Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites

Author(s): Paul J. Goldsmith*

Volume 19, Issue 24, 2019

Page: [2239 - 2253] Pages: 15

DOI: 10.2174/1568026619666191011095341

Price: $65

Abstract

The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.

Keywords: N-methyl-D-aspartate receptor, Glutamate receptor, Ion channel, Positive allosteric modulator, Cognition, Schizophrenia, Synaptic transmission.

Graphical Abstract
[1]
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51(1), 7-61.
[PMID: 10049997]
[2]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[3]
Kleckner, N.W.; Dingledine, R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, 1988, 241(4867), 835-837.
[http://dx.doi.org/10.1126/science.2841759] [PMID: 2841759]
[4]
Nowak, L.; Bregestovski, P.; Ascher, P.; Herbet, A.; Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 1984, 307(5950), 462-465.
[http://dx.doi.org/10.1038/307462a0] [PMID: 6320006]
[5]
Mayer, M.L.; Westbrook, G.L.; Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 1984, 309(5965), 261-263.
[http://dx.doi.org/10.1038/309261a0] [PMID: 6325946]
[6]
Collingridge, G.L.; Herron, C.E.; Lester, R.A. Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus. J. Physiol., 1988, 399, 283-300.
[http://dx.doi.org/10.1113/jphysiol.1988.sp017080] [PMID: 2900332]
[7]
Malenka, R.C.; Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron, 2004, 44(1), 5-21.
[http://dx.doi.org/10.1016/j.neuron.2004.09.012] [PMID: 15450156]
[8]
Lau, C.G.; Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci., 2007, 8(6), 413-426.
[http://dx.doi.org/10.1038/nrn2153] [PMID: 17514195]
[9]
Lau, C.G.; Takeuchi, K.; Rodenas-Ruano, A.; Takayasu, Y.; Murphy, J.; Bennett, M.V.; Zukin, R.S. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans., 2009, 37(Pt 6), 1369-1374.
[http://dx.doi.org/10.1042/BST0371369] [PMID: 19909278]
[10]
Iacobucci, G.J.; Popescu, G.K. NMDA receptors: linking physiological output to biophysical operation. Nat. Rev. Neurosci., 2017, 18(4), 236-249.
[http://dx.doi.org/10.1038/nrn.2017.24] [PMID: 28303017]
[11]
Hunt, D.L.; Castillo, P.E. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol., 2012, 22(3), 496-508.
[http://dx.doi.org/10.1016/j.conb.2012.01.007] [PMID: 22325859]
[12]
Morris, R.G. NMDA receptors and memory encoding. Neuropharmacology, 2013, 74, 32-40.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.014] [PMID: 23628345]
[13]
Lakhan, S.E.; Caro, M.; Hadzimichalis, N. NMDA receptor activity in neuropsychiatric disorders. Front. Psychiatry, 2013, 4, 52.
[http://dx.doi.org/10.3389/fpsyt.2013.00052] [PMID: 23772215]
[14]
Collingridge, G.L.; Volianskis, A.; Bannister, N.; France, G.; Hanna, L.; Mercier, M.; Tidball, P.; Fang, G.; Irvine, M.W.; Costa, B.M.; Monaghan, D.T.; Bortolotto, Z.A.; Molnár, E.; Lodge, D.; Jane, D.E. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 2013, 64, 13-26.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.051] [PMID: 22796429]
[15]
Lin, C.H.; Lane, H.Y. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front. Pharmacol., 2019, 10, 540.
[http://dx.doi.org/10.3389/fphar.2019.00540] [PMID: 31191302]
[16]
Moghaddam, B.; Javitt, D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 2012, 37(1), 4-15.
[http://dx.doi.org/10.1038/npp.2011.181] [PMID: 21956446]
[17]
Lahti, A.C.; Holcomb, H.H.; Medoff, D.R.; Tamminga, C.A. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport, 1995, 6(6), 869-872.
[http://dx.doi.org/10.1097/00001756-199504190-00011] [PMID: 7612873]
[18]
Gilmour, G.; Dix, S.; Fellini, L.; Gastambide, F.; Plath, N.; Steckler, T.; Talpos, J.; Tricklebank, M. NMDA receptors, cognition and schizophrenia--testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology, 2012, 62(3), 1401-1412.
[http://dx.doi.org/10.1016/j.neuropharm.2011.03.015] [PMID: 21420987]
[19]
Buchanan, R.W.; Javitt, D.C.; Marder, S.R.; Schooler, N.R.; Gold, J.M.; McMahon, R.P.; Heresco-Levy, U.; Carpenter, W.T. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry, 2007, 164(10), 1593-1602.
[http://dx.doi.org/10.1176/appi.ajp.2007.06081358] [PMID: 17898352]
[20]
Balu, D.T. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv. Pharmacol., 2016, 76, 351-382.
[http://dx.doi.org/10.1016/bs.apha.2016.01.006] [PMID: 27288082]
[21]
Dauvermann, M.R.; Lee, G.; Dawson, N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br. J. Pharmacol., 2017, 174(19), 3136-3160.
[http://dx.doi.org/10.1111/bph.13919] [PMID: 28626937]
[22]
Lacivita, E.; Perrone, R.; Margari, L.; Leopoldo, M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J. Med. Chem., 2017, 60(22), 9114-9141.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00965] [PMID: 29039668]
[23]
Lee, E.J.; Choi, S.Y.; Kim, E. NMDA receptor dysfunction in autism spectrum disorders. Curr. Opin. Pharmacol., 2015, 20, 8-13.
[http://dx.doi.org/10.1016/j.coph.2014.10.007] [PMID: 25636159]
[24]
Tarabeux, J.; Kebir, O.; Gauthier, J.; Hamdan, F.F.; Xiong, L.; Piton, A.; Spiegelman, D.; Henrion, É.; Millet, B.; Fathalli, F.; Joober, R.; Rapoport, J.L.; DeLisi, L.E.; Fombonne, É.; Mottron, L.; Forget-Dubois, N.; Boivin, M.; Michaud, J.L.; Drapeau, P.; Lafrenière, R.G.; Rouleau, G.A.; Krebs, M.O. S2D team. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry, , 2011, 1e55
[http://dx.doi.org/10.1038/tp.2011.52] [PMID: 22833210]
[25]
Burket, J.A.; Deutsch, S.I. Metabotropic functions of the NMDA receptor and an evolving rationale for exploring NR2A-selective positive allosteric modulators for the treatment of autism spectrum disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 142-160.
[http://dx.doi.org/10.1016/j.pnpbp.2018.11.017] [PMID: 30481555]
[26]
Fischer, C.E.; Golas, A.C.; Schweizer, T.A.; Munoz, D.G.; Ismail, Z.; Qian, W.; Tang-Wai, D.F.; Rotstein, D.L.; Day, G.S. Anti N-methyl-D-aspartate receptor encephalitis: a game-changer? Expert Rev. Neurother., 2016, 16(7), 849-859.
[http://dx.doi.org/10.1080/14737175.2016.1184088] [PMID: 27123777]
[27]
Dalmau, J.; Geis, C.; Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol. Rev., 2017, 97(2), 839-887.
[http://dx.doi.org/10.1152/physrev.00010.2016] [PMID: 28298428]
[28]
Kayser, M.S.; Dalmau, J. Anti-NMDA Receptor Encephalitis in Psychiatry. Curr. Psychiatry Rev., 2011, 7(3), 189-193.
[http://dx.doi.org/10.2174/157340011797183184] [PMID: 24729779]
[29]
Wandinger, K.P.; Saschenbrecker, S.; Stoecker, W.; Dalmau, J. Anti-NMDA-receptor encephalitis: a severe, multistage, treatable disorder presenting with psychosis. J. Neuroimmunol., 2011, 231(1-2), 86-91.
[http://dx.doi.org/10.1016/j.jneuroim.2010.09.012] [PMID: 20951441]
[30]
Kayser, M.S.; Dalmau, J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr. Res., 2016, 176(1), 36-40.
[http://dx.doi.org/10.1016/j.schres.2014.10.007] [PMID: 25458857]
[31]
Tzang, R.F.; Chang, C.H.; Chang, Y.C.; Lane, H.Y. Autism associated with anti-NMDAR encephalitis: glutamate-related therapy. Front. Psychiatry, 2019, 10, 440.
[http://dx.doi.org/10.3389/fpsyt.2019.00440] [PMID: 31293459]
[32]
Warikoo, N.; Brunwasser, S.J.; Benz, A.; Shu, H.J.; Paul, S.M.; Lewis, M.; Doherty, J.; Quirk, M.; Piccio, L.; Zorumski, C.F.; Day, G.S.; Mennerick, S. Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis. J. Neurosci., 2018, 38(13), 3218-3229.
[http://dx.doi.org/10.1523/JNEUROSCI.3377-17.2018] [PMID: 29476014]
[33]
Novak, M.J.; Tabrizi, S.J. Huntington’s disease. BMJ, 2010, 340, c3109.
[http://dx.doi.org/10.1136/bmj.c3109] [PMID: 20591965]
[34]
Wexler, N.S.; Collett, L.; Wexler, A.R.; Rawlins, M.D.; Tabrizi, S.J.; Douglas, I.; Smeeth, L.; Evans, S.J. Incidence of adult Huntington’s disease in the UK: a UK-based primary care study and a systematic review. BMJ Open, 2016, 6(2)e009070
[http://dx.doi.org/10.1136/bmjopen-2015-009070] [PMID: 26908513]
[35]
Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384.
[http://dx.doi.org/10.1097/00005072-199805000-00001] [PMID: 9596408]
[36]
Waldvogel, H.J.; Kim, E.H.; Tippett, L.J.; Vonsattel, J.P.; Faull, R.L. The neuropathology of Huntington’s disease. Curr. Top. Behav. Neurosci., 2015, 22, 33-80.
[http://dx.doi.org/10.1007/7854_2014_354] [PMID: 25300927]
[37]
Fan, M.M.; Raymond, L.A. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol., 2007, 81(5-6), 272-293.
[http://dx.doi.org/10.1016/j.pneurobio.2006.11.003] [PMID: 17188796]
[38]
A Trial of Memantine as Symptomatic Treatment for Early Huntington Disease (MITIGATE-HD); 2011.https://clinicaltrials.gov/ct2/show/study/NCT01458470 (Accessed August 28, 2019).
[39]
Leoni, V.; Caccia, C. The impairment of cholesterol metabolism in Huntington disease. Biochim. Biophys. Acta, 2015, 1851(8), 1095-1105.
[http://dx.doi.org/10.1016/j.bbalip.2014.12.018] [PMID: 25596342]
[40]
Paul, S.M.; Doherty, J.J.; Robichaud, A.J.; Belfort, G.M.; Chow, B.Y.; Hammond, R.S.; Crawford, D.C.; Linsenbardt, A.J.; Shu, H.J.; Izumi, Y.; Mennerick, S.J.; Zorumski, C.F. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci., 2013, 33(44), 17290-17300.
[http://dx.doi.org/10.1523/JNEUROSCI.2619-13.2013] [PMID: 24174662]
[41]
A Study to Evaluate Safety, Tolerability, and Pharmacokinetics of SAGE-718 Oral Solution in Patients With Huntington's Disease - Part B; 2018.https://clinicaltrials.gov/ct2/show/NCT03787758 (Accessed June 04, 2019).
[42]
Velloso, N.A.; Dalmolin, G.D.; Gomes, G.M.; Rubin, M.A.; Canas, P.M.; Cunha, R.A.; Mello, C.F. Spermine improves recognition memory deficit in a rodent model of Huntington’s disease. Neurobiol. Learn. Mem., 2009, 92(4), 574-580.
[http://dx.doi.org/10.1016/j.nlm.2009.07.006] [PMID: 19632348]
[43]
Choi, D.W.; Koh, J.Y.; Peters, S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci., 1988, 8(1), 185-196.
[http://dx.doi.org/10.1523/JNEUROSCI.08-01-00185.1988] [PMID: 2892896]
[44]
Lynch, D.R.; Guttmann, R.P. Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J. Pharmacol. Exp. Ther., 2002, 300(3), 717-723.
[http://dx.doi.org/10.1124/jpet.300.3.717] [PMID: 11861773]
[45]
Marino, M.J.; Rouse, S.T.; Levey, A.I.; Potter, L.T.; Conn, P.J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA, 1998, 95(19), 11465-11470.
[http://dx.doi.org/10.1073/pnas.95.19.11465] [PMID: 9736760]
[46]
Zwart, R.; Reed, H.; Sher, E. Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms. Biochem. Biophys. Res. Commun., 2018, 495(1), 481-486.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.036] [PMID: 29127015]
[47]
Hallett, P.J.; Spoelgen, R.; Hyman, B.T.; Standaert, D.G.; Dunah, A.W. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J. Neurosci., 2006, 26(17), 4690-4700.
[http://dx.doi.org/10.1523/JNEUROSCI.0792-06.2006] [PMID: 16641250]
[48]
Cepeda, C.; Levine, M.S. Where do you think you are going? The NMDA-D1 receptor trap. Sci. STKE, 2006, 2006(333), pe20.
[PMID: 16670371]
[49]
Pisani, A.; Calabresi, P.; Centonze, D.; Bernardi, G. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br. J. Pharmacol., 1997, 120(6), 1007-1014.
[http://dx.doi.org/10.1038/sj.bjp.0700999] [PMID: 9134210]
[50]
Pisani, A.; Gubellini, P.; Bonsi, P.; Conquet, F.; Picconi, B.; Centonze, D.; Bernardi, G.; Calabresi, P. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience, 2001, 106(3), 579-587.
[http://dx.doi.org/10.1016/S0306-4522(01)00297-4] [PMID: 11591458]
[51]
Changeux, J.P.; Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell, 2016, 166(5), 1084-1102.
[http://dx.doi.org/10.1016/j.cell.2016.08.015] [PMID: 27565340]
[52]
Kramer, I. Signal transduction, 3rd ed; Elsevier: New York, 2015.
[53]
Gregory, K.J.; Sexton, P.M.; Christopoulos, A. Overview of receptor allosterism. Curr. Protoc. Pharmacol, , 2010, 51(1), 1.21.1-1.21.34.
[http://dx.doi.org/10.1002/0471141755.ph0121s51]
[54]
Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov., 2002, 1(3), 198-210.
[http://dx.doi.org/10.1038/nrd746] [PMID: 12120504]
[55]
Foster, D.J.; Conn, P.J. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron, 2017, 94(3), 431-446.
[http://dx.doi.org/10.1016/j.neuron.2017.03.016] [PMID: 28472649]
[56]
Brogi, S.; Campiani, G.; Brindisi, M.; Butini, S. Allosteric modulation of ionotropic glutamate receptors: an outlook on new therapeutic approaches to treat central nervous system disorders. ACS Med. Chem. Lett., 2019, 10(3), 228-236.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00450] [PMID: 30891118]
[57]
Hackos, D.H.; Hanson, J.E. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences Neuropharmacology, 2017, 112(PtA), 34-35.
[58]
Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol., 2018, 150(8), 1081-1105.
[PMID: 30037851]
[59]
Cull-Candy, S.G.; Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE, 2004, 2004(255), re16.
[PMID: 15494561]
[60]
Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci., 2011, 33(8), 1351-1365.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07628.x] [PMID: 21395862]
[61]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[62]
Akazawa, C.; Shigemoto, R.; Bessho, Y.; Nakanishi, S.; Mizuno, N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol., 1994, 347(1), 150-160.
[http://dx.doi.org/10.1002/cne.903470112] [PMID: 7798379]
[63]
Perszyk, R.E.; DiRaddo, J.O.; Strong, K.L.; Low, C.M.; Ogden, K.K.; Khatri, A.; Vargish, G.A.; Pelkey, K.A.; Tricoire, L.; Liotta, D.C.; Smith, Y.; McBain, C.J.; Traynelis, S.F. GluN2D-Containing N-methyl-d-Aspartate Receptors Mediate Synaptic Transmission in Hippocampal Interneurons and Regulate Interneuron Activity. Mol. Pharmacol., 2016, 90(6), 689-702.
[http://dx.doi.org/10.1124/mol.116.105130] [PMID: 27625038]
[64]
Ravikrishnan, A.; Gandhi, P.J.; Shelkar, G.P.; Liu, J.; Pavuluri, R.; Dravid, S.M. Region-specific expression of NMDA receptor GluN2C subunit in parvalbumin-positive neurons and astrocytes: analysis of GluN2C expression using a novel reporter model. Neuroscience, 2018, 380, 49-62.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.011] [PMID: 29559384]
[65]
Cavara, N.A.; Hollmann, M. Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol. Neurobiol., 2008, 38(1), 16-26.
[http://dx.doi.org/10.1007/s12035-008-8029-9] [PMID: 18654865]
[66]
Low, C.M.; Wee, K.S. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol. Pharmacol., 2010, 78(1), 1-11.
[http://dx.doi.org/10.1124/mol.110.064006] [PMID: 20363861]
[67]
Pachernegg, S.; Strutz-Seebohm, N.; Hollmann, M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci., 2012, 35(4), 240-249.
[http://dx.doi.org/10.1016/j.tins.2011.11.010] [PMID: 22240240]
[68]
Pérez-Otaño, I.; Larsen, R.S.; Wesseling, J.F. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci., 2016, 17(10), 623-635.
[http://dx.doi.org/10.1038/nrn.2016.92] [PMID: 27558536]
[69]
Erreger, K.; Chen, P.E.; Wyllie, D.J.; Traynelis, S.F. Glutamate receptor gating. Crit. Rev. Neurobiol., 2004, 16(3), 187-224.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v16.i3.10] [PMID: 15701057]
[70]
Al-Hallaq, R.A.; Conrads, T.P.; Veenstra, T.D.; Wenthold, R.J. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci., 2007, 27(31), 8334-8343.
[http://dx.doi.org/10.1523/JNEUROSCI.2155-07.2007] [PMID: 17670980]
[71]
Rauner, C.; Köhr, G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem., 2011, 286(9), 7558-7566.
[http://dx.doi.org/10.1074/jbc.M110.182600] [PMID: 21190942]
[72]
Schorge, S.; Colquhoun, D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci., 2003, 23(4), 1151-1158.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01151.2003] [PMID: 12598603]
[73]
Papadakis, M.; Hawkins, L.M.; Stephenson, F.A. Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors. J. Biol. Chem., 2004, 279(15), 14703-14712.
[http://dx.doi.org/10.1074/jbc.M313446200] [PMID: 14732708]
[74]
Lester, R.A.; Clements, J.D.; Westbrook, G.L.; Jahr, C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 1990, 346(6284), 565-567.
[http://dx.doi.org/10.1038/346565a0] [PMID: 1974037]
[75]
Vicini, S.; Wang, J.F.; Li, J.H.; Zhu, W.J.; Wang, Y.H.; Luo, J.H.; Wolfe, B.B.; Grayson, D.R. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol., 1998, 79(2), 555-566.
[http://dx.doi.org/10.1152/jn.1998.79.2.555] [PMID: 9463421]
[76]
Gielen, M.; Siegler Retchless, B.; Mony, L.; Johnson, J.W.; Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature, 2009, 459(7247), 703-707.
[http://dx.doi.org/10.1038/nature07993] [PMID: 19404260]
[77]
Yuan, H.; Hansen, K.B.; Vance, K.M.; Ogden, K.K.; Traynelis, S.F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci., 2009, 29(39), 12045-12058.
[http://dx.doi.org/10.1523/JNEUROSCI.1365-09.2009] [PMID: 19793963]
[78]
Siegler Retchless, B.; Gao, W.; Johnson, J.W. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci.,, 2012, 15(3), 406-413.S1-S2..
[http://dx.doi.org/10.1038/nn.3025] [PMID: 22246434]
[79]
Tovar, K.R.; McGinley, M.J.; Westbrook, G.L. Triheteromeric NMDA receptors at hippocampal synapses. J. Neurosci., 2013, 33(21), 9150-9160.
[http://dx.doi.org/10.1523/JNEUROSCI.0829-13.2013] [PMID: 23699525]
[80]
Bhattacharya, S.; Khatri, A.; Swanger, S.A.; DiRaddo, J.O.; Yi, F.; Hansen, K.B.; Yuan, H.; Traynelis, S.F. Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron, 2018, 99(2), 315-328.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.06.010] [PMID: 30056832]
[81]
Tovar, K.R.; Westbrook, G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci., 1999, 19(10), 4180-4188.
[http://dx.doi.org/10.1523/JNEUROSCI.19-10-04180.1999] [PMID: 10234045]
[82]
Hatton, C.J.; Paoletti, P. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron, 2005, 46(2), 261-274.
[http://dx.doi.org/10.1016/j.neuron.2005.03.005] [PMID: 15848804]
[83]
Hansen, K.B.; Ogden, K.K.; Yuan, H.; Traynelis, S.F. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron, 2014, 81(5), 1084-1096.
[http://dx.doi.org/10.1016/j.neuron.2014.01.035] [PMID: 24607230]
[84]
Yi, F.; Traynelis, S.F.; Hansen, K.B. Selective cell-surface expression of triheteromeric NMDA receptors. Methods Mol. Biol., 2017, 1677, 145-162.
[http://dx.doi.org/10.1007/978-1-4939-7321-7_7] [PMID: 28986871]
[85]
Cheriyan, J.; Balsara, R.D.; Hansen, K.B.; Castellino, F.J. Pharmacology of triheteromeric N-methyl-D-aspartate receptors. Neurosci. Lett., 2016, 617, 240-246.
[http://dx.doi.org/10.1016/j.neulet.2016.02.032] [PMID: 26917100]
[86]
Stroebel, D.; Casado, M.; Paoletti, P. Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol, 2018, 2, 1-12.
[http://dx.doi.org/10.1016/j.cophys.2017.12.004] [PMID: 29682629]
[87]
Stroebel, D.; Carvalho, S.; Grand, T.; Zhu, S.; Paoletti, P. Controlling NMDA receptor subunit composition using ectopic retention signals. J. Neurosci., 2014, 34(50), 16630-16636.
[http://dx.doi.org/10.1523/JNEUROSCI.2736-14.2014] [PMID: 25505316]
[88]
Laube, B.; Kuhse, J.; Betz, H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci., 1998, 18(8), 2954-2961.
[http://dx.doi.org/10.1523/JNEUROSCI.18-08-02954.1998] [PMID: 9526012]
[89]
Clements, J.D.; Westbrook, G.L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron, 1991, 7(4), 605-613.
[http://dx.doi.org/10.1016/0896-6273(91)90373-8] [PMID: 1681832]
[90]
Karakas, E.; Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 2014, 344(6187), 992-997.
[http://dx.doi.org/10.1126/science.1251915] [PMID: 24876489]
[91]
Lee, C.H.; Lü, W.; Michel, J.C.; Goehring, A.; Du, J.; Song, X.; Gouaux, E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 2014, 511(7508), 191-197.
[http://dx.doi.org/10.1038/nature13548] [PMID: 25008524]
[92]
Salussolia, C.L.; Prodromou, M.L.; Borker, P.; Wollmuth, L.P. Arrangement of subunits in functional NMDA receptors. J. Neurosci., 2011, 31(31), 11295-11304.
[http://dx.doi.org/10.1523/JNEUROSCI.5612-10.2011] [PMID: 21813689]
[93]
Riou, M.; Stroebel, D.; Edwardson, J.M.; Paoletti, P. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors. PLoS One, 2012, 7(4)e35134
[http://dx.doi.org/10.1371/journal.pone.0035134] [PMID: 22493736]
[94]
Sprengel, R.; Suchanek, B.; Amico, C.; Brusa, R.; Burnashev, N.; Rozov, A.; Hvalby, O.; Jensen, V.; Paulsen, O.; Andersen, P.; Kim, J.J.; Thompson, R.F.; Sun, W.; Webster, L.C.; Grant, S.G.; Eilers, J.; Konnerth, A.; Li, J.; McNamara, J.O.; Seeburg, P.H. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 1998, 92(2), 279-289.
[http://dx.doi.org/10.1016/S0092-8674(00)80921-6] [PMID: 9458051]
[95]
Ryan, T.J.; Emes, R.D.; Grant, S.G.; Komiyama, N.H. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes. BMC Neurosci., 2008, 9, 6.
[http://dx.doi.org/10.1186/1471-2202-9-6] [PMID: 18197970]
[96]
Sanz-Clemente, A.; Nicoll, R.A.; Roche, K.W. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 2013, 19(1), 62-75.
[http://dx.doi.org/10.1177/1073858411435129] [PMID: 22343826]
[97]
Tajima, N.; Karakas, E.; Grant, T.; Simorowski, N.; Diaz-Avalos, R.; Grigorieff, N.; Furukawa, H. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature, 2016, 534(7605), 63-68.
[http://dx.doi.org/10.1038/nature17679] [PMID: 27135925]
[98]
Zhu, S.; Stein, R.A.; Yoshioka, C.; Lee, C.H.; Goehring, A.; Mchaourab, H.S.; Gouaux, E. Mechanism of NMDA receptor inhibition and activation. Cell, 2016, 165(3), 704-714.
[http://dx.doi.org/10.1016/j.cell.2016.03.028] [PMID: 27062927]
[99]
Lü, W.; Du, J.; Goehring, A.; Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science, 2017, 355(6331)eaal3729
[http://dx.doi.org/10.1126/science.aal3729] [PMID: 28232581]
[100]
Sun, W.; Hansen, K.B.; Jahr, C.E. Allosteric interactions between NMDA receptor subunits shape the developmental shift in channel properties. Neuron, 2017, 94(1), 58-64.e3.
[http://dx.doi.org/10.1016/j.neuron.2017.03.018] [PMID: 28384476]
[101]
Zhu, S.; Paoletti, P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr. Opin. Pharmacol., 2015, 20, 14-23.
[http://dx.doi.org/10.1016/j.coph.2014.10.009] [PMID: 25462287]
[102]
Burnell, E.S.; Irvine, M.; Fang, G.; Sapkota, K.; Jane, D.E.; Monaghan, D.T. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J. Med. Chem., 2019, 62(1), 3-23.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01640] [PMID: 29446949]
[103]
Williams, K. Interactions of polyamines with ion channels. Biochem. J., 1997, 325(Pt 2), 289-297.
[http://dx.doi.org/10.1042/bj3250289] [PMID: 9230104]
[104]
Williams, K. Modulation and block of ion channels: a new biology of polyamines. Cell. Signal., 1997, 9(1), 1-13.
[http://dx.doi.org/10.1016/S0898-6568(96)00089-7] [PMID: 9067625]
[105]
Rock, D.M.; Macdonald, R.L. Polyamine regulation of N-methyl-D-aspartate receptor channels. Annu. Rev. Pharmacol. Toxicol., 1995, 35, 463-482.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.002335] [PMID: 7598503]
[106]
Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol., 2010, 42(1), 39-51.
[http://dx.doi.org/10.1016/j.biocel.2009.07.009] [PMID: 19643201]
[107]
Ransom, R.W.; Stec, N.L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J. Neurochem., 1988, 51(3), 830-836.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb01818.x] [PMID: 2457653]
[108]
Lerma, J. Spermine regulates N-methyl-D-aspartate receptor desensitization. Neuron, 1992, 8(2), 343-352.
[http://dx.doi.org/10.1016/0896-6273(92)90300-3] [PMID: 1531415]
[109]
Benveniste, M.; Mayer, M.L. Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones. J. Physiol., 1993, 464, 131-163.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019627] [PMID: 8229795]
[110]
McGurk, J.F.; Bennett, M.V.; Zukin, R.S. Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in xenopus oocytes. Proc. Natl. Acad. Sci. USA, 1990, 87(24), 9971-9974.
[http://dx.doi.org/10.1073/pnas.87.24.9971] [PMID: 1702227]
[111]
Williams, K.; Zappia, A.M.; Pritchett, D.B.; Shen, Y.M.; Molinoff, P.B. Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol., 1994, 45(5), 803-809.
[PMID: 8190097]
[112]
Zhang, L.; Zheng, X.; Paupard, M.C.; Wang, A.P.; Santchi, L.; Friedman, L.K.; Zukin, R.S.; Bennett, M.V. Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc. Natl. Acad. Sci. USA, 1994, 91(23), 10883-10887.
[http://dx.doi.org/10.1073/pnas.91.23.10883] [PMID: 7971977]
[113]
Traynelis, S.F.; Hartley, M.; Heinemann, S.F. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science, 1995, 268(5212), 873-876.
[http://dx.doi.org/10.1126/science.7754371] [PMID: 7754371]
[114]
Mony, L.; Zhu, S.; Carvalho, S.; Paoletti, P. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J., 2011, 30(15), 3134-3146.
[http://dx.doi.org/10.1038/emboj.2011.203] [PMID: 21685875]
[115]
Igarashi, K.; Shirahata, A.; Pahk, A.J.; Kashiwagi, K.; Williams, K. Benzyl-polyamines: novel, potent N-methyl-D-aspartate receptor antagonists. J. Pharmacol. Exp. Ther., 1997, 283(2), 533-540.
[PMID: 9353367]
[116]
Kashiwagi, K.; Tanaka, I.; Tamura, M.; Sugiyama, H.; Okawara, T.; Otsuka, M.; Sabado, T.N.; Williams, K.; Igarashi, K. Anthraquinone polyamines: novel channel blockers to study N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther., 2004, 309(3), 884-893.
[http://dx.doi.org/10.1124/jpet.103.062042] [PMID: 14764657]
[117]
Paul, S.M.; Purdy, R.H. Neuroactive steroids. FASEB J., 1992, 6(6), 2311-2322.
[http://dx.doi.org/10.1096/fasebj.6.6.1347506] [PMID: 1347506]
[118]
Tuem, K.B.; Atey, T.M. Neuroactive steroids: receptor interactions and responses. Front. Neurol., 2017, 8, 442.
[http://dx.doi.org/10.3389/fneur.2017.00442] [PMID: 28894435]
[119]
Majewska, M.D. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog. Neurobiol., 1992, 38(4), 379-395.
[http://dx.doi.org/10.1016/0301-0082(92)90025-A] [PMID: 1349441]
[120]
Yaghoubi, N.; Malayev, A.; Russek, S.J.; Gibbs, T.T.; Farb, D.H. Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res., 1998, 803(1-2), 153-160.
[http://dx.doi.org/10.1016/S0006-8993(98)00644-1] [PMID: 9729352]
[121]
Korinek, M.; Kapras, V.; Vyklicky, V.; Adamusova, E.; Borovska, J.; Vales, K.; Stuchlik, A.; Horak, M.; Chodounska, H.; Vyklicky, L. Jr Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids, 2011, 76(13), 1409-1418.
[http://dx.doi.org/10.1016/j.steroids.2011.09.002] [PMID: 21925193]
[122]
Wu, F.S.; Gibbs, T.T.; Farb, D.H. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol., 1991, 40(3), 333-336.
[PMID: 1654510]
[123]
Akwa, Y.; Ladurelle, N.; Covey, D.F.; Baulieu, E.E. The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc. Natl. Acad. Sci. USA, 2001, 98(24), 14033-14037.
[http://dx.doi.org/10.1073/pnas.241503698] [PMID: 11717462]
[124]
Petit, G.H.; Tobin, C.; Krishnan, K.; Moricard, Y.; Covey, D.F.; Rondi-Reig, L.; Akwa, Y. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice. Eur. Neuropsychopharmacol., 2011, 21(2), 211-215.
[http://dx.doi.org/10.1016/j.euroneuro.2010.09.010] [PMID: 21036556]
[125]
Vallée, M.; Mayo, W.; Darnaudéry, M.; Corpéchot, C.; Young, J.; Koehl, M.; Le Moal, M.; Baulieu, E.E.; Robel, P.; Simon, H. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. USA, 1997, 94(26), 14865-14870.
[http://dx.doi.org/10.1073/pnas.94.26.14865] [PMID: 9405705]
[126]
Horak, M.; Vlcek, K.; Chodounska, H.; Vyklicky, L., Jr Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience, 2006, 137(1), 93-102.
[http://dx.doi.org/10.1016/j.neuroscience.2005.08.058] [PMID: 16257494]
[127]
Malayev, A.; Gibbs, T.T.; Farb, D.H. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br. J. Pharmacol., 2002, 135(4), 901-909.
[http://dx.doi.org/10.1038/sj.bjp.0704543] [PMID: 11861317]
[128]
Majewska, M.D.; Schwartz, R.D. Pregnenolone-sulfate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res., 1987, 404(1-2), 355-360.
[http://dx.doi.org/10.1016/0006-8993(87)91394-1] [PMID: 3032339]
[129]
Jang, M.K.; Mierke, D.F.; Russek, S.J.; Farb, D.H. A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc. Natl. Acad. Sci. USA, 2004, 101(21), 8198-8203.
[http://dx.doi.org/10.1073/pnas.0401838101] [PMID: 15150412]
[130]
Mony, L.; Kew, J.N.; Gunthorpe, M.J.; Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol., 2009, 157(8), 1301-1317.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00304.x] [PMID: 19594762]
[131]
Cameron, K.; Bartle, E.; Roark, R.; Fanelli, D.; Pham, M.; Pollard, B.; Borkowski, B.; Rhoads, S.; Kim, J.; Rocha, M.; Kahlson, M.; Kangala, M.; Gentile, L. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors. Steroids, 2012, 77(7), 774-779.
[http://dx.doi.org/10.1016/j.steroids.2012.03.011] [PMID: 22504555]
[132]
Wilding, T.J.; Lopez, M.N.; Huettner, J.E. Chimeric glutamate receptor subunits reveal the transmembrane domain is sufficient for NMDA receptor pore properties but some positive allosteric modulators require additional domains. J. Neurosci., 2016, 36(34), 8815-8825.
[http://dx.doi.org/10.1523/JNEUROSCI.0345-16.2016] [PMID: 27559165]
[133]
Krausova, B.; Slavikova, B.; Nekardova, M.; Hubalkova, P.; Vyklicky, V.; Chodounska, H.; Vyklicky, L.; Kudova, E. Positive modulators of the N-Methyl-d-aspartate receptor: structure-activity relationship study of steroidal 3-hemiesters. J. Med. Chem., 2018, 61(10), 4505-4516.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00255] [PMID: 29708744]
[134]
Chisari, M.; Wilding, T.J.; Brunwasser, S.; Krishnan, K.; Qian, M.; Benz, A.; Huettner, J.E.; Zorumski, C.F.; Covey, D.F.; Mennerick, S. Visualizing pregnenolone sulfate-like modulators of NMDA receptor function reveals intracellular and plasma-membrane localization. Neuropharmacology, 2019, 144, 91-103.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.015] [PMID: 30332607]
[135]
Smith, L.L.; Ray, D.R.; Moody, J.A.; Wells, J.D.; Van Lier, J.E. 24-hydroxycholesterol levels in human brain. J. Neurochem., 1972, 19(3), 899-904.
[http://dx.doi.org/10.1111/j.1471-4159.1972.tb01406.x] [PMID: 5030992]
[136]
A Study to Assess the Electrophysiology, Safety, Tolerability, Pharmacokinetics and Pharmacodynamics Response Using Magnetic Resonance Imaging of SAGE-718 Using a Ketamine Challenge in Healthy Subjects; 2018.https://clinicaltrials.gov/ct2/show/NCT03770780 (Accessed June 04, 2019).
[137]
A Study to Assess Electrophysiology, Safety, Tolerability, and Pharmacokinetics of Multiple Doses of SAGE-718 Using Ketamine Challenge in Healthy Subjects; 2019.https://clinicaltrials.gov/ct2/show/NCT03844906 (Accessed June 04, 2019).
[138]
A Study to Assess the Electrophysiology, Safety, Tolerability, and Pharmacokinetics of SAGE-718 Using a Ketamine Challenge in Healthy Subjects; 2018.https://clinicaltrials.gov/ct2/show/NCT03771586 Accessed June 04, 2019).
[139]
Costa, B.M.; Irvine, M.W.; Fang, G.; Eaves, R.J.; Mayo-Martin, M.B.; Skifter, D.A.; Jane, D.E.; Monaghan, D.T. A novel family of negative and positive allosteric modulators of NMDA receptors. J. Pharmacol. Exp. Ther., 2010, 335(3), 614-621.
[http://dx.doi.org/10.1124/jpet.110.174144] [PMID: 20858708]
[140]
Sapkota, K.; Irvine, M.W.; Fang, G.; Burnell, E.S.; Bannister, N.; Volianskis, A.; Culley, G.R.; Dravid, S.M.; Collingridge, G.L.; Jane, D.E.; Monaghan, D.T. Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology, 2017, 125, 64-79.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.007] [PMID: 28709671]
[141]
Irvine, M.W.; Fang, G.; Sapkota, K.; Burnell, E.S.; Volianskis, A.; Costa, B.M.; Culley, G.; Collingridge, G.L.; Monaghan, D.T.; Jane, D.E. Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. Eur. J. Med. Chem., 2019, 164, 471-498.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.054] [PMID: 30622023]
[142]
Costa, B.M.; Irvine, M.W.; Fang, G.; Eaves, R.J.; Mayo-Martin, M.B.; Laube, B.; Jane, D.E.; Monaghan, D.T. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology, 2012, 62(4), 1730-1736.
[http://dx.doi.org/10.1016/j.neuropharm.2011.11.019] [PMID: 22155206]
[143]
Irvine, M.W.; Fang, G.; Eaves, R.; Mayo-Martin, M.B.; Burnell, E.S.; Costa, B.M.; Culley, G.R.; Volianskis, A.; Collingridge, G.L.; Monaghan, D.T.; Jane, D.E. Synthesis of a series of novel 3,9-disubstituted phenanthrenes as analogues of known NMDA receptor allosteric modulators. Synthesis (Stuttg), 2015, 47(11), 1593-1610.
[http://dx.doi.org/10.1055/s-0034-1380114] [PMID: 26568642]
[144]
Irvine, M.W.; Costa, B.M.; Volianskis, A.; Fang, G.; Ceolin, L.; Collingridge, G.L.; Monaghan, D.T.; Jane, D.E. Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-D-aspartate receptors. Neurochem. Int., 2012, 61(4), 593-600.
[http://dx.doi.org/10.1016/j.neuint.2011.12.020] [PMID: 22265875]
[145]
Traynelis, S.F.; Liotta, D.C.; Santangelo, R.M.; Garnier, E.C. Subunit selective NMDA receptor potentiators for the treatment of neurological conditions WO2010/088414,. 2010.
[146]
Mullasseril, P.; Hansen, K.B.; Vance, K.M.; Ogden, K.K.; Yuan, H.; Kurtkaya, N.L.; Santangelo, R.; Orr, A.G.; Le, P.; Vellano, K.M.; Liotta, D.C.; Traynelis, S.F. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat. Commun., 2010, 1, 90.
[http://dx.doi.org/10.1038/ncomms1085] [PMID: 20981015]
[147]
Santangelo Freel, R.M.; Ogden, K.K.; Strong, K.L.; Khatri, A.; Chepiga, K.M.; Jensen, H.S.; Traynelis, S.F.; Liotta, D.C. Synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing N-methyl-D-aspartate receptors. J. Med. Chem., 2013, 56(13), 5351-5381.
[http://dx.doi.org/10.1021/jm400177t] [PMID: 23627311]
[148]
Ogden, K.K.; Traynelis, S.F. Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol. Pharmacol., 2013, 83(5), 1045-1056.
[http://dx.doi.org/10.1124/mol.113.085209] [PMID: 23455314]
[149]
Strong, K.L.; Epplin, M.P.; Bacsa, J.; Butch, C.J.; Burger, P.B.; Menaldino, D.S.; Traynelis, S.F.; Liotta, D.C. The Structure-Activity relationship of a tetrahydroisoquinoline class of n-methyl-d-aspartate receptor modulators that potentiates GluN2B-containing N-Methyl-d-aspartate receptors. J. Med. Chem., 2017, 60(13), 5556-5585.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00239] [PMID: 28586221]
[150]
Zimmerman, S.S.; Khatri, A.; Garnier-Amblard, E.C.; Mullasseril, P.; Kurtkaya, N.L.; Gyoneva, S.; Hansen, K.B.; Traynelis, S.F.; Liotta, D.C. Design, synthesis, and structure-activity relationship of a novel series of GluN2C-selective potentiators. J. Med. Chem., 2014, 57(6), 2334-2356.
[http://dx.doi.org/10.1021/jm401695d] [PMID: 24512267]
[151]
Khatri, A.; Burger, P.B.; Swanger, S.A.; Hansen, K.B.; Zimmerman, S.; Karakas, E.; Liotta, D.C.; Furukawa, H.; Snyder, J.P.; Traynelis, S.F. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol. Pharmacol., 2014, 86(5), 548-560.
[http://dx.doi.org/10.1124/mol.114.094516] [PMID: 25205677]
[152]
Kaiser, T.M.; Kell, S.A.; Kusumoto, H.; Shaulsky, G.; Bhattacharya, S.; Epplin, M.P.; Strong, K.L.; Miller, E.J.; Cox, B.D.; Menaldino, D.S.; Liotta, D.C.; Traynelis, S.F.; Burger, P.B. The bioactive protein-ligand conformation of GluN2C-selective positive allosteric modulators bound to the NMDA receptor. Mol. Pharmacol., 2018, 93(2), 141-156.
[http://dx.doi.org/10.1124/mol.117.110940] [PMID: 29242355]
[153]
Wang, T.M.; Brown, B.M.; Deng, L.; Sellers, B.D.; Lupardus, P.J.; Wallweber, H.J.A.; Gustafson, A.; Wong, E.; Volgraf, M.; Schwarz, J.B.; Hackos, D.H.; Hanson, J.E. A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain. Neuropharmacology, 2017, 121, 204-218.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.041] [PMID: 28457974]
[154]
Hackos, D.H.; Lupardus, P.J.; Grand, T.; Chen, Y.; Wang, T.M.; Reynen, P.; Gustafson, A.; Wallweber, H.J.; Volgraf, M.; Sellers, B.D.; Schwarz, J.B.; Paoletti, P.; Sheng, M.; Zhou, Q.; Hanson, J.E. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron, 2016, 89(5), 983-999.
[http://dx.doi.org/10.1016/j.neuron.2016.01.016] [PMID: 26875626]
[155]
Bettini, E.; Sava, A.; Griffante, C.; Carignani, C.; Buson, A.; Capelli, A.M.; Negri, M.; Andreetta, F.; Senar-Sancho, S.A.; Guiral, L.; Cardullo, F. Identification and characterisation of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J. Pharmacol. Exp. Ther., 2010, 335(3), 636-644.
[PMID: 20810618]
[156]
Volgraf, M.; Sellers, B.D.; Jiang, Y.; Wu, G.; Ly, C.Q.; Villemure, E.; Pastor, R.M.; Yuen, P.W.; Lu, A.; Luo, X.; Liu, M.; Zhang, S.; Sun, L.; Fu, Y.; Lupardus, P.J.; Wallweber, H.J.; Liederer, B.M.; Deshmukh, G.; Plise, E.; Tay, S.; Reynen, P.; Herrington, J.; Gustafson, A.; Liu, Y.; Dirksen, A.; Dietz, M.G.; Liu, Y.; Wang, T.M.; Hanson, J.E.; Hackos, D.; Scearce-Levie, K.; Schwarz, J.B. Discovery of GluN2A-selective NMDA receptor positive allosteric modulators (PAMs): Tuning deactivation kinetics via structure-based design. J. Med. Chem., 2016, 59(6), 2760-2779.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02010] [PMID: 26919761]
[157]
Villemure, E.; Volgraf, M.; Jiang, Y.; Wu, G.; Ly, C.Q.; Yuen, P.W.; Lu, A.; Luo, X.; Liu, M.; Zhang, S.; Lupardus, P.J.; Wallweber, H.J.; Liederer, B.M.; Deshmukh, G.; Plise, E.; Tay, S.; Wang, T.M.; Hanson, J.E.; Hackos, D.H.; Scearce-Levie, K.; Schwarz, J.B.; Sellers, B.D. GluN2A-selective pyridopyrimidinone series of NMDAR positive allosteric modulators with an improved in vivo profile. ACS Med. Chem. Lett., 2016, 8(1), 84-89.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00388] [PMID: 28105280]
[158]
Hogan-Cann, A.D.; Anderson, C.M. Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol. Sci., 2016, 37(9), 750-767.
[http://dx.doi.org/10.1016/j.tips.2016.05.012] [PMID: 27338838]
[159]
Bozic, M.; Valdivielso, J.M. The potential of targeting NMDA receptors outside the CNS. Expert Opin. Ther. Targets, 2015, 19(3), 399-413.
[http://dx.doi.org/10.1517/14728222.2014.983900] [PMID: 25495517]
[160]
Marquard, J.; Otter, S.; Welters, A.; Stirban, A.; Fischer, A.; Eglinger, J.; Herebian, D.; Kletke, O.; Klemen, M.S.; Stožer, A.; Wnendt, S.; Piemonti, L.; Köhler, M.; Ferrer, J.; Thorens, B.; Schliess, F.; Rupnik, M.S.; Heise, T.; Berggren, P.O.; Klöcker, N.; Meissner, T.; Mayatepek, E.; Eberhard, D.; Kragl, M.; Lammert, E. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat. Med., 2015, 21(4), 363-372.
[http://dx.doi.org/10.1038/nm.3822] [PMID: 25774850]
[161]
Stepulak, A.; Luksch, H.; Gebhardt, C.; Uckermann, O.; Marzahn, J.; Sifringer, M.; Rzeski, W.; Staufner, C.; Brocke, K.S.; Turski, L.; Ikonomidou, C. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol., 2009, 132(4), 435-445.
[http://dx.doi.org/10.1007/s00418-009-0613-1] [PMID: 19526364]
[162]
Prickett, T.D.; Samuels, Y. Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin. Cancer Res., 2012, 18(16), 4240-4246.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1217] [PMID: 22648273]
[163]
Stepulak, A.; Rola, R.; Polberg, K.; Ikonomidou, C. Glutamate and its receptors in cancer. J. Neural Transm. (Vienna), 2014, 121(8), 933-944.
[http://dx.doi.org/10.1007/s00702-014-1182-6] [PMID: 24610491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy