Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies

Author(s): Xylia Q. Peters, Thembeka H. Malinga, Clement Agoni, Fisayo A. Olotu, Mahmoud E.S. Soliman*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 16 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries.

Methods: In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors.

Results: Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day?

Conclusion: The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.

Keywords: Tankyrase, cancer therapy, computer-aided drug design, structural homology, inhibitors, selective targeting.

[1]
Hottiger, M.O.; Hassa, P.O.; Lüscher, B.; Schüler, H.; Koch-Nolte, F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci., 2010, 35(4), 208-219.
[http://dx.doi.org/10.1016/j.tibs.2009.12.003] [PMID: 20106667]
[2]
Otto, H.; Reche, P.A.; Bazan, F.; Dittmar, K.; Haag, F.; Koch-Nolte, F. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics, 2005, 6(1), 139.
[http://dx.doi.org/10.1186/1471-2164-6-139] [PMID: 16202152]
[3]
Riffell, J.L.; Lord, C.J.; Ashworth, A. Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat. Rev. Drug Discov., 2012, 11(12), 923-936.
[http://dx.doi.org/10.1038/nrd3868] [PMID: 23197039]
[4]
Bürkle, A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J., 2005, 272(18), 4576-4589.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04864.x] [PMID: 16156780]
[5]
Berger, F.; Ramírez-Hernández, M.H.; Ziegler, M. The new life of a centenarian: Signalling functions of NAD(P). Trends Biochem. Sci., 2004, 29(3), 111-118.
[http://dx.doi.org/10.1016/j.tibs.2004.01.007] [PMID: 15003268]
[6]
Haikarainen, T.; Krauss, S.; Lehtio, L. Tankyrases: Structure, function and therapeutic implications in cancer. Curr. Pharm. Des., 2014, 20(41), 6472-6488.
[http://dx.doi.org/10.2174/1381612820666140630101525] [PMID: 24975604]
[7]
Huang, S-M.A.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; Hild, M.; Shi, X.; Wilson, C.J.; Mickanin, C.; Myer, V.; Fazal, A.; Tomlinson, R.; Serluca, F.; Shao, W.; Cheng, H.; Shultz, M.; Rau, C.; Schirle, M.; Schlegl, J.; Ghidelli, S.; Fawell, S.; Lu, C.; Curtis, D.; Kirschner, M.W.; Lengauer, C.; Finan, P.M.; Tallarico, J.A.; Bouwmeester, T.; Porter, J.A.; Bauer, A.; Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 2009, 461(7264), 614-620.
[http://dx.doi.org/10.1038/nature08356] [PMID: 19759537]
[8]
Chang, P.; Coughlin, M.; Mitchison, T.J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat. Cell Biol., 2005, 7(11), 1133-1139.
[http://dx.doi.org/10.1038/ncb1322] [PMID: 16244666]
[9]
Chang, W.; Dynek, J.N.; Smith, S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J., 2005, 391(Pt 2), 177-184.
[http://dx.doi.org/10.1042/BJ20050885] [PMID: 16076287]
[10]
Hsiao, S.J.; Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie, 2008, 90(1), 83-92.
[http://dx.doi.org/10.1016/j.biochi.2007.07.012] [PMID: 17825467]
[11]
Smith, S.; de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol., 2000, 10(20), 1299-1302.
[http://dx.doi.org/10.1016/S0960-9822(00)00752-1] [PMID: 11069113]
[12]
Cho-Park, P.F.; Steller, H. Proteasome regulation by ADP-ribosylation. Cell, 2013, 153(3), 614-627.
[http://dx.doi.org/10.1016/j.cell.2013.03.040] [PMID: 23622245]
[13]
Yeh, T-Y.J.; Beiswenger, K.K.; Li, P.; Bolin, K.E.; Lee, R.M.; Tsao, T-S.; Murphy, A.N.; Hevener, A.L.; Chi, N-W. Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes, 2009, 58(11), 2476-2485.
[http://dx.doi.org/10.2337/db08-1781] [PMID: 19651815]
[14]
Hakmé, A.; Wong, H.K.; Dantzer, F.; Schreiber, V. The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep., 2008, 9(11), 1094-1100.
[http://dx.doi.org/10.1038/embor.2008.191] [PMID: 18927583]
[15]
Li, X.; Bai, B.; Liu, L.; Ma, P.; Kong, L.; Yan, J.; Zhang, J.; Ye, Z.; Zhou, H.; Mao, B.; Zhu, H.; Li, Y. Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling. Cell Death Discov., 2015, 1, 15033.
[http://dx.doi.org/10.1038/cddiscovery.2015.33] [PMID: 27551464]
[16]
Bhavanasi, D.; Klein, P.S. Wnt signaling in normal and malignant stem cells. Curr. Stem Cell Rep., 2016, 2(4), 379-387.
[http://dx.doi.org/10.1007/s40778-016-0068-y] [PMID: 28503404]
[17]
Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol., 2012, 4(5)a008052
[http://dx.doi.org/10.1101/cshperspect.a008052] [PMID: 22438566]
[18]
Kikuchi, A.; Kishida, S.; Yamamoto, H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp. Mol. Med., 2006, 38(1), 1-10.
[http://dx.doi.org/10.1038/emm.2006.1] [PMID: 16520547]
[19]
Choi, S.H.; Estarás, C.; Moresco, J.J.; Yates, J.R., III; Jones, K.A. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev., 2013, 27(22), 2473-2488.
[http://dx.doi.org/10.1101/gad.229062.113] [PMID: 24240237]
[20]
Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol., 2013, 5(1)a007898
[http://dx.doi.org/10.1101/cshperspect.a007898] [PMID: 23169527]
[21]
Xing, Y.; Clements, W.K.; Kimelman, D.; Xu, W. Crystal structure of a β-catenin/axin complex suggests a mechanism for the β-catenin destruction complex. Genes Dev., 2003, 17(22), 2753-2764.
[http://dx.doi.org/10.1101/gad.1142603] [PMID: 14600025]
[22]
van Kappel, E.C.; Maurice, M.M. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br. J. Pharmacol., 2017, 174(24), 4575-4588.
[http://dx.doi.org/10.1111/bph.13922] [PMID: 28634996]
[23]
Croy, H.E.; Fuller, C.N.; Giannotti, J.; Robinson, P.; Foley, A.V.A.; Yamulla, R.J.; Cosgriff, S.; Greaves, B.D.; von Kleeck, R.A.; An, H.H.; Powers, C.M.; Tran, J.K.; Tocker, A.M.; Jacob, K.D.; Davis, B.K.; Roberts, D.M. The poly(ADP-ribose) polymerase enzyme tankyrase antagonizes activity of the β-catenin destruction complex through adp-ribosylation of axin and APC2. J. Biol. Chem., 2016, 291(24), 12747-12760.
[http://dx.doi.org/10.1074/jbc.M115.705442] [PMID: 27068743]
[24]
Martino-Echarri, E.; Brocardo, M.G.; Mills, K.M.; Henderson, B.R. Tankyrase inhibitors stimulate the ability of tankyrases to bind axin and drive assembly of β-catenin degradation-competent axin puncta. PLoS One, 2016, 11(3)e0150484
[http://dx.doi.org/10.1371/journal.pone.0150484] [PMID: 26930278]
[25]
Kim, M.K. Novel insight into the function of tankyrase. Oncol. Lett., 2018, 16(6), 6895-6902.
[http://dx.doi.org/10.3892/ol.2018.9551] [PMID: 30546421]
[26]
Wang, H.; Lu, B.; Castillo, J.; Zhang, Y.; Yang, Z.; McAllister, G.; Lindeman, A.; Reece-Hoyes, J.; Tallarico, J.; Russ, C. Tankyrase inhibitor sensitizes lung cancer cells to egfr inhibition via stabilizing angiomotins and inhibiting YAP signaling. J. Biol. Chem., 2016, 291(29), 15256-15266.
[27]
McCabe, N.; Cerone, M.A.; Ohishi, T.; Seimiya, H.; Lord, C.J.; Ashworth, A. Targeting tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene, 2009, 28(11), 1465-1470.
[http://dx.doi.org/10.1038/onc.2008.483] [PMID: 19182824]
[28]
Kleine, H.; Poreba, E.; Lesniewicz, K.; Hassa, P.O.; Hottiger, M.O.; Litchfield, D.W.; Shilton, B.H.; Lüscher, B. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell, 2008, 32(1), 57-69.
[http://dx.doi.org/10.1016/j.molcel.2008.08.009] [PMID: 18851833]
[29]
Nguewa, P.A.; Fuertes, M.A.; Valladares, B.; Alonso, C.; Pérez, J.M. Poly(ADP-ribose) polymerases: Homology, structural domains and functions. Novel therapeutical applications. Prog. Biophys. Mol. Biol., 2005, 88(1), 143-172.
[http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.001] [PMID: 15561303]
[30]
Smith, S.; Giriat, I.; Schmitt, A.; De Lange, T. Tankyrase, a poly (ADP-Ribose) polymerase at human telomeres. Science, 1998, 282(5393), 1484-1487.
[31]
de la Lastra, C.A.; Villegas, I.; Sánchez-Fidalgo, S.; Alarcon de la Lastra, C.; Villegas, I.; Sanchez-Fidalgo, S. Poly(ADP-ribose) polymerase inhibitors: New pharmacological functions and potential clinical implications. Curr. Pharm. Des., 2007, 13(9), 933-962.
[http://dx.doi.org/10.2174/138161207780414241] [PMID: 17430191]
[32]
Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr., 2014, 24(1), 15-28.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875] [PMID: 24579667]
[33]
Jubin, T.; Kadam, A.; Jariwala, M.; Bhatt, S.; Sutariya, S.; Gani, A.R.; Gautam, S.; Begum, R. The PARP family: Insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif., 2016, 49(4), 421-437.
[http://dx.doi.org/10.1111/cpr.12268] [PMID: 27329285]
[34]
Leung, A.; Todorova, T.; Ando, Y.; Chang, P. Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol., 2012, 9(5), 542-548.
[http://dx.doi.org/10.4161/rna.19899] [PMID: 22531498]
[35]
Leung, A.K.L.; Vyas, S.; Rood, J.E.; Bhutkar, A.; Sharp, P.A.; Chang, P. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell, 2011, 42(4), 489-499.
[http://dx.doi.org/10.1016/j.molcel.2011.04.015] [PMID: 21596313]
[36]
Narwal, M.; Venkannagari, H. Structural basis of selective inhibition of human tankyrases. J. Med. Chem., 2012, 55(3), 1360-1367.
[http://dx.doi.org/10.1021/jm201510p]
[37]
De Rycker, M.; Price, C.M. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol. Cell. Biol., 2004, 24(22), 9802-9812.
[http://dx.doi.org/10.1128/MCB.24.22.9802-9812.2004] [PMID: 15509784]
[38]
Seimiya, H. The telomeric PARP, tankyrases, as targets for cancer therapy. Br. J. Cancer, 2006, 94(3), 341-345.
[http://dx.doi.org/10.1038/sj.bjc.6602951] [PMID: 16421589]
[39]
Ha, G.H.; Kim, H.S.; Go, H.; Lee, H.; Seimiya, H.; Chung, D.H.; Lee, C.W. Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation. Cell Death Differ., 2012, 19(2), 321-332.
[http://dx.doi.org/10.1038/cdd.2011.101] [PMID: 21818122]
[40]
Qiu, W.; Lam, R.; Voytyuk, O.; Romanov, V.; Gordon, R.; Gebremeskel, S.; Vodsedalek, J.; Thompson, C.; Beletskaya, I.; Battaile, K.P.; Pai, E.F.; Rottapel, R.; Chirgadze, N.Y. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 10), 2740-2753.
[http://dx.doi.org/10.1107/S1399004714017660] [PMID: 25286857]
[41]
Nimbalkar, R.D.; Tangadpalliwar, S.R.; Garg, P. In: Molecular insights on dynamics of binding site D-loop of tankyrases: Role of molecular dynamics simulations in computational drug design. Accelerating Biology 2017: Delivering precision, symposium India, January 17-19, 2017.
[http://dx.doi.org/10.13140/RG.2.2.30759.96160]
[42]
DaRosa, P.A.; Ovchinnikov, S.; Xu, W.; Klevit, R.E. Structural insights into SAM domain-mediated tankyrase oligomerization. Protein Sci., 2016, 25(9), 1744-1752.
[http://dx.doi.org/10.1002/pro.2968] [PMID: 27328430]
[43]
Lehtiö, L.; Collins, R.; van den Berg, S.; Johansson, A.; Dahlgren, L-G.; Hammarström, M.; Helleday, T.; Holmberg-Schiavone, L.; Karlberg, T.; Weigelt, J. Zinc binding catalytic domain of human tankyrase 1. J. Mol. Biol., 2008, 379(1), 136-145.
[http://dx.doi.org/10.1016/j.jmb.2008.03.058] [PMID: 18436240]
[44]
Eisemann, T.; McCauley, M.; Langelier, M-F.; Gupta, K.; Roy, S.; Van Duyne, G.D.; Pascal, J.M. Tankyrase-1 ankyrin repeats form an adaptable binding platform for targets of ADP-ribose modification. Structure, 2016, 24(10), 1679-1692.
[http://dx.doi.org/10.1016/j.str.2016.07.014] [PMID: 27594684]
[45]
Guettler, S.; LaRose, J.; Petsalaki, E.; Gish, G.; Scotter, A.; Pawson, T.; Rottapel, R.; Sicheri, F. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell, 2011, 147(6), 1340-1354.
[http://dx.doi.org/10.1016/j.cell.2011.10.046] [PMID: 22153077]
[46]
Lehtiö, L.; Chi, N.W.; Krauss, S. Tankyrases as drug targets. FEBS J., 2013, 280(15), 3576-3593.
[http://dx.doi.org/10.1111/febs.12320] [PMID: 23648170]
[47]
Kirubakaran, P.; Kothandan, G.; Cho, S.J.; Muthusamy, K. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions. Mol. Biosyst., 2014, 10(2), 281-293.
[http://dx.doi.org/10.1039/C3MB70305C] [PMID: 24291818]
[48]
Bastakoty, D.; Saraswati, S.; Cates, J.; Lee, E.; Nanney, L.B.; Young, P.P. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J., 2015, 29(12), 4881-4892.
[http://dx.doi.org/10.1096/fj.15-275941] [PMID: 26268926]
[49]
Cheng, H.; Li, X.; Wang, C.; Chen, Y.; Li, S.; Tan, J.; Tan, B.; He, Y. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett., 2019, 443, 80-90.
[http://dx.doi.org/10.1016/j.canlet.2018.11.013] [PMID: 30472184]
[50]
Gustafson, C.T.; Mamo, T.; Shogren, K.L.; Maran, A.; Yaszemski, M.J. FH535 Suppresses osteosarcoma growth in vitro and inhibits wnt signaling through tankyrases. Front. Pharmacol., 2017, 8, 285.
[http://dx.doi.org/10.3389/fphar.2017.00285] [PMID: 28588489]
[51]
Kirby, I.T.; Cohen, M.S. Small-molecule inhibitors of PARPs: From tools for investigating ADP-ribosylation to therapeutics. Curr. Top. Microbiol. Immunol., 2019, 420, 211-231.
[52]
Lupo, B.; Vialard, J.; Sassi, F.; Angibaud, P.; Puliafito, A.; Pupo, E.; Lanzetti, L.; Comoglio, P.M.; Bertotti, A.; Trusolino, L. Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. BMC Biol., 2016, 14(1), 5.
[http://dx.doi.org/10.1186/s12915-016-0226-9] [PMID: 26787475]
[53]
Mashima, T.; Taneda, Y.; Jang, M-K.; Mizutani, A.; Muramatsu, Y.; Yoshida, H.; Sato, A.; Tanaka, N.; Sugimoto, Y.; Seimiya, H. mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer. Oncotarget, 2017, 8(29), 47902-47915.
[http://dx.doi.org/10.18632/oncotarget.18146] [PMID: 28615517]
[54]
Menon, M.; Elliott, R.; Bowers, L.; Balan, N.; Rafiq, R.; Costa-Cabral, S.; Munkonge, F.; Trinidade, I.; Porter, R.; Campbell, A.D.; Johnson, E.R.; Esdar, C.; Buchstaller, H.P.; Leuthner, B.; Rohdich, F.; Schneider, R.; Sansom, O.; Wienke, D.; Ashworth, A.; Lord, C.J. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep., 2019, 9(1), 201.
[http://dx.doi.org/10.1038/s41598-018-36447-4] [PMID: 30655555]
[55]
Mukai, T.; Fujita, S.; Morita, Y. Tankyrase (PARP5) inhibition induces bone loss through accumulation of its substrate SH3BP2. Cells, 2019, 8(2), 195.
[http://dx.doi.org/10.3390/cells8020195] [PMID: 30813388]
[56]
Nkizinkiko, Y.; Desantis, J.; Koivunen, J.; Haikarainen, T.; Murthy, S.; Sancineto, L.; Massari, S.; Ianni, F.; Obaji, E.; Loza, M.I.; Pihlajaniemi, T.; Brea, J.; Tabarrini, O.; Lehtiö, L. 2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors. Sci. Rep., 2018, 8(1), 1680.
[http://dx.doi.org/10.1038/s41598-018-19872-3] [PMID: 29374194]
[57]
Norum, J.H.; Skarpen, E.; Brech, A.; Kuiper, R.; Waaler, J.; Krauss, S.; Sørlie, T. The tankyrase inhibitor G007-LK inhibits small intestine LGR5+ stem cell proliferation without altering tissue morphology. Biol. Res., 2018, 51(1), 3.
[http://dx.doi.org/10.1186/s40659-017-0151-6] [PMID: 29316982]
[58]
Waaler, J.; Mygland, L.; Tveita, A.; Strand, M.F.; Solberg, N.T.; Olsen, P.A.; Lund, K.; Brinch, S.A.; Lycke, M.; Dybing, E. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. bioRxiv, 2019, 1526343
[59]
Wang, H.; Lu, B.; Castillo, J.; Zhang, Y.; Yang, Z.; McAllister, G.; Lindeman, A.; Reece-Hoyes, J.; Tallarico, J.; Russ, C.; Hoffman, G.; Xu, W.; Schirle, M.; Cong, F. tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J. Biol. Chem., 2016, 291(29), 15256-15266.
[http://dx.doi.org/10.1074/jbc.M116.722967] [PMID: 27231341]
[60]
Yang, H-Y.; Shen, J-X.; Wang, Y.; Liu, Y.; Shen, D-Y.; Quan, S. Tankyrase promotes aerobic glycolysis and proliferation of ovarian cancer through activation of Wnt/β-Catenin signaling. BioMed Res. Int., 2019, 20192686340
[61]
Zimmerlin, L.; Park, T.S.; Huo, J.S.; Verma, K.; Pather, S.R.; Talbot, C.C., Jr; Agarwal, J.; Steppan, D.; Zhang, Y.W.; Considine, M.; Guo, H.; Zhong, X.; Gutierrez, C.; Cope, L.; Canto-Soler, M.V.; Friedman, A.D.; Baylin, S.B.; Zambidis, E.T. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development, 2016, 143(23), 4368-4380.
[http://dx.doi.org/10.1242/dev.138982] [PMID: 27660325]
[62]
Thorsell, A-G.; Ekblad, T.; Karlberg, T.; Löw, M.; Pinto, A.F.; Trésaugues, L.; Moche, M.; Cohen, M.S.; Schüler, H. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem., 2017, 60(4), 1262-1271.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00990] [PMID: 28001384]
[63]
Anumala, U.R.; Waaler, J.; Nkizinkiko, Y.; Ignatev, A.; Lazarow, K.; Lindemann, P.; Olsen, P.A.; Murthy, S.; Obaji, E.; Majouga, A.G.; Leonov, S.; von Kries, J.P.; Lehtiö, L.; Krauss, S.; Nazaré, M. Discovery of a novel series of tankyrase inhibitors by a hybridization approach. J. Med. Chem., 2017, 60(24), 10013-10025.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00883] [PMID: 29155568]
[64]
Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev., 2018, 62, 50-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.002] [PMID: 29169144]
[65]
Yang, K.; Wang, X.; Zhang, H.; Wang, Z.; Nan, G.; Li, Y.; Zhang, F.; Mohammed, M.K.; Haydon, R.C.; Luu, H.H.; Bi, Y.; He, T-C. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies. Lab. Invest., 2016, 96(2), 116-136.
[http://dx.doi.org/10.1038/labinvest.2015.144] [PMID: 26618721]
[66]
Zhan, P.; Song, Y.; Itoh, Y.; Suzuki, T.; Liu, X. Recent advances in the structure-based rational design of TNKSIs. Mol. Biosyst., 2014, 10(11), 2783-2799.
[http://dx.doi.org/10.1039/C4MB00385C] [PMID: 25211064]
[67]
Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov., 2014, 13(7), 513-532.
[http://dx.doi.org/10.1038/nrd4233] [PMID: 24981364]
[69]
Waaler, J.; Machon, O.; Tumova, L.; Dinh, H.; Korinek, V.; Wilson, S.R.; Paulsen, J.E.; Pedersen, N.M.; Eide, T.J.; Machonova, O.; Gradl, D.; Voronkov, A.; von Kries, J.P.; Krauss, S. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res., 2012, 72(11), 2822-2832.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3336] [PMID: 22440753]
[70]
Madan, B.; Virshup, D.M. Targeting Wnts at the source--new mechanisms, new biomarkers, new drugs. Mol. Cancer Ther., 2015, 14(5), 1087-1094.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1038] [PMID: 25901018]
[71]
Stratford, E.W. esse.; Daffinrud, J.; Munthe, E.; Castro, R.; Waaler, J.; Krauss, S.; Myklebost, O. The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines. Cancer Med., 2014, 3(1), 36-46.
[http://dx.doi.org/10.1002/cam4.170]
[72]
Selleckchem.com-Inhibitor Expert. G007-LK https://www.selleckchem.com/products/g007-lk.html (accessed Mar 18, 2019). https://doi.org/S7239
[73]
Selleckchem.com-Inhibitor Expert. AZ6102 https://www.selleckchem.com/products/az6102.html (accessed Mar 18, 2019). https://doi.org/S7767
[74]
de Vicente, J.; Tivitmahaisoon, P.; Berry, P.; Bolin, D.R.; Carvajal, D.; He, W.; Huang, K-S.; Janson, C.; Liang, L.; Lukacs, C.; Petersen, A.; Qian, H.; Yi, L.; Zhuang, Y.; Hermann, J.C. Fragment-based drug design of novel pyranopyridones as cell active and orally bioavailable tankyrase inhibitors. ACS Med. Chem. Lett., 2015, 6(9), 1019-1024.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00251] [PMID: 26396691]
[75]
Hua, Z.; Bregman, H.; Buchanan, J.L.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Huang, X.; Gu, Y.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; Egge, B.; Emkey, R.; Mullady, E.L.; Schneider, S.; Andrews, P.S.; Acquaviva, L.; Dovey, J.; Mishra, A.; Newcomb, J.; Saffran, D.; Serafino, R.; Strathdee, C.A.; Turci, S.M.; Stanton, M.; Wilson, C.; Dimauro, E.F. Development of novel dual binders as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem., 2013, 56(24), 10003-10015.
[http://dx.doi.org/10.1021/jm401317z] [PMID: 24294969]
[76]
Okada-Iwasaki, R.; Takahashi, Y.; Watanabe, Y.; Ishida, H.; Saito, J.; Nakai, R.; Asai, A. The discovery and characterization of K-756, a Novel Wnt/β-Catenin pathway inhibitor targeting tankyrase. Mol. Cancer Ther., 2016, 15(7), 1525-1534.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0938] [PMID: 27196752]
[77]
Lau, T.; Chan, E.; Callow, M.; Waaler, J.; Boggs, J.; Blake, R.A.; Magnuson, S.; Sambrone, A.; Schutten, M.; Firestein, R.; Machon, O.; Korinek, V.; Choo, E.; Diaz, D.; Merchant, M.; Polakis, P.; Holsworth, D.D.; Krauss, S.; Costa, M. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res., 2013, 73(10), 3132-3144.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4562] [PMID: 23539443]
[78]
Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide; Springer Science & Business Media, 2010, Vol. 21, .
[http://dx.doi.org/10.1007/978-1-4419-6351-2]
[79]
Olotu, F.; Adeniji, E.; Agoni, C.; Bjij, I.; Khan, S.; Elrashedy, A.; Soliman, M.; Bjij, I.; Olotu, F.; Adeniji, E.; Khan, S.; Agoni, C.; Soliman, M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin. Drug Discov., 2018, 13(10), 903-918.
[http://dx.doi.org/10.1080/17460441.2018.1516035] [PMID: 30207185]
[80]
Kirubakaran, P.; Karthikeyan, M. Pharmacophore modeling, 3D-QSAR and DFT studies of IWR small-molecule inhibitors of Wnt response. J. Recept. Signal Transduct. Res., 2013, 33(5), 276-285.
[http://dx.doi.org/10.3109/10799893.2013.822888] [PMID: 23914783]
[81]
Kirubakaran, P.; Arunkumar, P.; Premkumar, K.; Muthusamy, K. Sighting of tankyrase inhibitors by structure- and ligand-based screening and in vitro approach. Mol. Biosyst., 2014, 10(10), 2699-2712.
[http://dx.doi.org/10.1039/C4MB00309H] [PMID: 25091558]
[82]
Liscio, P.; Carotti, A.; Asciutti, S.; Ferri, M.; Pires, M.M.; Valloscuro, S.; Ziff, J.; Clark, N.R.; Macchiarulo, A.; Aaronson, S.A.; Pellicciari, R.; Camaioni, E.; Asciutti, S.; Ferri, M.; Pires, M.M.; Valloscuro, S.; Ziff, J.; Clark, N.R.; Macchiarulo, A.; Aaronson, S.A. Scaffold hopping approach on the route to selective tankyrase inhibitors. Eur. J. Med. Chem., 2014, 87, 611-623.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.007] [PMID: 25299683]
[83]
Elliott, R.J.R.; Jarvis, A.; Rajasekaran, M.B.; Menon, M.; Bowers, L.; Boffey, R.; Bayford, M.; Firth-Clark, S.; Key, R.; Aqil, R. Design and Discovery of 3-Aryl-5-Substituted-Isoquinolin-1-Ones as potent tankyrase inhibitors. MedChemComm, 2015, 6(9), 1687-1692.
[http://dx.doi.org/10.1039/C5MD00210A]
[84]
Beena, T.; Sudha, L.; Nataraj, A.; Balachandran, V.; Kannan, D.; Ponnuswamy, M.N. Synthesis, spectroscopic, dielectric, molecular docking and DFT studies of (3E)-3-(4-methylbenzylidene)-3,4-dihydro-2H-chromen-2-one: An anticancer agent. Chem. Cent. J., 2017, 11(1), 6.
[http://dx.doi.org/10.1186/s13065-016-0230-8] [PMID: 28119762]
[85]
Pu, Y.; Zhang, S.; Chang, Z.; Zhang, Y.; Wang, D.; Zhang, L.; Li, Y.; Zuo, Z. Discovery of new dual binding TNKS inhibitors of Wnt signaling inhibition by pharmacophore modeling, molecular docking and bioassay. Mol. Biosyst., 2017, 13(2), 363-370.
[http://dx.doi.org/10.1039/C6MB00712K] [PMID: 27995250]
[86]
Ncube, N.B.; Ramharack, P.; Soliman, M.E.S. An “All-In-One” pharmacophoric architecture for the discovery of potential broad-spectrum anti-flavivirus drugs. Appl. Biochem. Biotechnol., 2018, 185(3), 799-814.
[http://dx.doi.org/10.1007/s12010-017-2690-2] [PMID: 29349531]
[87]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[88]
Liu, K.; Watanabe, E.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des., 2017, 31(2), 201-211.
[http://dx.doi.org/10.1007/s10822-016-0005-2] [PMID: 28074360]
[89]
Dar, A.M.; Mir, S. Molecular docking: Approaches, types, applications and basic challenges. J. Anal. Bioanal. Tech., 2017, 8, 2.
[http://dx.doi.org/10.4172/2155-9872.1000356]
[90]
Lakshmanan, L.; Muthusamy, K.; Marshal, J.J.; Kajamaideen, A.; Balthasar, J.J. In silico insights on tankyrase protein: A potential target for colorectal cancer. J. Biomol. Struct. Dyn., 2018, 37(14), 3637-3648.
[91]
Di Micco, S.; Pulvirenti, L.; Bruno, I.; Terracciano, S.; Russo, A.; Vaccaro, M.C.; Ruggiero, D.; Muccilli, V.; Cardullo, N.; Tringali, C.; Riccio, R.; Bifulco, G. Identification by inverse virtual screening of magnolol-based scaffold as new tankyrase-2 inhibitors. Bioorg. Med. Chem., 2018, 26(14), 3953-3957.
[http://dx.doi.org/10.1016/j.bmc.2018.06.019] [PMID: 29934219]
[92]
El-Hamamsy, M.H. Accessing the anti-proliferating activity of tankyrase-2 inhibitors via 2D, 3D-QSAR and molecular docking. Assessment of structure activity relationships. J. Appl. Pharm. Sci., 2017, 7(12), 14-27.
[93]
Liu, J.; Feng, K.; Ren, Y. In silico studies on potential TNKS inhibitors: A combination of pharmacophore and 3D-QSAR modelling, virtual screening, molecular docking and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(14), 3803-3821.
[PMID: 30261821]
[94]
Shah, A.; Lobo, R.; Krishnadas, N.; Pai, A. Pharmacophore and atom based 3D QSAR studies on the novel 5-alpha-reductase inhibitors. Indian J. Pharm. Educ. Res., 2018, 52(4), S296-S302.
[http://dx.doi.org/10.5530/ijper.52.4s.110]
[95]
Alam, S.; Khan, F. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through tankyrase inhibition. Sci. Rep., 2019, 9(1), 5414.
[http://dx.doi.org/10.1038/s41598-019-41984-7] [PMID: 30932078]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 16
Year: 2019
Page: [1920 - 1934]
Pages: 15
DOI: 10.2174/1871520619666191019114321
Price: $65

Article Metrics

PDF: 28
HTML: 5