Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer

Author(s): Md. Nur Alam, Jun Q. Yu, Philip Beale and Fazlul Huq*

Volume 20, Issue 2, 2020

Page: [264 - 273] Pages: 10

DOI: 10.2174/1871520619666191021112042

Price: $65

Abstract

Background: Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models.

Methods: IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination.

Results: Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin.

Conclusion: Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.

Keywords: Emetine, patulin, colorectal cancer, synergism, oxaliplatin, MTT.

« Previous
Graphical Abstract
[1]
Alam, M.N.; Almoyad, M.; Huq, F. Polyphenols in colorectal cancer: Current state of knowledge including clinical trials and molecular mechanism of action. BioMed Res. Int., 2018, 2018 Article ID 4154185
[2]
Schinzari, G.; Rossi, E.; Mambella, G.; Strippoli, A.; Cangiano, R.; Mutignani, M.; Basso, M.; Cassano, A.; Barone, C. First-line treatment of advanced biliary ducts carcinoma: A randomized Phase II study evaluating 5-FU/LV plus oxaliplatin (Folfox 4) Versus 5-FU/LV (de Gramont Regimen). Anticancer Res., 2017, 37(9), 5193-5197.
[PMID: 28870954]
[3]
(a) Muhammad, N.; Steele, R.; Isbell, T.S.; Philips, N.; Ray, R.B. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget, 2017, 8(39), 66226-66236.
[http://dx.doi.org/10.18632/oncotarget.19887] [PMID: 29029506]
(b) Bhattacharya, S.; Muhammad, N.; Steele, R.; Kornbluth, J.; Ray, R.B. Bitter melon enhances natural killer-mediated toxicity against head and neck cancer cells. Cancer Prev. Res. (Phila.), 2017, 10(6), 337-344.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0046] [PMID: 28465362]
(c) Bhattacharya, S.; Muhammad, N.; Steele, R.; Peng, G.; Ray, R.B. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget, 2016, 7(22), 33202-33209.
[http://dx.doi.org/10.18632/oncotarget.8898] [PMID: 27120805]
[4]
(a) Mohammad, N.; Singh, S.V.; Malvi, P.; Chaube, B.; Athavale, D.; Vanuopadath, M.; Nair, S.S.; Nair, B.; Bhat, M.K. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci. Rep., 2015, 5, 11853.
[http://dx.doi.org/10.1038/srep11853] [PMID: 26149967]
(b) Mohammad, N.; Malvi, P.; Meena, A.S.; Singh, S.V.; Chaube, B.; Vannuruswamy, G.; Kulkarni, M.J.; Bhat, M.K. Cholesterol depletion by methyl-β-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol. Cancer, 2014, 13(1), 204.
[http://dx.doi.org/10.1186/1476-4598-13-204] [PMID: 25178635]
[5]
(a) Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res., 2011, 31(11), 3789-3797.
[PMID: 22110201]
(b) Yunos, N.M.; Beale, P.; Yu, J.Q.; Huq, F. Synergism from sequenced combinations of curcumin and epigallocatechin-3-gallate with cisplatin in the killing of human ovarian cancer cells. Anticancer Res., 2011, 31(4), 1131-1140.
[PMID: 21508356]
(c) Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells. Anticancer Res., 2012, 32(1), 53-59.
[PMID: 22213288]
(d) Arzuman, L.; Beale, P.; Yu, J.Q.; Huq, F. Synthesis of tris(quinoline)monochloroplatinum(II) chloride and its activity alone and in combination with capsaicin and curcumin in human ovarian cancer cell lines. Anticancer Res., 2016, 36(6), 2809-2818.
[PMID: 27272792]
[6]
(a) Panettiere, F.; Coltman, C.A., Jr Experience with emetine hydrochloride (NSC 33669) as an antitumor agent. Cancer, 1971, 27(4), 835-841.
[http://dx.doi.org/10.1002/1097-0142(197104)27:4<835:AID-CNCR2820270413>3.0.CO;2-K] [PMID: 4929936]
(b) Kane, R.C.; Cohen, M.H.; Broder, L.E.; Bull, M.I.; Creaven, P.J.; Fossieck, B.E., Jr Phase I-II evaluation of emetine (NSC-33669) in the treatment of epidermoid bronchogenic carcinoma. Cancer Chemother. Rep., 1975, 59(6), 1171-1172.
[PMID: 1222395]
[7]
(a) Boussabbeh, M.; Ben Salem, I.; Prola, A.; Guilbert, A.; Bacha, H.; Abid-Essefi, S.; Lemaire, C. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol. Sci., 2015, 144(2), 328-337.
[http://dx.doi.org/10.1093/toxsci/kfu319] [PMID: 25577197]
(b) Abastabar, M.; Akbari, A.; Akhtari, J.; Hedayati, M.T.; Shokohi, T.; Mehrad-Majd, H.; Ghalehnoei, H.; Ghasemi, S. In vitro antitumor activity of patulin on cervical and colorectal cancer cell lines. Curr Med Mycol, 2017, 3(1), 25.
[http://dx.doi.org/10.29252/cmm.3.1.25]]
(c) Boussabbeh, M.; Ben Salem, I.; Rjiba-Touati, K.; Bouyahya, C.; Neffati, F.; Najjar, M.F.; Bacha, H.; Abid-Essefi, S. The potential effect of patulin on mice bearing melanoma cells: an anti-tumour or carcinogenic effect? Tumour Biol., 2016, 37(5), 6285-6295.
[http://dx.doi.org/10.1007/s13277-015-4474-z] [PMID: 26619846]
[8]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[9]
Chou, T-C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[10]
Al-Eisawi, Z.; Beale, P.; Chan, C.; Yu, J.Q.; Proschogo, N.; Molloy, M.; Huq, F. Changes in the in vitro activity of platinum drugs when administered in two aliquots. BMC Cancer, 2016, 16(1), 688.
[http://dx.doi.org/10.1186/s12885-016-2731-1] [PMID: 27566066]
[11]
Akinboye, S. Biological activities of emetine. Open Nat. Prod. J., 2011, 4(1), 8-15.
[12]
(a) Pillay, Y.; Phulukdaree, A.; Nagiah, S.; Chuturgoon, A.A. Patulin triggers NRF2-mediated survival mechanisms in kidney cells. Toxicon, 2015, 99, 1-5.
[http://dx.doi.org/10.1016/j.toxicon.2015.03.004] [PMID: 25772858]
(b) Zouaoui, N.; Mallebrera, B.; Berrada, H.; Abid-Essefi, S.; Bacha, H.; Ruiz, M-J. Cytotoxic effects induced by patulin, sterigmatocystin and beauvericin on CHO-K1 cells. Food Chem. Toxicol., 2016, 89, 92-103.
[http://dx.doi.org/10.1016/j.fct.2016.01.010] [PMID: 26802678]
[13]
Larsson, D.E.; Hassan, S.; Larsson, R.; Öberg, K.; Granberg, D. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines. Cancer Chemother. Pharmacol., 2009, 65(1), 5-12.
[http://dx.doi.org/10.1007/s00280-009-0997-6] [PMID: 19381631]
[14]
Alamro, A.A.S. Studies on combination between tumour active compounds in ovarian tumour models, 2015.
[15]
Zhang, B.; Peng, X.; Li, G.; Xu, Y.; Xia, X.; Wang, Q. Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells. Toxicon, 2015, 94, 1-7.
[http://dx.doi.org/10.1016/j.toxicon.2014.12.002] [PMID: 25478806]
[16]
Kwon, O.; Soung, N.K.; Thimmegowda, N.R.; Jeong, S.J.; Jang, J.H.; Moon, D-O.; Chung, J.K.; Lee, K.S.; Kwon, Y.T.; Erikson, R.L.; Ahn, J.S.; Kim, B.Y. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell. Signal., 2012, 24(4), 943-950.
[http://dx.doi.org/10.1016/j.cellsig.2011.12.017] [PMID: 22230687]
[17]
Dugina, V.; Zwaenepoel, I.; Gabbiani, G.; Clément, S.; Chaponnier, C. β and γ-cytoplasmic actins display distinct distribution and functional diversity. J. Cell Sci., 2009, 122(Pt 16), 2980-2988.
[http://dx.doi.org/10.1242/jcs.041970] [PMID: 19638415]
[18]
Shum, M.S.; Pasquier, E.; Po’uha, S.T.; O’Neill, G.M.; Chaponnier, C.; Gunning, P.W.; Kavallaris, M. γ-Actin regulates cell migration and modulates the ROCK signaling pathway. FASEB J., 2011, 25(12), 4423-4433.
[http://dx.doi.org/10.1096/fj.11-185447] [PMID: 21908715]
[19]
Li, Y.; Liang, Q.; Wen, Y.Q.; Chen, L.L.; Wang, L.T.; Liu, Y.L.; Luo, C.Q.; Liang, H.Z.; Li, M.T.; Li, Z. Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. Cancer Genet. Cytogenet., 2010, 198(2), 97-106.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.01.003] [PMID: 20362224]
[20]
Huang, H-L.; Yao, H-S.; Wang, Y.; Wang, W-J.; Hu, Z-Q.; Jin, K-Z. Proteomic identification of tumor biomarkers associated with primary gallbladder cancer. World J. Gastroenterol., 2014, 20(18), 5511-5518.
[http://dx.doi.org/10.3748/wjg.v20.i18.5511] [PMID: 24833881]
[21]
Po’uha, S.T.; Honore, S.; Braguer, D.; Kavallaris, M. Partial depletion of gamma-actin suppresses microtubule dynamics. Cytoskeleton (Hoboken), 2013, 70(3), 148-160.
[http://dx.doi.org/10.1002/cm.21096] [PMID: 23335583]
[22]
Theriot, J.A.; Mitchison, T.J. The three faces of profilin. Cell, 1993, 75(5), 835-838.
[http://dx.doi.org/10.1016/0092-8674(93)90527-W] [PMID: 8252619]
[23]
Zoidakis, J.; Makridakis, M.; Zerefos, P.G.; Bitsika, V.; Esteban, S.; Frantzi, M.; Stravodimos, K.; Anagnou, N.P.; Roubelakis, M.G.; Sanchez-Carbayo, M. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol. Cell. Proteomics, 2012, 11(4), M111. 009449.
[http://dx.doi.org/10.1074/mcp.M111.009449]
[24]
Adami, G.R.; O’Callaghan, T.N.; Kolokythas, A.; Cabay, R.J.; Zhou, Y.; Schwartz, J.L. A loss of profilin-1 in late-stage oral squamous cell carcinoma. J. Oral Pathol. Med., 2017, 46(7), 489-495.
[http://dx.doi.org/10.1111/jop.12523] [PMID: 27862305]
[25]
Janke, J.; Schlüter, K.; Jandrig, B.; Theile, M.; Kölble, K.; Arnold, W.; Grinstein, E.; Schwartz, A.; Estevéz-Schwarz, L.; Schlag, P.M.; Jockusch, B.M.; Scherneck, S. Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J. Exp. Med., 2000, 191(10), 1675-1686.
[http://dx.doi.org/10.1084/jem.191.10.1675] [PMID: 10811861]
[26]
Yao, W.; Ji, S.; Qin, Y.; Yang, J.; Xu, J.; Zhang, B.; Xu, W.; Liu, J.; Shi, S.; Liu, L.; Liu, C.; Long, J.; Ni, Q.; Li, M.; Yu, X. Profilin-1 suppresses tumorigenicity in pancreatic cancer through regulation of the SIRT3-HIF1α axis. Mol. Cancer, 2014, 13, 187.
[http://dx.doi.org/10.1186/1476-4598-13-187] [PMID: 25103363]
[27]
Minamida, S.; Iwamura, M.; Kodera, Y.; Kawashima, Y.; Ikeda, M.; Okusa, H.; Fujita, T.; Maeda, T.; Baba, S. Profilin 1 overexpression in renal cell carcinoma. Int. J. Urol., 2011, 18(1), 63-71.
[http://dx.doi.org/10.1111/j.1442-2042.2010.02670.x] [PMID: 21091798]
[28]
Cheng, Y-J.; Zhu, Z-X.; Zhou, J-S.; Hu, Z-Q.; Zhang, J-P.; Cai, Q-P.; Wang, L-H. Silencing profilin-1 inhibits gastric cancer progression via integrin β1/focal adhesion kinase pathway modulation. World J. Gastroenterol., 2015, 21(8), 2323-2335.
[http://dx.doi.org/10.3748/wjg.v21.i8.2323] [PMID: 25741138]
[29]
Almeida, F.G.O.; de Aquino, P.F.; Chalub, S.R.S.; Araujo, G.D.T.; Domont, G.B.; de Souza, A.D.L.; Carvalho, P.C.; Fischer, J.S.G. Proteomic assessment of colorectal cancers and respective resection margins from patients of the Amazon state of Brazil. J. Proteomics, 2017, 154, 59-68.
[http://dx.doi.org/10.1016/j.jprot.2016.12.004] [PMID: 27986506]
[30]
Dornan, J.; Taylor, P.; Walkinshaw, M.D. Structures of immunophilins and their ligand complexes. Curr. Top. Med. Chem., 2003, 3(12), 1392-1409.
[http://dx.doi.org/10.2174/1568026033451899] [PMID: 12871171]
[31]
Obchoei, S.; Wongkhan, S.; Wongkham, C.; Li, M.; Yao, Q.; Chen, C.; Cyclophilin, A. Cyclophilin A: potential functions and therapeutic target for human cancer. Med. Sci. Monit., 2009, 15(11), RA221-RA232.
[PMID: 19865066]
[32]
Yang, H.; Li, M.; Chai, H.; Yan, S.; Lin, P.; Lumsden, A.B.; Yao, Q.; Chen, C. Effects of cyclophilin A on cell proliferation and gene expressions in human vascular smooth muscle cells and endothelial cells. J. Surg. Res., 2005, 123(2), 312-319.
[http://dx.doi.org/10.1016/j.jss.2004.08.026] [PMID: 15680395]
[33]
Campa, M.J.; Wang, M.Z.; Howard, B.; Fitzgerald, M.C.; Patz, E.F., Jr Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res., 2003, 63(7), 1652-1656.
[PMID: 12670919]
[34]
Lim, S.O.; Park, S-J.; Kim, W.; Park, S.G.; Kim, H-J.; Kim, Y-I.; Sohn, T-S.; Noh, J-H.; Jung, G. Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2002, 291(4), 1031-1037.
[http://dx.doi.org/10.1006/bbrc.2002.6547] [PMID: 11866469]
[35]
Mikuriya, K.; Kuramitsu, Y.; Ryozawa, S.; Fujimoto, M.; Mori, S.; Oka, M.; Hamano, K.; Okita, K.; Sakaida, I.; Nakamura, K. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int. J. Oncol., 2007, 30(4), 849-855.
[http://dx.doi.org/10.3892/ijo.30.4.849] [PMID: 17332923]
[36]
Lee, J.; Kim, S.S. Current implications of cyclophilins in human cancers. J. Exp. Clin. Cancer Res., 2010, 29(1), 97.
[http://dx.doi.org/10.1186/1756-9966-29-97] [PMID: 20637127]
[37]
Li, Z.; Zhao, X.; Bai, S.; Wang, Z.; Chen, L.; Wei, Y.; Huang, C. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol. Cell. Proteomics, 2008, 7(10), 1810-1823.
[http://dx.doi.org/10.1074/mcp.M700544-MCP200] [PMID: 18421009]
[38]
Al-Ghoul, M.; Brück, T.B.; Lauer-Fields, J.L.; Asirvatham, V.S.; Zapata, C.; Kerr, R.G.; Fields, G.B. Comparative proteomic analysis of matched primary and metastatic melanoma cell lines. J. Proteome Res., 2008, 7(9), 4107-4118.
[http://dx.doi.org/10.1021/pr800174k] [PMID: 18698805]
[39]
Qi, Y.J.; He, Q.Y.; Ma, Y.F.; Du, Y.W.; Liu, G.C.; Li, Y.J.; Tsao, G.S.; Ngai, S.M.; Chiu, J.F. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J. Cell. Biochem., 2008, 104(5), 1625-1635.
[http://dx.doi.org/10.1002/jcb.21727] [PMID: 18320592]
[40]
Dong, G.; Wearsch, P.A.; Peaper, D.R.; Cresswell, P.; Reinisch, K.M. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity, 2009, 30(1), 21-32.
[http://dx.doi.org/10.1016/j.immuni.2008.10.018] [PMID: 19119025]
[41]
Ramos, F.S.; Serino, L.T.; Carvalho, C.M.; Lima, R.S.; Urban, C.A.; Cavalli, I.J.; Ribeiro, E.M. PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genet. Mol. Res., 2015, 14(2), 6960-6967.
[http://dx.doi.org/10.4238/2015.June.26.4] [PMID: 26125904]
[42]
Giamogante, F.; Marrocco, I.; Romaniello, D.; Eufemi, M.; Chichiarelli, S.; Altieri, F. Comparative analysis of the interaction between different flavonoids and PDIA3. Oxid. Med. Cell. Longev., 2016, 2016 Article ID 4518281
[http://dx.doi.org/10.1155/2016/4518281]
[43]
Zhao, G.; Lu, H.; Li, C. Proapoptotic activities of protein disulfide isomerase (PDI) and PDIA3 protein, a role of the Bcl-2 protein Bak. J. Biol. Chem., 2015, 290(14), 8949-8963.
[http://dx.doi.org/10.1074/jbc.M114.619353] [PMID: 25697356]
[44]
Wang, W.; Eddy, R.; Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer, 2007, 7(6), 429-440.
[http://dx.doi.org/10.1038/nrc2148] [PMID: 17522712]
[45]
Yamaguchi, H.; Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta, 2007, 1773(5), 642-652.
[http://dx.doi.org/10.1016/j.bbamcr.2006.07.001] [PMID: 16926057]
[46]
Bernstein, B.W.; Bamburg, J.R. ADF/cofilin: a functional node in cell biology. Trends Cell Biol., 2010, 20(4), 187-195.
[http://dx.doi.org/10.1016/j.tcb.2010.01.001] [PMID: 20133134]
[47]
Han, L.; Stope, M.B.; de Jesús, M.L.; Oude Weernink, P.A.; Urban, M.; Wieland, T.; Rosskopf, D.; Mizuno, K.; Jakobs, K.H.; Schmidt, M. Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J., 2007, 26(19), 4189-4202.
[http://dx.doi.org/10.1038/sj.emboj.7601852] [PMID: 17853892]
[48]
Gunnersen, J.M.; Spirkoska, V.; Smith, P.E.; Danks, R.A.; Tan, S.S. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia, 2000, 32(2), 146-154.
[http://dx.doi.org/10.1002/1098-1136(200011)32:2<146:AID-GLIA40>3.0.CO;2-3] [PMID: 11008214]
[49]
Keshamouni, V.G.; Michailidis, G.; Grasso, C.S.; Anthwal, S.; Strahler, J.R.; Walker, A.; Arenberg, D.A.; Reddy, R.C.; Akulapalli, S.; Thannickal, V.J.; Standiford, T.J.; Andrews, P.C.; Omenn, G.S. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res., 2006, 5(5), 1143-1154.
[http://dx.doi.org/10.1021/pr050455t] [PMID: 16674103]
[50]
Sinha, P.; Hütter, G.; Köttgen, E.; Dietel, M.; Schadendorf, D.; Lage, H. Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-σ (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis, 1999, 20(14), 2952-2960.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19991001)20:14<2952:AID-ELPS2952>3.0.CO;2-H] [PMID: 10546833]
[51]
Dowling, P.; Meleady, P.; Dowd, A.; Henry, M.; Glynn, S.; Clynes, M. Proteomic analysis of isolated membrane fractions from superinvasive cancer cells. Biochim. Biophys. Acta, 2007, 1774(1), 93-101.
[http://dx.doi.org/10.1016/j.bbapap.2006.09.014] [PMID: 17085086]
[52]
Turhani, D.; Krapfenbauer, K.; Thurnher, D.; Langen, H.; Fountoulakis, M. Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis, 2006, 27(7), 1417-1423.
[http://dx.doi.org/10.1002/elps.200500510] [PMID: 16568407]
[53]
Unwin, R.D.; Craven, R.A.; Harnden, P.; Hanrahan, S.; Totty, N.; Knowles, M.; Eardley, I.; Selby, P.J.; Banks, R.E. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics, 2003, 3(8), 1620-1632.
[http://dx.doi.org/10.1002/pmic.200300464] [PMID: 12923786]
[54]
Martoglio, A-M.; Tom, B.D.; Starkey, M.; Corps, A.N.; Charnock-Jones, D.S.; Smith, S.K. Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med., 2000, 6(9), 750-765.
[http://dx.doi.org/10.1007/BF03402191] [PMID: 11071270]
[55]
Singh, S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother. Pharmacol., 2015, 75(1), 1-15.
[http://dx.doi.org/10.1007/s00280-014-2566-x] [PMID: 25143300]
[56]
Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ., 2010, 17(9), 1373-1380.
[http://dx.doi.org/10.1038/cdd.2010.80] [PMID: 20596078]
[57]
Du, S.; Guan, Z.; Hao, L.; Song, Y.; Wang, L.; Gong, L.; Liu, L.; Qi, X.; Hou, Z.; Shao, S. Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One, 2014, 9(1)e85804
[http://dx.doi.org/10.1371/journal.pone.0085804] [PMID: 24465716]
[58]
(a) Ji, S.; Zhang, B.; Liu, J.; Qin, Y.; Liang, C.; Shi, S.; Jin, K.; Liang, D.; Xu, W.; Xu, H.; Wang, W.; Wu, C.; Liu, L.; Liu, C.; Xu, J.; Ni, Q.; Yu, X. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Lett., 2016, 374(1), 127-135.
[http://dx.doi.org/10.1016/j.canlet.2016.01.054] [PMID: 26854714]
(b) Peng, Y.; Li, X.; Wu, M.; Yang, J.; Liu, M.; Zhang, W.; Xiang, B.; Wang, X.; Li, X.; Li, G.; Shen, S. New prognosis biomarkers identified by dynamic proteomic analysis of colorectal cancer. Mol. Biosyst., 2012, 8(11), 3077-3088.
[http://dx.doi.org/10.1039/c2mb25286d] [PMID: 22996014]
[59]
Chang, Y-C. In: Aldolase A induces invasion/metastasis of lung cancer through modulating HIF1-α and is a marker for poor clinical outcome, Proceedings of the AACR Annual Meeting, San Diego, CA, USA. 2014.
[60]
Kapustian, L.; Dadlez, M.; Negrutskii, B. Non-canonical interactions of the β subunit of the translation elongation complex eEF1B and analysis of their possible functional role. Biopolymers Cell, 2016, 32(5), 347-358.
[http://dx.doi.org/10.7124/bc.00092F]
[61]
Hooven, L.A.; Baird, W.M. Proteomic analysis of MCF-7 cells treated with benzo[a]pyrene, dibenzo[a,l]pyrene, coal tar extract, and diesel exhaust extract. Toxicology, 2008, 249(1), 1-10.
[http://dx.doi.org/10.1016/j.tox.2008.03.019] [PMID: 18495319]
[62]
(a) Palazzolo, G.; Albanese, N.N.; DI Cara, G.; Gygax, D.; Vittorelli, M.L.; Pucci-Minafra, I. Proteomic analysis of exosome-like vesicles derived from breast cancer cells. Anticancer Res., 2012, 32(3), 847-860.
[PMID: 22399603]
(b) Kruger, S.; Abd Elmageed, Z.Y.; Hawke, D.H.; Wörner, P.M.; Jansen, D.A.; Abdel-Mageed, A.B.; Alt, E.U.; Izadpanah, R. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer, 2014, 14(1), 44.
[http://dx.doi.org/10.1186/1471-2407-14-44] [PMID: 24468161]
[63]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
[64]
Ghadari, R.; Alavi, F.S.; Zahedi, M. Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study. Comput. Biol. Chem., 2015, 56, 33-40.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.02.018] [PMID: 25854803]
[65]
Kelley, M.J.; Li, S.; Harpole, D.H. Genetic analysis of the β-tubulin gene, TUBB, in non-small-cell lung cancer. J. Natl. Cancer Inst., 2001, 93(24), 1886-1888.
[http://dx.doi.org/10.1093/jnci/93.24.1886] [PMID: 11752014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy