Review Article

Natural Occurring Compounds Inhibit Osteoclastogenesis via Targeting NFATc1-related Signaling Pathways

Author(s): Jun Wang, Haishi Zheng and Rui Ma*

Volume 21, Issue 4, 2020

Page: [358 - 364] Pages: 7

DOI: 10.2174/1389450120666191017121610

Price: $65

Abstract

Osteoclasts are originated from monocytic precursors of the hematopoietic lineage. Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. This is particularly important in the process of osteoclast production. As a main regulatory transcriptional factor, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) plays a significant role in osteoclast differentiation. Although current studies focus on the regulatory effects of treatment in the process of osteoclastogenesis, many of these drugs possess cytotoxicity which is harmful to bone formation. Naturally occurring compounds with less or no side effects are most required in present clinical and fundamental study. In this paper, we summarize several plant-derived compounds in inhibiting osteoclastogenesis.

Keywords: Osteoclasts, NFATc1, natural occurring compounds, signaling pathway.

Graphical Abstract
[1]
Zheng X, Lee SK, Chun OK. Soy isoflavones and osteoporotic bone loss: a review with an emphasis on modulation of bone remodeling. J Med Food 2016; 19(1): 1-14.
[http://dx.doi.org/10.1089/jmf.2015.0045] [PMID: 26670451]
[2]
Su YW, Chim SM, Zhou L, et al. Osteoblast derived-neurotrophin-3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116: 232-47.
[http://dx.doi.org/10.1016/j.bone.2018.08.010] [PMID: 30125729]
[3]
de Vries TJ, El Bakkali I, Kamradt T, Schett G, Jansen IDC, D’Amelio P. What are the peripheral blood determinants for increased osteoclast formation in the various inflammatory diseases associated with bone loss? Front Immunol 2019; 10: 505.
[http://dx.doi.org/10.3389/fimmu.2019.00505] [PMID: 30941138]
[4]
Li Z, Kong K, Qi W. Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochem Biophys Res Commun 2006; 343(2): 345-50.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.147] [PMID: 16554033]
[5]
Cao X. RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Res 2018; 6: 35.
[http://dx.doi.org/10.1038/s41413-018-0040-9] [PMID: 30510840]
[6]
Mc Garrigle MJ, Mullen CA, Haugh MG, Voisin MC, McNamara LM. Osteocyte differentiation and the formation of an interconnected cellular network in vitro. Eur Cell Mater 2016; 31: 323-40.
[http://dx.doi.org/10.22203/eCM.v031a21] [PMID: 27215740]
[7]
Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 2010; 1192: 437-43.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05246.x] [PMID: 20392270]
[8]
Park J, Takeuchi A, Sharma S. Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J Biol Chem 1996; 271(34): 20914-21.
[http://dx.doi.org/10.1074/jbc.271.34.20914] [PMID: 8702849]
[9]
Zhao Q, Wang X, Liu Y, He A, Jia R. NFATc1: functions in osteoclasts. Int J Biochem Cell Biol 2010; 42(5): 576-9.
[http://dx.doi.org/10.1016/j.biocel.2009.12.018] [PMID: 20035895]
[10]
Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6): 889-901.
[http://dx.doi.org/10.1016/S1534-5807(02)00369-6] [PMID: 12479813]
[11]
Zhang J, Xu H, Han Z, et al. Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca2+-calcineurin-NFATc1 signaling pathway. Biochem Biophys Res Commun 2017; 482(2): 289-95.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.056] [PMID: 27856256]
[12]
Xu W, Gu J, Ren Q, et al. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumour Biol 2016; 37(4): 4493-500.
[http://dx.doi.org/10.1007/s13277-015-4245-x] [PMID: 26501422]
[13]
Kim I, Kim JH, Kim K, Seong S, Kim N. Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1. BMB Rep 2017; 50(9): 454-9.
[http://dx.doi.org/10.5483/BMBRep.2017.50.9.026] [PMID: 28391779]
[14]
Moon SH, Choi SW, Kim SH. In vitro anti-osteoclastogenic activity of p38 inhibitor doramapimod via inhibiting migration of pre-osteoclasts and NFATc1 activity. J Pharmacol Sci 2015; 129(3): 135-42.
[http://dx.doi.org/10.1016/j.jphs.2015.06.008] [PMID: 26232862]
[15]
Kim DR, Kim HY, Park JK, Park SK, Chang MS. Aconiti lateralis preparata radix activates the proliferation of mouse bone marrow mesenchymal stem cells and induces osteogenic lineage differentiation through the bone morphogenetic protein-2/smad-dependent runx2 pathway. Evid Based Complement Alternat Med 2013. 2013586741
[http://dx.doi.org/10.1155/2013/586741] [PMID: 23983792]
[16]
Zhang H, Sun S, Zhang W, et al. Biological activities and pharmacokinetics of aconitine, benzoylaconine, and aconine after oral administration in rats. Drug Test Anal 2016; 8(8): 839-46.
[http://dx.doi.org/10.1002/dta.1858] [PMID: 26360128]
[17]
Zhang YB, Da J, Zhang JX, et al. A feasible, economical, and accurate analytical method for simultaneous determination of six alkaloid markers in Aconiti Lateralis Radix Praeparata from different manufacturing sources and processing ways. Chin J Nat Med 2017; 15(4): 301-9.
[http://dx.doi.org/10.1016/S1875-5364(17)30048-1] [PMID: 28527516]
[18]
Gao T, Bi H, Ma S, Lu J. The antitumor and immunostimulating activities of water soluble polysaccharides from Radix Aconiti, Radix Aconiti Lateralis and Radix Aconiti Kusnezoffii. Nat Prod Commun 2010; 5(3): 447-55.
[http://dx.doi.org/10.1177/1934578X1000500322] [PMID: 20420326]
[19]
Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37(2): 255-63.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[20]
Tomeh MA, Hadianamrei R, Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 2019; 20(5)E1033
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[21]
Taylor RA, Leonard MC. Curcumin for inflammatory bowel disease: a review of human studies. Altern Med Rev 2011; 16(2): 152-6.
[PMID: 21649456]
[22]
Shang W, Zhao LJ, Dong XL, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep 2016; 14(4): 3620-6.
[http://dx.doi.org/10.3892/mmr.2016.5674] [PMID: 27572279]
[23]
Gao Q, Shan J, Di L, Jiang L, Xu H. Therapeutic effects of daphnetin on adjuvant-induced arthritic rats. J Ethnopharmacol 2008; 120(2): 259-63.
[http://dx.doi.org/10.1016/j.jep.2008.08.031] [PMID: 18835428]
[24]
Wang G, Pang J, Hu X, et al. Daphnetin: A Novel Anti-Helicobacter pylori Agent. Int J Mol Sci 2019; 20(4)E850
[http://dx.doi.org/10.3390/ijms20040850] [PMID: 30781382]
[25]
Zhang L, Gu Y, Li H, et al. Daphnetin protects against cisplatin-induced nephrotoxicity by inhibiting inflammatory and oxidative response. Int Immunopharmacol 2018; 65: 402-7.
[http://dx.doi.org/10.1016/j.intimp.2018.10.018] [PMID: 30380515]
[26]
Yu W, Wang H, Ying H, et al. Daphnetin attenuates microglial activation and proinflammatory factor production via multiple signaling pathways. Int Immunopharmacol 2014; 21(1): 1-9.
[http://dx.doi.org/10.1016/j.intimp.2014.04.005] [PMID: 24747094]
[27]
Wu Z, Wu H, Li C, et al. Daphnetin attenuates LPS-induced osteolysis and RANKL mediated osteoclastogenesis through suppression of ERK and NFATc1 pathways. J Cell Physiol 2019; 234(10): 17812-23.
[http://dx.doi.org/10.1002/jcp.28408] [PMID: 30815894]
[28]
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol 2016; 190: 116-41.
[http://dx.doi.org/10.1016/j.jep.2016.05.023] [PMID: 27211015]
[29]
Liu W, Li W, Sui Y, et al. Structure characterization and anti-leukemia activity of a novel polysaccharide from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol 2019; 121: 161-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.213] [PMID: 30290264]
[30]
Li X, Wu D, Hu Z, et al. The protective effect of ligustilide in osteoarthritis: an in vitro and in vivo study. Cell Physiol Biochem 2018; 48(6): 2583-95.
[http://dx.doi.org/10.1159/000492701] [PMID: 30121673]
[31]
Ma J, Xu Y, Zheng Q, et al. Ligustilide inhibits the activation of cancer-associated fibroblasts. Life Sci 2019; 218: 58-64.
[http://dx.doi.org/10.1016/j.lfs.2018.12.032] [PMID: 30576705]
[32]
Kong L, Zhao Q, Wang X, Zhu J, Hao D, Yang C. Angelica sinensis extract inhibits RANKL-mediated osteoclastogenesis by down-regulated the expression of NFATc1 in mouse bone marrow cells. BMC Complement Altern Med 2014; 14: 481.
[http://dx.doi.org/10.1186/1472-6882-14-481] [PMID: 25496242]
[33]
Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways. Int Immunopharmacol 2011; 11(9): 1166-72.
[http://dx.doi.org/10.1016/j.intimp.2011.03.014] [PMID: 21457761]
[34]
Kwon DJ, Bae YS, Ju SM, Youn GS, Choi SY, Park J. Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB and JNK activation in RAW 264.7 macrophages. BMB Rep 2014; 47(6): 318-23.
[http://dx.doi.org/10.5483/BMBRep.2014.47.6.200] [PMID: 24286322]
[35]
Martineau LC, Muhammad A, Saleem A, et al. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin. Planta Med 2010; 76(14): 1519-24.
[http://dx.doi.org/10.1055/s-0029-1240991] [PMID: 20301058]
[36]
Nie S, Xu J, Zhang C, Xu C, Liu M, Yu D. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways. Biochem Biophys Res Commun 2016; 470(1): 61-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.115] [PMID: 26740180]
[37]
Rao YK, Lee MJ, Chen K, Lee YC, Wu WS, Tzeng YM. Insulin-mimetic action of rhoifolin and cosmosiin isolated from citrus grandis (l.) osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3t3-l1 cells. Evid Based Complement Alternat Med 2011. 2011624375
[http://dx.doi.org/10.1093/ecam/nep204] [PMID: 20008903]
[38]
Coussio JD. Isolation of rhoifolin from Chorisia species (Bombacaceae). Experientia 1964; 20(10): 562.
[http://dx.doi.org/10.1007/BF02150291] [PMID: 5859215]
[39]
Liao S, Song F, Feng W, et al. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. J Cell Physiol 2019; 234(10): 17600-11.
[http://dx.doi.org/10.1002/jcp.28384] [PMID: 30854667]
[40]
Liu Q, Zhu XZ, Feng RB, et al. Crude triterpenoid saponins from Anemone flaccida (Di Wu) exert anti-arthritic effects on type II collagen-induced arthritis in rats. Chin Med 2015; 10: 20.
[http://dx.doi.org/10.1186/s13020-015-0052-y] [PMID: 26213566]
[41]
Zhang LT, Takaishi Y, Zhang YW, Duan HQ. [Studies on chemical constituents from rhizome of Anemone flaccida] Zhongguo Zhongyao Zazhi 2008; 33(14): 1696-9.
[PMID: 18841769]
[42]
Han LT, Fang Y, Li MM, Yang HB, Huang F. The antitumor effects of triterpenoid saponins from the anemone flaccida and the underlying mechanism. Evid Based Complement Alternat Med 2013. 2013517931
[http://dx.doi.org/10.1155/2013/517931] [PMID: 24191167]
[43]
Zhao L, Chen WM, Fang QC. Triterpenoid Saponins from Anemone flaccida. Planta Med 1990; 56(1): 92-3.
[http://dx.doi.org/10.1055/s-2006-960894] [PMID: 17221376]
[44]
Yang XW, Dai Z, Wang B, Liu YP, Zhao XD, Luo XD. Antitumor triterpenoid saponin from the fruits of avicennia marina. Nat Prod Bioprospect 2018; 8(5): 347-53.
[http://dx.doi.org/10.1007/s13659-018-0167-9] [PMID: 29802619]
[45]
Kong X, Yang Y, Wu W, et al. Triterpenoid saponin w3 from anemone flaccida suppresses osteoclast differentiation through inhibiting activation of mapks and nf-κb pathways. Int J Biol Sci 2015; 11(10): 1204-14.
[http://dx.doi.org/10.7150/ijbs.12296] [PMID: 26327814]
[46]
An HJ, Kim IT, Park HJ, Kim HM, Choi JH, Lee KT. Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κb pathway in RAW 264.7 macrophages. Int Immunopharmacol 2011; 11(4): 504-10.
[http://dx.doi.org/10.1016/j.intimp.2011.01.002] [PMID: 21237302]
[47]
Ma B, Zhu J, Zhao A, et al. Raddeanin A, a natural triterpenoid saponin compound, exerts anticancer effect on human osteosarcoma via the ROS/JNK and NF-κB signal pathway. Toxicol Appl Pharmacol 2018; 353: 87-101.
[http://dx.doi.org/10.1016/j.taap.2018.05.025] [PMID: 29847772]
[48]
Sarveswaran S, Gautam SC, Ghosh J. Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int J Oncol 2012; 41(6): 2191-9.
[http://dx.doi.org/10.3892/ijo.2012.1664] [PMID: 23076676]
[49]
Yuan F, Chen J, Sun PP, Guan S, Xu J. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB pathway in RAW 264.7 cells. J Biomed Sci 2013; 20: 84.
[http://dx.doi.org/10.1186/1423-0127-20-84] [PMID: 24176090]
[50]
Dong P, Zhu D, Deng X, et al. Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. J Biomed Mater Res A 2019; 107(1): 145-53.
[http://dx.doi.org/10.1002/jbm.a.36541] [PMID: 30289597]
[51]
Liu YQ, Hong ZL, Zhan LB, Chu HY, Zhang XZ, Li GH. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway. Sci Rep 2016; 6: 32260.
[http://dx.doi.org/10.1038/srep32260] [PMID: 27558652]
[52]
Hu J, Feng X. Phenylpropanes from Acorus tatarinowii. Planta Med 2000; 66(7): 662-4.
[http://dx.doi.org/10.1055/s-2000-8628] [PMID: 11105577]
[53]
Zhang Y, Wang Z, Xie X, et al. Tatarinan N inhibits osteoclast differentiation through attenuating NF-κB, MAPKs and Ca2+-dependent signaling. Int Immunopharmacol 2018; 65: 199-211.
[http://dx.doi.org/10.1016/j.intimp.2018.09.030] [PMID: 30316078]
[54]
Zhang ZG, Bai D, Liu MJ, et al. Therapeutic effect of aqueous extract from Ecliptae herba on bone metabolism of ovariectomized rats. Menopause 2013; 20(2): 232-40.
[http://dx.doi.org/10.1097/gme.0b013e318265e7dd] [PMID: 23096243]
[55]
Xu X, Liu N, Wang Y, et al. Tatarinan O, a lignin-like compound from the roots of Acorus tatarinowii Schott inhibits osteoclast differentiation through suppressing the expression of c-Fos and NFATc1. Int Immunopharmacol 2016; 34: 212-9.
[http://dx.doi.org/10.1016/j.intimp.2016.03.001] [PMID: 26971224]
[56]
Vinh LB, Jang HJ, Phong NV, et al. Isolation, structural elucidation, and insights into the anti-inflammatory effects of triterpene saponins from the leaves of Stauntonia hexaphylla. Bioorg Med Chem Lett 2019; 29(8): 965-9.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.022] [PMID: 30808589]
[57]
Hwang SH, Kwon SH, Kim SB, Lim SS. Inhibitory Activities of Stauntonia hexaphylla Leaf Constituents on Rat Lens Aldose Reductase and Formation of Advanced Glycation End Products and Antioxidant. BioMed Res Int 2017. 20174273257
[http://dx.doi.org/10.1155/2017/4273257] [PMID: 28326319]
[58]
Cheon YH, Baek JM, Park SH, et al. Stauntonia hexaphylla (Lardizabalaceae) leaf methanol extract inhibits osteoclastogenesis and bone resorption activity via proteasome-mediated degradation of c-Fos protein and suppression of NFATc1 expression. BMC Complement Altern Med 2015; 15: 280.
[http://dx.doi.org/10.1186/s12906-015-0801-6] [PMID: 26271279]
[59]
Kim J, Kim H, Choi H, et al. Anti-inflammatory effects of a stauntonia hexaphylla fruit extract in lipopolysaccharide-activated raw-264.7 macrophages and rats by carrageenan-induced hind paw swelling. Nutrients 2018; 10(1)E110
[http://dx.doi.org/10.3390/nu10010110] [PMID: 29361789]
[60]
Lin C, Wen X, Sun H. Oleanolic acid derivatives for pharmaceutical use: a patent review. Expert Opin Ther Pat 2016; 26(6): 643-55.
[http://dx.doi.org/10.1080/13543776.2016.1182988] [PMID: 27113324]
[61]
Li JF, Chen SJ, Zhao Y, Li JX. Glycoside modification of oleanolic acid derivatives as a novel class of anti-osteoclast formation agents. Carbohydr Res 2009; 344(5): 599-605.
[http://dx.doi.org/10.1016/j.carres.2009.01.019] [PMID: 19217081]
[62]
Zhang Y, Li JX, Zhao J, et al. Synthesis and activity of oleanolic acid derivatives, a novel class of inhibitors of osteoclast formation. Bioorg Med Chem Lett 2005; 15(6): 1629-32.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.061] [PMID: 15745811]
[63]
Zhao D, Li X, Zhao Y, et al. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci 2018; 137(1): 76-85.
[http://dx.doi.org/10.1016/j.jphs.2018.03.007] [PMID: 29703642]
[64]
Hawkes MT, Forgie S, Brophy J, Crockett M. Artesunate treatment of severe pediatric malaria: A review of parasite clearance kinetics and clinical implications. Can J Infect Dis Med Microbiol 2015; 26(5): 237-40.
[http://dx.doi.org/10.1155/2015/736159] [PMID: 26600806]
[65]
Zeng X, Zhang Y, Wang S, et al. Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca2+-NFATc1 signaling pathway and prevents ovariectomy-induced bone loss. Biochem Pharmacol 2017; 124: 57-68.
[http://dx.doi.org/10.1016/j.bcp.2016.10.007] [PMID: 27789216]
[66]
Li S, Bian L, Fu X, et al. Gastrodin pretreatment alleviates rat brain injury caused by cerebral ischemic-reperfusion. Brain Res 2019; 1712: 207-16.
[http://dx.doi.org/10.1016/j.brainres.2019.02.006] [PMID: 30742808]
[67]
Liu Y, Gao J, Peng M, et al. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol 2018; 9: 24.
[http://dx.doi.org/10.3389/fphar.2018.00024] [PMID: 29456504]
[68]
Zhou F, Shen Y, Liu B, Chen X, Wan L, Peng D. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro. Biochem Biophys Res Commun 2017; 484(4): 820-6.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.179] [PMID: 28161640]
[69]
Du F, Wang X, Shang B, et al. Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects. Acta Biochim Pol 2016; 63(3): 589-93.
[http://dx.doi.org/10.18388/abp.2016_1272] [PMID: 27474401]
[70]
Peng Z, Wang H, Zhang R, et al. Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 2013; 62(5): 537-45.
[PMID: 24020812]
[71]
Zhu GF, Guo HJ, Huang Y, Wu CT, Zhang XF. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med 2015; 10(6): 2259-66.
[http://dx.doi.org/10.3892/etm.2015.2827] [PMID: 26668626]
[72]
Lee JK. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Arch Pharm Res 2011; 34(4): 671-9.
[http://dx.doi.org/10.1007/s12272-011-0418-3] [PMID: 21544733]
[73]
Lee ER, Kim JH, Kang YJ, Cho SG. The anti-apoptotic and anti-oxidant effect of eriodictyol on UV-induced apoptosis in keratinocytes. Biol Pharm Bull 2007; 30(1): 32-7.
[http://dx.doi.org/10.1248/bpb.30.32] [PMID: 17202655]
[74]
Song F, Zhou L, Zhao J, et al. Eriodictyol inhibits rankl-induced osteoclast formation and function via inhibition of nfatc1 activity. J Cell Physiol 2016; 231(9): 1983-93.
[http://dx.doi.org/10.1002/jcp.25304] [PMID: 26754483]
[75]
Zhang Y, Qu L, Liu L, et al. New maltol glycosides from Flos Sophorae. J Nat Med 2015; 69(2): 249-54.
[http://dx.doi.org/10.1007/s11418-014-0877-1] [PMID: 25398298]
[76]
Ha T, Trung TN, Phuong TT, Yim N, Chen QC, Bae K. The selected flavonol glycoside derived from Sophorae Flos improves glucose uptake and inhibits adipocyte differentiation via activation AMPK in 3T3-L1 cells. Bioorg Med Chem Lett 2010; 20(20): 6076-81.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.054] [PMID: 20822902]
[77]
Liu YX, Bai JX, Li T, et al. A TCM formula comprising Sophorae Flos and Lonicerae Japonicae Flos alters compositions of immune cells and molecules of the STAT3 pathway in melanoma microenvironment. Pharmacol Res 2019; 142: 115-26.
[http://dx.doi.org/10.1016/j.phrs.2019.02.020] [PMID: 30797070]
[78]
Shi W, Liu L, Li J, et al. Bioactive flavonoids from Flos Sophorae. J Nat Med 2017; 71(3): 513-22.
[http://dx.doi.org/10.1007/s11418-017-1084-7] [PMID: 28357634]
[79]
Chen QC, Zhang WY, Jin W, et al. Flavonoids and isoflavonoids from Sophorae Flos improve glucose uptake in vitro. Planta Med 2010; 76(1): 79-81.
[http://dx.doi.org/10.1055/s-0029-1185944] [PMID: 19637114]
[80]
Kim JM, Lee JH, Lee GS, et al. Sophorae Flos extract inhibits RANKL-induced osteoclast differentiation by suppressing the NF-κB/NFATc1 pathway in mouse bone marrow cells. BMC Complement Altern Med 2017; 17(1): 164.
[http://dx.doi.org/10.1186/s12906-016-1550-x] [PMID: 28335757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy