol., 2002, 3(7), 475-486.
[http://dx.doi.org/10.1038/nrm856] [PMID: 12094214]
[62]
Bowden, T.A.; Aricescu, A.R.; Gilbert, R.J.C.; Grimes, J.M.; Jones, E.Y.; Stuart, D.I. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat. Struct. Mol. Biol., 2008, 15(6), 567-572.
[http://dx.doi.org/10.1038/nsmb.1435] [PMID: 18488039]
[63]
Xu, K.; Rajashankar, K.R.; Chan, Y-P.; Himanen, J.P.; Broder, C.C.; Nikolov, D.B. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc. Natl. Acad. Sci. USA, 2008, 105(29), 9953-9958.
[http://dx.doi.org/10.1073/pnas.0804797105] [PMID: 18632560]
[64]
Bennett, B.D.; Zeigler, F.C.; Gu, Q.; Fendly, B.; Goddard, A.D.; Gillett, N.; Matthews, W. Molecular cloning of a ligand for the EPH-related receptor protein-tyrosine kinase Htk. Proc. Natl. Acad. Sci. USA, 1995, 92(6), 1866-1870.
[http://dx.doi.org/10.1073/pnas.92.6.1866] [PMID: 7534404]
[65]
Bergemann, A.D.; Cheng, H.J.; Brambilla, R.; Klein, R.; Flanagan, J.G. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol. Cell. Biol., 1995, 15(9), 4921-4929.
[http://dx.doi.org/10.1128/MCB.15.9.4921] [PMID: 7651410]
[66]
Pasquale, E.B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol., 2005, 6(6), 462-475.
[http://dx.doi.org/10.1038/nrm1662] [PMID: 15928710]
[67]
Poliakov, A.; Cotrina, M.; Wilkinson, D.G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell, 2004, 7(4), 465-480.
[http://dx.doi.org/10.1016/j.devcel.2004.09.006] [PMID: 15469835]
[68]
Gale, N.W.; Baluk, P.; Pan, L.; Kwan, M.; Holash, J.; DeChiara, T.M.; McDonald, D.M.; Yancopoulos, G.D. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol., 2001, 230(2), 151-160.
[http://dx.doi.org/10.1006/dbio.2000.0112] [PMID: 11161569]
[69]
Bowden, T.A.; Crispin, M.; Jones, E.Y.; Stuart, D.I. Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies. Biochem. Soc. Trans., 2010, 38(5), 1349-1355.
[http://dx.doi.org/10.1042/BST0381349] [PMID: 20863312]
[70]
Xu, K.; Chan, Y-P.; Rajashankar, K.R.; Khetawat, D.; Yan, L.; Kolev, M.V.; Broder, C.C.; Nikolov, D.B. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2. PLoS One, 2012, 7(11) e48742
[http://dx.doi.org/10.1371/journal.pone.0048742] [PMID: 23144952]
[71]
Negrete, O.A.; Chu, D.; Aguilar, H.C.; Lee, B. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J. Virol., 2007, 81(19), 10804-10814.
[http://dx.doi.org/10.1128/JVI.00999-07] [PMID: 17652392]
[72]
Blits-Huizinga, C.; Nelersa, C.; Malhotra, A.; Liebl, D. Ephrins and Their Receptors: Binding versus Biology IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 2004, 56, 257-265.
[73]
Aguilar, H.C.; Iorio, R.M. Henipavirus membrane fusion and viral entry. Curr. Top. Microbiol. Immunol., 2012, 359, 79-94.
[http://dx.doi.org/10.1007/82_2012_200] [PMID: 22427111]
[74]
Michalski, W.P.; Crameri, G.; Wang, L.; Shiell, B.J.; Eaton, B. The cleavage activation and sites of glycosylation in the fusion protein of Hendra virus. Virus Res., 2000, 69(2), 83-93.
[http://dx.doi.org/10.1016/S0168-1702(00)00169-6] [PMID: 11018278]
[75]
Smith, E.C.; Dutch, R.E. Side chain packing below the fusion peptide strongly modulates triggering of the Hendra virus F protein. J. Virol., 2010, 84(20), 10928-10932.
[http://dx.doi.org/10.1128/JVI.01108-10] [PMID: 20702638]
[76]
Elshabrawy, H.A.; Fan, J.; Haddad, C.S.; Ratia, K.; Broder, C.C.; Caffrey, M.; Prabhakar, B.S. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol., 2014, 88(8), 4353-4365.
[http://dx.doi.org/10.1128/JVI.03050-13] [PMID: 24501399]
[77]
Gardner, A.E.; Martin, K.L.; Dutch, R.E. A conserved region between the heptad repeats of paramyxovirus fusion proteins is critical for proper F protein folding. Biochemistry, 2007, 46(17), 5094-5105.
[http://dx.doi.org/10.1021/bi6025648] [PMID: 17417875]
[78]
Porotto, M.; Rockx, B.; Yokoyama, C.C.; Talekar, A.; Devito, I.; Palermo, L.M.; Liu, J.; Cortese, R.; Lu, M.; Feldmann, H.; Pessi, A.; Moscona, A. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog., 2010, 6(10) e1001168
[http://dx.doi.org/10.1371/journal.ppat.1001168] [PMID: 21060819]
[79]
Weissenhorn, W.; Dessen, A.; Calder, L.J.; Harrison, S.C.; Skehel, J.J.; Wiley, D.C. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol., 1999, 16(1), 3-9.
[http://dx.doi.org/10.1080/096876899294706] [PMID: 10332732]
[80]
Tan, C.T.; Tan, K.S. Nosocomial transmissibility of Nipah virus. J. Infect. Dis., 2001, 184(10), 1367-1367.
[http://dx.doi.org/10.1086/323996] [PMID: 11679933]
[81]
Dhondt, K.P.; Mathieu, C.; Chalons, M.; Reynaud, J.M.; Vallve, A.; Raoul, H.; Horvat, B.; Type, I. Type I interferon signaling protects mice from lethal henipavirus infection. J. Infect. Dis., 2013, 207(1), 142-151.
[http://dx.doi.org/10.1093/infdis/jis653] [PMID: 23089589]
[82]
Halpin, K.; Hyatt, A.D.; Fogarty, R.; Middleton, D.; Bingham, J.; Epstein, J.H.; Rahman, S.A.; Hughes, T.; Smith, C.; Field, H.E.; Daszak, P. Henipavirus Ecology Research Group. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am. J. Trop. Med. Hyg., 2011, 85(5), 946-951.
[http://dx.doi.org/10.4269/ajtmh.2011.10-0567] [PMID: 22049055]
[83]
Middleton, D.J.; Westbury, H.A.; Morrissy, C.J.; van der Heide, B.M.; Russell, G.M.; Braun, M.A.; Hyatt, A.D. Experimental Nipah virus infection in pigs and cats. J. Comp. Pathol., 2002, 126(2-3), 124-136.
[http://dx.doi.org/10.1053/jcpa.2001.0532] [PMID: 11945001]
[84]
de Wit, E.; Bushmaker, T.; Scott, D.; Feldmann, H.; Munster, V.J. Nipah virus transmission in a hamster model. PLoS Negl. Trop. Dis., 2011, 5(12) e1432
[http://dx.doi.org/10.1371/journal.pntd.0001432] [PMID: 22180802]
[85]
Guillaume, V.; Wong, K.T.; Looi, R.Y.; Georges-Courbot, M-C.; Barrot, L.; Buckland, R.; Wild, T.F.; Horvat, B. Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. Virology, 2009, 387(2), 459-465.
[http://dx.doi.org/10.1016/j.virol.2009.03.001] [PMID: 19328514]
[86]
Williamson, M.M.; Hooper, P.T.; Selleck, P.W.; Westbury, H.A.; Slocombe, R.F. A guinea-pig model of Hendra virus encephalitis. J. Comp. Pathol., 2001, 124(4), 273-279.
[http://dx.doi.org/10.1053/jcpa.2001.0464] [PMID: 11437503]
[87]
Geisbert, T.W.; Daddario-DiCaprio, K.M.; Hickey, A.C.; Smith, M.A.; Chan, Y-P.; Wang, L-F.; Mattapallil, J.J.; Geisbert, J.B.; Bossart, K.N.; Broder, C.C. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One, 2010, 5(5) e10690
[http://dx.doi.org/10.1371/journal.pone.0010690] [PMID: 20502528]
[88]
Dups, J.; Middleton, D.; Long, F.; Arkinstall, R.; Marsh, G.A.; Wang, L-F. Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh. Virol. J., 2014, 11, 102.
[http://dx.doi.org/10.1186/1743-422X-11-102] [PMID: 24890603]
[89]
Dups, J.; Middleton, D.; Yamada, M.; Monaghan, P.; Long, F.; Robinson, R.; Marsh, G.A.; Wang, L-F. A new model for Hendra virus encephalitis in the mouse. PLoS One, 2012, 7(7) e40308
[http://dx.doi.org/10.1371/journal.pone.0040308] [PMID: 22808132]
[90]
Bossart, K.N.; McEachern, J.A.; Hickey, A.C.; Choudhry, V.; Dimitrov, D.S.; Eaton, B.T.; Wang, L.F. Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J. Virol. Methods, 2007, 142(1-2), 29-40.
[http://dx.doi.org/10.1016/j.jviromet.2007.01.003] [PMID: 17292974]
[91]
Bossart, K.N.; Zhu, Z.; Middleton, D.; Klippel, J.; Crameri, G.; Bingham, J.; McEachern, J.A.; Green, D.; Hancock, T.J.; Chan, Y-P.; Hickey, A.C.; Dimitrov, D.S.; Wang, L-F.; Broder, C.C. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog., 2009, 5(10) e1000642
[http://dx.doi.org/10.1371/journal.ppat.1000642] [PMID: 19888339]
[92]
Mungall, B.A.; Middleton, D.; Crameri, G.; Halpin, K.; Bingham, J.; Eaton, B.T.; Broder, C.C. Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J. Infect. Dis., 2007, 196(6), 812-816.
[http://dx.doi.org/10.1086/520818]
[93]
Williamson, M.M.; Hooper, P.T.; Selleck, P.W.; Gleeson, L.J.; Daniels, P.W.; Westbury, H.A.; Murray, P.K. Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust. Vet. J., 1998, 76(12), 813-818.
[http://dx.doi.org/10.1111/j.1751-0813.1998.tb12335.x] [PMID: 9972433]
[94]
Chong, H.T.; Kamarulzaman, A.; Tan, C-T.; Goh, K-J.; Thayaparan, T.; Kunjapan, S.R.; Chew, N-K.; Chua, K-B.; Lam, S-K. Treatment of acute Nipah encephalitis with ribavirin. Ann. Neurol., 2001, 49(6), 810-813.
[http://dx.doi.org/10.1002/ana.1062] [PMID: 11409437]
[95]
Wright, P.J.; Crameri, G.; Eaton, B.T. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Arch. Virol., 2005, 150(3), 521-532.
[http://dx.doi.org/10.1007/s00705-004-0417-5] [PMID: 15526144]
[96]
Crotty, S.; Cameron, C.; Andino, R. Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J. Mol. Med. (Berl.), 2002, 80(2), 86-95.
[http://dx.doi.org/10.1007/s00109-001-0308-0] [PMID: 11907645]
[97]
De Franceschi, L.; Fattovich, G.; Turrini, F.; Ayi, K.; Brugnara, C.; Manzato, F.; Noventa, F.; Stanzial, A.M.; Solero, P.; Corrocher, R. Hemolytic anemia induced by ribavirin therapy in patients with chronic hepatitis C virus infection: role of membrane oxidative damage. Hepatology, 2000, 31(4), 997-1004.
[http://dx.doi.org/10.1053/he.2000.5789] [PMID: 10733558]
[98]
Georges-Courbot, M.C.; Contamin, H.; Faure, C.; Loth, P.; Baize, S.; Leyssen, P.; Neyts, J.; Deubel, V. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob. Agents Chemother., 2006, 50(5), 1768-1772.
[http://dx.doi.org/10.1128/AAC.50.5.1768-1772.2006] [PMID: 16641448]
[99]
Dawes, B.E.; Kalveram, B.; Ikegami, T.; Juelich, T.; Smith, J.K.; Zhang, L.; Park, A.; Lee, B.; Komeno, T.; Furuta, Y.; Freiberg, A.N. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci. Rep., 2018, 8(1), 7604.
[http://dx.doi.org/10.1038/s41598-018-25780-3] [PMID: 29765101]
[100]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[101]
Zhu, Z.; Bossart, K.N.; Bishop, K.A.; Crameri, G.; Dimitrov, A.S.; McEachern, J.A.; Feng, Y.; Middleton, D.; Wang, L.F.; Broder, C.C.; Dimitrov, D.S. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis., 2008, 197(6), 846-853.
[http://dx.doi.org/10.1086/528801] [PMID: 18271743]
[102]
Zhu, Z.; Dimitrov, A.S.; Bossart, K.N.; Crameri, G.; Bishop, K.A.; Choudhry, V.; Mungall, B.A.; Feng, Y-R.; Choudhary, A.; Zhang, M-Y.; Feng, Y.; Wang, L-F.; Xiao, X.; Eaton, B.T.; Broder, C.C.; Dimitrov, D.S. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol., 2006, 80(2), 891-899.
[http://dx.doi.org/10.1128/JVI.80.2.891-899.2006] [PMID: 16378991]
[103]
Mungall, B.A.; Middleton, D.; Crameri, G.; Bingham, J.; Halpin, K.; Russell, G.; Green, D.; McEachern, J.; Pritchard, L.I.; Eaton, B.T.; Wang, L-F.; Bossart, K.N.; Broder, C.C. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol., 2006, 80(24), 12293-12302.
[http://dx.doi.org/10.1128/JVI.01619-06] [PMID: 17005664]
[104]
Bossart, K.N.; Rockx, B.; Feldmann, F.; Brining, D.; Scott, D.; LaCasse, R.; Geisbert, J.B.; Feng, Y.R.; Chan, Y-P.; Hickey, A.C.; Broder, C.C.; Feldmann, H.; Geisbert, T.W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Science Translational Medicine., 2012, 4 146ra107
[105]
Wang, X.; Ge, J.; Hu, S.; Wang, Q.; Wen, Z.; Chen, H.; Bu, Z. Efficacy of DNA immunization with F and G protein genes of Nipah virus. Ann. N. Y. Acad. Sci., 2006, 1081, 243-245.
[http://dx.doi.org/10.1196/annals.1373.029] [PMID: 17135518]
[106]
Weingartl, H.M.; Berhane, Y.; Caswell, J.L.; Loosmore, S.; Audonnet, J-C.; Roth, J.A.; Czub, M. Recombinant nipah virus vaccines protect pigs against challenge. J. Virol., 2006, 80(16), 7929-7938.
[http://dx.doi.org/10.1128/JVI.00263-06] [PMID: 16873250]
[107]
Pallister, J.; Middleton, D.; Wang, L-F.; Klein, R.; Haining, J.; Robinson, R.; Yamada, M.; White, J.; Payne, J.; Feng, Y-R.; Chan, Y-P.; Broder, C.C. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine, 2011, 29(34), 5623-5630.
[http://dx.doi.org/10.1016/j.vaccine.2011.06.015] [PMID: 21689706]
[108]
Bossart, K.N.; Wang, L-F.; Flora, M.N.; Chua, K.B.; Lam, S.K.; Eaton, B.T.; Broder, C.C. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J. Virol., 2002, 76(22), 11186-11198.
[http://dx.doi.org/10.1128/JVI.76.22.11186-11198.2002] [PMID: 12388678]
[109]
Porotto, M.; Doctor, L.; Carta, P.; Fornabaio, M.; Greengard, O.; Kellogg, G.E.; Moscona, A. Inhibition of hendra virus fusion. J. Virol., 2006, 80(19), 9837-9849.
[http://dx.doi.org/10.1128/JVI.00736-06] [PMID: 16973588]
[110]
Mungall, B.A.; Schopman, N.C.; Lambeth, L.S.; Doran, T.J. Inhibition of Henipavirus infection by RNA interference. Antiviral Res., 2008, 80(3), 324-331.
[http://dx.doi.org/10.1016/j.antiviral.2008.07.004] [PMID: 18687361]
[111]
Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431(7006), 343-349.
[http://dx.doi.org/10.1038/nature02873] [PMID: 15372041]
[112]
Peters, L.; Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell, 2007, 26(5), 611-623.
[http://dx.doi.org/10.1016/j.molcel.2007.05.001] [PMID: 17560368]
[113]
Aljofan, M.; Sganga, M.L.; Lo, M.K.; Rootes, C.L.; Porotto, M.; Meyer, A.G.; Saubern, S.; Moscona, A.; Mungall, B.A. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro. Virol. J., 2009, 6, 187.
[http://dx.doi.org/10.1186/1743-422X-6-187] [PMID: 19889218]
[114]
Fung, D.Y.; Miller, R.D. Effect of dyes on bacterial growth. Appl. Microbiol., 1973, 25(5), 793-799.
[PMID: 4577179]
[115]
Nagayama, A. Inactivation of influenza A virus by gentian violet (GV) and GV-dyed cotton cloth, and bactericidal activities of these agents. J. Infect. Chemother., 2006, 12(2), 73-79.
[http://dx.doi.org/10.1007/s10156-005-0426-7] [PMID: 16648946]
[116]
Rodriguez, P.L.; Carrasco, L. Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. J. Virol., 1992, 66(4), 1971-1976.
[PMID: 1372367]
[117]
Culp, S.J.; Mellick, P.W.; Trotter, R.W.; Greenlees, K.J.; Kodell, R.L.; Beland, F.A. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol., 2006, 44(8), 1204-1212.
[http://dx.doi.org/10.1016/j.fct.2006.01.016] [PMID: 16554117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy