Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Virulence Factors in Sporothrix schenckii, One of the Causative Agents of Sporotrichosis

Author(s): Alma K. Tamez-Castrellón, Orazio Romeo, Laura C. García-Carnero, Nancy E. Lozoya-Pérez and Héctor M. Mora-Montes*

Volume 21, Issue 3, 2020

Page: [295 - 312] Pages: 18

DOI: 10.2174/1389203720666191007103004

Price: $65

Abstract

Sporothrix schenckii is one of the etiological agents of sporotrichosis, a fungal infection distributed worldwide. Both, the causative organism and the disease have currently received limited attention by the medical mycology community, most likely because of the low mortality rates associated with it. Nonetheless, morbidity is high in endemic regions and the versatility of S. schenckii to cause zoonosis and sapronosis has attracted attention. Thus far, virulence factors associated with this organism are poorly described. Here, comparing the S. schenckii genome sequence with other medically relevant fungi, genes involved in morphological change, cell wall synthesis, immune evasion, thermotolerance, adhesion, biofilm formation, melanin production, nutrient uptake, response to stress, extracellular vesicle formation, and toxin production are predicted and discussed as putative virulence factors in S. schenckii.

Keywords: Pathogenesis, fungal infection, host-fungus interaction, mycosis, genome, protein secretion, cell wall.

Graphical Abstract
[1]
Arenas, R.; Sánchez-Cardenas, C.D.; Ramirez-Hobak, L.; Ruíz Arriaga, L.F.; Vega Memije, M.E. Sporotrichosis: from KOH to molecular biology. J. Fungi (Basel), 2018, 4(2), 62.
[http://dx.doi.org/10.3390/jof4020062] [PMID: 29882883]
[2]
López-Romero, E. Reyes-Montes, Mdel.R.; Pérez-Torres, A.; Ruiz-Baca, E.; Villagómez-Castro, J.C.; Mora-Montes, H.M.; Flores-Carreón, A.; Toriello, C. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol., 2011, 6(1), 85-102.
[http://dx.doi.org/10.2217/fmb.10.157] [PMID: 21162638]
[3]
de Beer, Z.W.; Duong, T.A.; Wingfield, M.J. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud. Mycol., 2016, 83, 165-191.
[http://dx.doi.org/10.1016/j.simyco.2016.07.001] [PMID: 27616802]
[4]
Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global epidemiology of sporotrichosis. Med. Mycol., 2015, 53(1), 3-14.
[http://dx.doi.org/10.1093/mmy/myu062] [PMID: 25526781]
[5]
Lopes-Bezerra, LM; Mora-Montes, HM Zhang, Y Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol., 2018, 56(suppl_1), 126-143.
[6]
Teixeira, M.M.; de Almeida, L.G.; Kubitschek-Barreira, P.; Alves, F.L.; Kioshima, E.S.; Abadio, A.K.; Fernandes, L.; Derengowski, L.S.; Ferreira, K.S.; Souza, R.C.; Ruiz, J.C.; de Andrade, N.C.; Paes, H.C.; Nicola, A.M.; Albuquerque, P.; Gerber, A.L.; Martins, V.P.; Peconick, L.D.; Neto, A.V.; Chaucanez, C.B.; Silva, P.A.; Cunha, O.L.; de Oliveira, F.F.; dos Santos, T.C.; Barros, A.L.; Soares, M.A.; de Oliveira, L.M.; Marini, M.M.; Villalobos-Duno, H.; Cunha, M.M.; de Hoog, S.; da Silveira, J.F.; Henrissat, B.; Niño-Vega, G.A.; Cisalpino, P.S.; Mora-Montes, H.M.; Almeida, S.R.; Stajich, J.E.; Lopes-Bezerra, L.M.; Vasconcelos, A.T.; Felipe, M.S. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics, 2014, 15, 943.
[http://dx.doi.org/10.1186/1471-2164-15-943] [PMID: 25351875]
[7]
Huang, L.; Gao, W.; Giosa, D.; Criseo, G.; Zhang, J.; He, T.; Huang, X.; Sun, J.; Sun, Y.; Huang, J.; Zhang, Y.; Brankovics, B.; Scordino, F.; D’Alessandro, E.; van Diepeningen, A.; de Hoog, S.; Huang, H.; Romeo, O. Whole-genome sequencing and in silico Analysis of two strains of Sporothrix globosa. Genome Biol. Evol., 2016, 8(11), 3292-3296.
[http://dx.doi.org/10.1093/gbe/evw230] [PMID: 27635048]
[8]
Mora-Montes, H.M. Dantas, Ada.S.; Trujillo-Esquivel, E.; de Souza Baptista, A.R.; Lopes-Bezerra, L.M. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era. FEMS Yeast Res., 2015, 15(6) fov065
[http://dx.doi.org/10.1093/femsyr/fov065] [PMID: 26260509]
[9]
Madrid, I.M.; Xavier, M.O.; Mattei, A.S.; Fernandes, C.G.; Guim, T.N.; Santin, R.; Schuch, L.F. Nobre, Mde.O.; Araújo Meireles, M.C. Role of melanin in the pathogenesis of cutaneous sporotrichosis. Microbes Infect., 2010, 12(2), 162-165.
[http://dx.doi.org/10.1016/j.micinf.2009.10.004] [PMID: 19883789]
[10]
Teixeira, P.A.; de Castro, R.A.; Nascimento, R.C.; Tronchin, G.; Torres, A.P.; Lazéra, M.; de Almeida, S.R.; Bouchara, J.P.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M. Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. Microbiology, 2009, 155(Pt 11), 3730-3738.
[http://dx.doi.org/10.1099/mic.0.029439-0] [PMID: 19762444]
[11]
Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: human fungal infections. Sci. Transl. Med., 2012, 4(165)165rv13
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[12]
Almeida, F.; Rodrigues, M.L.; Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol., 2019, 10, 214.
[http://dx.doi.org/10.3389/fmicb.2019.00214] [PMID: 30809213]
[13]
Mora-Montes, H.M.; Ponce-Noyola, P.; Villagómez-Castro, J.C.; Gow, N.A.; Flores-Carreón, A.; López-Romero, E. Protein glycosylation in Candida. Future Microbiol., 2009, 4(9), 1167-1183.
[http://dx.doi.org/10.2217/fmb.09.88] [PMID: 19895219]
[14]
Netea, M.G.; Brown, G.D.; Kullberg, B.J.; Gow, N.A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol., 2008, 6(1), 67-78.
[http://dx.doi.org/10.1038/nrmicro1815] [PMID: 18079743]
[15]
Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol., 2017, 10(2), 296-322.
[http://dx.doi.org/10.1111/1751-7915.12367] [PMID: 27273822]
[16]
Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS, 2009, 23(4), 525-530.
[http://dx.doi.org/10.1097/QAD.0b013e328322ffac] [PMID: 19182676]
[17]
Wu, B.; Liu, H.; Huang, J.; Zhang, W.; Zhang, T. Pulmonary cryptococcosis in non-AIDS patients. Clin. Invest. Med., 2009, 32(1), E70-E77.
[http://dx.doi.org/10.25011/cim.v32i1.5090] [PMID: 19178882]
[18]
Rementeria, A.; López-Molina, N.; Ludwig, A.; Vivanco, A.B.; Bikandi, J.; Pontón, J.; Garaizar, J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev. Iberoam. Micol., 2005, 22(1), 1-23.
[http://dx.doi.org/10.1016/S1130-1406(05)70001-2] [PMID: 15813678]
[19]
González-Hernández, R.J.; Jin, K.; Hernández-Chávez, M.J.; Díaz-Jiménez, D.F.; Trujillo-Esquivel, E.; Clavijo-Giraldo, D.M.; Tamez-Castrellón, A.K.; Franco, B.; Gow, N.A.R.; Mora-Montes, H.M. Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family. Front. Microbiol., 2017, 8, 2156.
[http://dx.doi.org/10.3389/fmicb.2017.02156] [PMID: 29163439]
[20]
Hernández-Chávez, M.J.; Pérez-García, L.A.; Niño-Vega, G.A.; Mora-Montes, H.M. Fungal strategies to evade the host immune recognition. J. Fungi (Basel), 2017, 3(4) E51
[http://dx.doi.org/10.3390/jof3040051] [PMID: 29371567]
[21]
McKenzie, C.G.J.; Koser, U.; Lewis, L.E.; Bain, J.M.; Mora-Montes, H.M.; Barker, R.N.; Gow, N.A.; Erwig, L.P. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun., 2010, 78(4), 1650-1658.
[http://dx.doi.org/10.1128/IAI.00001-10] [PMID: 20123707]
[22]
Zaragoza, O.; Rodrigues, M.L.; De Jesus, M.; Frases, S.; Dadachova, E.; Casadevall, A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv. Appl. Microbiol., 2009, 68, 133-216.
[http://dx.doi.org/10.1016/S0065-2164(09)01204-0] [PMID: 19426855]
[23]
Cherniak, R.; Jones, R.G.; Reiss, E. Structure determination of Cryptococcus neoformans serotype A-variant glucuronoxylomannan by 13C-n.m.r. spectroscopy. Carbohydr. Res., 1988, 172(1), 113-138.
[http://dx.doi.org/10.1016/S0008-6215(00)90846-2] [PMID: 3280130]
[24]
Cherniak, R.; Sundstrom, J.B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect. Immun., 1994, 62(5), 1507-1512.
[PMID: 8168912]
[25]
McFadden, D.C.; De Jesus, M.; Casadevall, A. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J. Biol. Chem., 2006, 281(4), 1868-1875.
[http://dx.doi.org/10.1074/jbc.M509465200] [PMID: 16278213]
[26]
O’Meara, T.R.; Alspaugh, J.A. The Cryptococcus neoformans capsule: a sword and a shield. Clin. Microbiol. Rev., 2012, 25(3), 387-408.
[http://dx.doi.org/10.1128/CMR.00001-12] [PMID: 22763631]
[27]
Boyce, K.J.; Andrianopoulos, A. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev., 2015, 39(6), 797-811.
[http://dx.doi.org/10.1093/femsre/fuv035] [PMID: 26253139]
[28]
Höfs, S.; Mogavero, S.; Hube, B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol., 2016, 54(3), 149-169.
[http://dx.doi.org/10.1007/s12275-016-5514-0] [PMID: 26920876]
[29]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128.
[http://dx.doi.org/10.4161/viru.22913] [PMID: 23302789]
[30]
Zheng, X.; Wang, Y.; Wang, Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J., 2004, 23(8), 1845-1856.
[http://dx.doi.org/10.1038/sj.emboj.7600195] [PMID: 15071502]
[31]
Bailey, D.A.; Feldmann, P.J.; Bovey, M.; Gow, N.A.; Brown, A.J. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol., 1996, 178(18), 5353-5360.
[http://dx.doi.org/10.1128/jb.178.18.5353-5360.1996] [PMID: 8808922]
[32]
Dwivedi, P.; Thompson, A.; Xie, Z.; Kashleva, H.; Ganguly, S.; Mitchell, A.P.; Dongari-Bagtzoglou, A. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One, 2011, 6(1) e16218
[http://dx.doi.org/10.1371/journal.pone.0016218] [PMID: 21283544]
[33]
Birse, C.E.; Irwin, M.Y.; Fonzi, W.A.; Sypherd, P.S. Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect. Immun., 1993, 61(9), 3648-3655.
[PMID: 8359888]
[34]
Fan, Y.; He, H.; Dong, Y.; Pan, H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia, 2013, 176(5-6), 329-335.
[http://dx.doi.org/10.1007/s11046-013-9684-6] [PMID: 24002103]
[35]
Díaz-Jiménez, D.F.; Pérez-García, L.A.; Martínez-Álvarez, J.A.; Mora-Montes, H.M. Role of the fungal cell wall in pathogenesis and antifungal resistance. Curr. Fungal Infect. Rep., 2012, 6(4), 275-282.
[http://dx.doi.org/10.1007/s12281-012-0109-7]
[36]
Mora-Montes, H.M.; Netea, M.G.; Ferwerda, G.; Lenardon, M.D.; Brown, G.D.; Mistry, A.R.; Kullberg, B.J.; O’Callaghan, C.A.; Sheth, C.C.; Odds, F.C.; Brown, A.J.; Munro, C.A.; Gow, N.A. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect. Immun., 2011, 79(5), 1961-1970.
[http://dx.doi.org/10.1128/IAI.01282-10] [PMID: 21357722]
[37]
Munro, C.A.; Winter, K.; Buchan, A.; Henry, K.; Becker, J.M.; Brown, A.J.; Bulawa, C.E.; Gow, N.A. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol., 2001, 39(5), 1414-1426.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02347.x] [PMID: 11251855]
[38]
Mio, T.; Yabe, T.; Sudoh, M.; Satoh, Y.; Nakajima, T.; Arisawa, M.; Yamada-Okabe, H. Role of three chitin synthase genes in the growth of Candida albicans. J. Bacteriol., 1996, 178(8), 2416-2419.
[http://dx.doi.org/10.1128/jb.178.8.2416-2419.1996] [PMID: 8636047]
[39]
Bulawa, C.E.; Miller, D.W.; Henry, L.K.; Becker, J.M. Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc. Natl. Acad. Sci. USA, 1995, 92(23), 10570-10574.
[http://dx.doi.org/10.1073/pnas.92.23.10570] [PMID: 7479842]
[40]
Munro, C.A.; Whitton, R.K.; Hughes, H.B.; Rella, M.; Selvaggini, S.; Gow, N.A. CHS8-a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet. Biol., 2003, 40(2), 146-158.
[http://dx.doi.org/10.1016/S1087-1845(03)00083-5] [PMID: 14516767]
[41]
Mellado, E.; Aufauvre-Brown, A.; Gow, N.A.; Holden, D.W. The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol. Microbiol., 1996, 20(3), 667-679.
[http://dx.doi.org/10.1046/j.1365-2958.1996.5571084.x] [PMID: 8736545]
[42]
Lopes-Bezerra, L.M.; Walker, L.A.; Niño-Vega, G.; Mora-Montes, H.M.; Neves, G.W.P.; Villalobos-Duno, H.; Barreto, L.; Garcia, K.; Franco, B.; Martínez-Álvarez, J.A.; Munro, C.A.; Gow, N.A.R. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Negl. Trop. Dis., 2018, 12(3) e0006169
[http://dx.doi.org/10.1371/journal.pntd.0006169] [PMID: 29522522]
[43]
Martínez-Álvarez, J.A.; Pérez-García, L.A.; Mellado-Mojica, E.; López, M.G.; Martínez-Duncker, I.; Lópes-Bezerra, L.M.; Mora-Montes, H.M. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis are differentially recognized by human peripheral blood mononuclear cells. Front. Microbiol., 2017, 8, 843.
[http://dx.doi.org/10.3389/fmicb.2017.00843] [PMID: 28539922]
[44]
Douglas, C.M. Fungal β(1,3)-D-glucan synthesis. Med. Mycol., 2001, 39(1)(Suppl. 1), 55-66.
[http://dx.doi.org/10.1080/mmy.39.1.55.66] [PMID: 11800269]
[45]
Thompson, J.R.; Douglas, C.M.; Li, W.; Jue, C.K.; Pramanik, B.; Yuan, X.; Rude, T.H.; Toffaletti, D.L.; Perfect, J.R.; Kurtz, M. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol., 1999, 181(2), 444-453.
[PMID: 9882657]
[46]
Kondoh, O.; Tachibana, Y.; Ohya, Y.; Arisawa, M.; Watanabe, T. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis. J. Bacteriol., 1997, 179(24), 7734-7741.
[http://dx.doi.org/10.1128/jb.179.24.7734-7741.1997] [PMID: 9401032]
[47]
Smith, S.E.; Csank, C.; Reyes, G.; Ghannoum, M.A.; Berlin, V. Candida albicans RHO1 is required for cell viability in vitro and in vivo. FEMS Yeast Res., 2002, 2(2), 103-111.
[PMID: 12702298]
[48]
Martínez-Duncker, I.; Díaz-Jímenez, D.F.; Mora-Montes, H.M. Comparative analysis of protein glycosylation pathways in humans and the fungal pathogen Candida albicans. Int. J. Microbiol., 2014, 2014 267497
[http://dx.doi.org/10.1155/2014/267497] [PMID: 25104959]
[49]
Juchimiuk, M.; Kruszewska, J.; Palamarczyk, G. Dolichol phosphate mannose synthase from the pathogenic yeast Candida albicans is a multimeric enzyme. Biochim. Biophys. Acta, 2015, 1850(11), 2265-2275.
[http://dx.doi.org/10.1016/j.bbagen.2015.08.012] [PMID: 26299246]
[50]
Rouabhia, M.; Schaller, M.; Corbucci, C.; Vecchiarelli, A.; Prill, S.K.; Giasson, L.; Ernst, J.F. Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect. Immun., 2005, 73(8), 4571-4580.
[http://dx.doi.org/10.1128/IAI.73.8.4571-4580.2005] [PMID: 16040968]
[51]
Olson, G.M.; Fox, D.S.; Wang, P.; Alspaugh, J.A.; Buchanan, K.L. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans. Eukaryot. Cell, 2007, 6(2), 222-234.
[http://dx.doi.org/10.1128/EC.00182-06] [PMID: 17142566]
[52]
Díaz-Jiménez, D.F.; Mora-Montes, H.M.; Hernández-Cervantes, A.; Luna-Arias, J.P.; Gow, N.A.; Flores-Carreón, A. Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochem. Biophys. Res. Commun., 2012, 419(1), 77-82.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.131] [PMID: 22326920]
[53]
Munro, C.A.; Bates, S.; Buurman, E.T.; Hughes, H.B.; Maccallum, D.M.; Bertram, G.; Atrih, A.; Ferguson, M.A.; Bain, J.M.; Brand, A.; Hamilton, S.; Westwater, C.; Thomson, L.M.; Brown, A.J.; Odds, F.C.; Gow, N.A. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J. Biol. Chem., 2005, 280(2), 1051-1060.
[http://dx.doi.org/10.1074/jbc.M411413200] [PMID: 15519997]
[54]
Hernández-Cervantes, A.; Mora-Montes, H.M.; Álvarez-Vargas, A.; Jiménez, D.F.; Robledo-Ortiz, C.I.; Flores-Carreón, A. Isolation of Sporothrix schenckii MNT1 and the biochemical and functional characterization of the encoded α1,2-mannosyltransferase activity. Microbiology, 2012, 158(Pt 9), 2419-2427.
[http://dx.doi.org/10.1099/mic.0.060392-0] [PMID: 22745268]
[55]
López-Ramírez, L.A.; Hernández, N.V.; Lozoya-Pérez, N.E.; Lopes-Bezerra, L.M.; Mora-Montes, H.M. Functional characterization of the Sporothrix schenckii Ktr4 and Ktr5, mannosyltransferases involved in the N-linked glycosylation pathway. Res. Microbiol., 2018, 169(3), 188-197.
[http://dx.doi.org/10.1016/j.resmic.2018.02.004] [PMID: 29476824]
[56]
Lozoya-Pérez, N.E.; Casas-Flores, S.; de Almeida, J.R.F.; Martínez-Álvarez, J.A.; López-Ramírez, L.A.; Jannuzzi, G.P.; Trujillo-Esquivel, E.; Estrada-Mata, E.; Almeida, S.R.; Franco, B.; Lopes-Bezerra, L.M.; Mora-Montes, H.M. Silencing of OCH1 unveils the role of Sporothrix schenckii N-linked glycans during the host-fungus interaction. Infect. Drug Resist., 2018, 12, 67-85.
[http://dx.doi.org/10.2147/IDR.S185037] [PMID: 30643435]
[57]
Bates, S.; Hughes, H.B.; Munro, C.A.; Thomas, W.P.; MacCallum, D.M.; Bertram, G.; Atrih, A.; Ferguson, M.A.; Brown, A.J.; Odds, F.C.; Gow, N.A. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J. Biol. Chem., 2006, 281(1), 90-98.
[http://dx.doi.org/10.1074/jbc.M510360200] [PMID: 16263704]
[58]
Beauvais, A.; Maubon, D.; Park, S.; Morelle, W.; Tanguy, M.; Huerre, M.; Perlin, D.S.; Latgé, J.P. Two alpha(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol., 2005, 71(3), 1531-1538.
[http://dx.doi.org/10.1128/AEM.71.3.1531-1538.2005] [PMID: 15746357]
[59]
Maubon, D.; Park, S.; Tanguy, M.; Huerre, M.; Schmitt, C.; Prévost, M.C.; Perlin, D.S.; Latgé, J.P.; Beauvais, A. AGS3, an α(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol., 2006, 43(5), 366-375.
[http://dx.doi.org/10.1016/j.fgb.2006.01.006] [PMID: 16531086]
[60]
Aimanianda, V.; Latgé, J-P. Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence, 2010, 1(3), 185-187.
[http://dx.doi.org/10.4161/viru.1.3.11317] [PMID: 21178439]
[61]
Luo, S.; Poltermann, S.; Kunert, A.; Rupp, S.; Zipfel, P.F. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol. Immunol., 2009, 47(2-3), 541-550.
[http://dx.doi.org/10.1016/j.molimm.2009.07.017] [PMID: 19850343]
[62]
Lesiak-Markowicz, I.; Vogl, G.; Schwarzmüller, T.; Speth, C.; Lass-Flörl, C.; Dierich, M.P.; Kuchler, K.; Würzner, R. Candida albicans Hgt1p, a multifunctional evasion molecule: complement inhibitor, CR3 analogue, and human immunodeficiency virus-binding molecule. J. Infect. Dis., 2011, 204(5), 802-809.
[http://dx.doi.org/10.1093/infdis/jir455] [PMID: 21844307]
[63]
Szafranski-Schneider, E.; Swidergall, M.; Cottier, F.; Tielker, D.; Román, E.; Pla, J.; Ernst, J.F. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog., 2012, 8(2), e1002501-e1002501.
[http://dx.doi.org/10.1371/journal.ppat.1002501] [PMID: 22319443]
[64]
Askew, D.S. Aspergillus fumigatus: virulence genes in a street-smart mold. Curr. Opin. Microbiol., 2008, 11(4), 331-337.
[http://dx.doi.org/10.1016/j.mib.2008.05.009] [PMID: 18579432]
[65]
Hohl, T.M.; Feldmesser, M. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell, 2007, 6(11), 1953-1963.
[http://dx.doi.org/10.1128/EC.00274-07] [PMID: 17890370]
[66]
Bhabhra, R.; Miley, M.D.; Mylonakis, E.; Boettner, D.; Fortwendel, J.; Panepinto, J.C.; Postow, M.; Rhodes, J.C.; Askew, D.S. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect. Immun., 2004, 72(8), 4731-4740.
[http://dx.doi.org/10.1128/IAI.72.8.4731-4740.2004] [PMID: 15271935]
[67]
Boettner, D.; Huebner, N.; Rhodes, J.C.; Askew, D.S. Molecular cloning of Aspergillus fumigatus CgrA, the ortholog of a conserved fungal nucleolar protein. Med. Mycol., 2001, 39(6), 517-521.
[http://dx.doi.org/10.1080/mmy.39.6.517.521] [PMID: 11798057]
[68]
Moy, T.I.; Boettner, D.; Rhodes, J.C.; Silver, P.A.; Askew, D.S. Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. Microbiology, 2002, 148(Pt 4), 1081-1090.
[http://dx.doi.org/10.1099/00221287-148-4-1081] [PMID: 11932453]
[69]
Wang, P.; Cox, G.M.; Heitman, J.A. Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr. Genet., 2004, 46(5), 247-255.
[http://dx.doi.org/10.1007/s00294-004-0529-1] [PMID: 15503029]
[70]
Yang, D.H.; Jung, K.W.; Bang, S.; Lee, J.W.; Song, M.H.; Floyd-Averette, A.; Festa, R.A.; Ianiri, G.; Idnurm, A.; Thiele, D.J.; Heitman, J.; Bahn, Y.S. Rewiring of signaling networks modulating thermotolerance in the human pathogen Cryptococcus neoformans. Genetics, 2017, 205(1), 201-219.
[http://dx.doi.org/10.1534/genetics.116.190595] [PMID: 27866167]
[71]
Fiori, A.; Kucharíková, S.; Govaert, G.; Cammue, B.P.; Thevissen, K.; Van Dijck, P. The heat-induced molecular disaggregase Hsp104 of Candida albicans plays a role in biofilm formation and pathogenicity in a worm infection model. Eukaryot. Cell, 2012, 11(8), 1012-1020.
[http://dx.doi.org/10.1128/EC.00147-12] [PMID: 22635920]
[72]
Sun, J.N.; Solis, N.V.; Phan, Q.T.; Bajwa, J.S.; Kashleva, H.; Thompson, A.; Liu, Y.; Dongari-Bagtzoglou, A.; Edgerton, M.; Filler, S.G. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog., 2010, 6(11) e1001181
[http://dx.doi.org/10.1371/journal.ppat.1001181] [PMID: 21085601]
[73]
Leach, M.D.; Stead, D.A.; Argo, E.; Brown, A.J. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol. Biol. Cell, 2011, 22(5), 687-702.
[http://dx.doi.org/10.1091/mbc.e10-07-0632] [PMID: 21209325]
[74]
Kwon-Chung, K.J. Comparison of isolates of Sporothrix schenckii obtained from fixed cutaneous lesions with isolates from other types of lesions. J. Infect. Dis., 1979, 139(4), 424-431.
[http://dx.doi.org/10.1093/infdis/139.4.424] [PMID: 438543]
[75]
Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev., 2011, 24(4), 633-654.
[http://dx.doi.org/10.1128/CMR.00007-11] [PMID: 21976602]
[76]
Rodriguez-Caban, J.; Gonzalez-Velazquez, W.; Perez-Sanchez, L.; Gonzalez-Mendez, R.; Rodriguez-del Valle, N. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study. BMC Microbiol., 2011, 11, 162-162.
[http://dx.doi.org/10.1186/1471-2180-11-162] [PMID: 21745372]
[77]
Ruiz-Baca, E.; Toriello, C.; Perez-Torres, A.; Sabanero-Lopez, M.; Villagomez-Castro, J.C.; Lopez-Romero, E. Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix schenckii involved in fungal adherence to dermal extracellular matrix. Med. Mycol., 2009, 47(2), 185-196.
[http://dx.doi.org/10.1080/13693780802165789] [PMID: 18608892]
[78]
Nascimento, R.C.; Espíndola, N.M.; Castro, R.A.; Teixeira, P.A.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M.; Almeida, S.R. Passive immunization with monoclonal antibody against a 70-kDa putative adhesin of Sporothrix schenckii induces protection in murine sporotrichosis. Eur. J. Immunol., 2008, 38(11), 3080-3089.
[http://dx.doi.org/10.1002/eji.200838513] [PMID: 18991286]
[79]
Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Costa, R.O.; Camargo, Z.P.; Felipe, M.S.; de Souza, W.; Lopes-Bezerra, L.M. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One, 2013, 8(10) e75656
[http://dx.doi.org/10.1371/journal.pone.0075656] [PMID: 24116065]
[80]
Dagenais, T.R.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev., 2009, 22(3), 447-465.
[http://dx.doi.org/10.1128/CMR.00055-08] [PMID: 19597008]
[81]
Tomee, J.F.; Kauffman, H.F. Putative virulence factors of Aspergillus fumigatus. Clin. Exp. Allergy, 2000, 30(4), 476-484.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00796.x] [PMID: 10718844]
[82]
Modrzewska, B.; Kurnatowski, P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol., 2015, 61(1), 3-9.
[PMID: 25911031]
[83]
Staab, J.F.; Bradway, S.D.; Fidel, P.L.; Sundstrom, P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 1999, 283(5407), 1535-1538.
[http://dx.doi.org/10.1126/science.283.5407.1535] [PMID: 10066176]
[84]
Sandini, S.; Stringaro, A.; Arancia, S.; Colone, M.; Mondello, F.; Murtas, S.; Girolamo, A.; Mastrangelo, N.; De Bernardis, F. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol., 2011, 11, 106.
[http://dx.doi.org/10.1186/1471-2180-11-106] [PMID: 21575184]
[85]
Popolo, L.; Degani, G.; Camilloni, C.; Fonzi, W.A. The PHR family: the role of extracellular transglycosylases in shaping Candida albicans cells. J. Fungi (Basel), 2017, 3(4) E59
[http://dx.doi.org/10.3390/jof3040059] [PMID: 29371575]
[86]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92.
[http://dx.doi.org/10.1146/annurev-micro-091014-104330] [PMID: 26488273]
[87]
Noble, S.M.; French, S.; Kohn, L.A.; Chen, V.; Johnson, A.D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet., 2010, 42(7), 590-598.
[http://dx.doi.org/10.1038/ng.605] [PMID: 20543849]
[88]
Robbins, N.; Uppuluri, P.; Nett, J.; Rajendran, R.; Ramage, G.; Lopez-Ribot, J.L.; Andes, D.; Cowen, L.E. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog., 2011, 7(9) e1002257
[http://dx.doi.org/10.1371/journal.ppat.1002257] [PMID: 21931556]
[89]
Nobile, C.J.; Fox, E.P.; Nett, J.E.; Sorrells, T.R.; Mitrovich, Q.M.; Hernday, A.D.; Tuch, B.B.; Andes, D.R.; Johnson, A.D. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 2012, 148(1-2), 126-138.
[http://dx.doi.org/10.1016/j.cell.2011.10.048] [PMID: 22265407]
[90]
Ganguly, S.; Bishop, A.C.; Xu, W.; Ghosh, S.; Nickerson, K.W.; Lanni, F.; Patton-Vogt, J.; Mitchell, A.P. Zap1 control of cell-cell signaling in Candida albicans biofilms. Eukaryot. Cell, 2011, 10(11), 1448-1454.
[http://dx.doi.org/10.1128/EC.05196-11] [PMID: 21890817]
[91]
Brilhante, R.S.N.; de Aguiar, F.R.M.; da Silva, M.L.Q.; de Oliveira, J.S.; de Camargo, Z.P.; Rodrigues, A.M.; Pereira, V.S.; Serpa, R.; Castelo-Branco, D.S.C.M.; Correia, E.E.M.; Pereira-Neto, W.A.; Cordeiro, R.A.; Rocha, M.F.G.; Sidrim, J.J.C. Antifungal susceptibility of Sporothrix schenckii complex biofilms. Med. Mycol., 2018, 56(3), 297-306.
[http://dx.doi.org/10.1093/mmy/myx043] [PMID: 28595275]
[92]
Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev., 2003, 67(3), 400-428.
[http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003] [PMID: 12966142]
[93]
Hube, B.; Sanglard, D.; Odds, F.C.; Hess, D.; Monod, M.; Schäfer, W.; Brown, A.J.; Gow, N.A. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun., 1997, 65(9), 3529-3538.
[PMID: 9284116]
[94]
Theiss, S.; Ishdorj, G.; Brenot, A.; Kretschmar, M.; Lan, C.Y.; Nichterlein, T.; Hacker, J.; Nigam, S.; Agabian, N.; Köhler, G.A. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int. J. Med. Microbiol., 2006, 296(6), 405-420.
[http://dx.doi.org/10.1016/j.ijmm.2006.03.003] [PMID: 16759910]
[95]
Leidich, S.D.; Ibrahim, A.S.; Fu, Y.; Koul, A.; Jessup, C.; Vitullo, J.; Fonzi, W.; Mirbod, F.; Nakashima, S.; Nozawa, Y.; Ghannoum, M.A. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J. Biol. Chem., 1998, 273(40), 26078-26086.
[http://dx.doi.org/10.1074/jbc.273.40.26078] [PMID: 9748287]
[96]
Gácser, A.; Stehr, F.; Kröger, C.; Kredics, L.; Schäfer, W.; Nosanchuk, J.D. Lipase 8 affects the pathogenesis of Candida albicans. Infect. Immun., 2007, 75(10), 4710-4718.
[http://dx.doi.org/10.1128/IAI.00372-07] [PMID: 17646357]
[97]
Cox, G.M.; Mukherjee, J.; Cole, G.T.; Casadevall, A.; Perfect, J.R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun., 2000, 68(2), 443-448.
[http://dx.doi.org/10.1128/IAI.68.2.443-448.2000] [PMID: 10639402]
[98]
Marimon, R.; Cano, J.; Gené, J.; Sutton, D.A.; Kawasaki, M.; Guarro, J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J. Clin. Microbiol., 2007, 45(10), 3198-3206.
[http://dx.doi.org/10.1128/JCM.00808-07] [PMID: 17687013]
[99]
Sabiiti, W.; May, R.C. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol., 2012, 7(11), 1297-1313.
[http://dx.doi.org/10.2217/fmb.12.102] [PMID: 23075448]
[100]
Salas, S.D.; Bennett, J.E.; Kwon-Chung, K.J.; Perfect, J.R.; Williamson, P.R. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med., 1996, 184(2), 377-386.
[http://dx.doi.org/10.1084/jem.184.2.377] [PMID: 8760791]
[101]
Almeida-Paes, R.; Figueiredo-Carvalho, M.H.; Brito-Santos, F.; Almeida-Silva, F.; Oliveira, M.M.; Zancopé-Oliveira, R.M. Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS One, 2016, 11(3) e0152796
[http://dx.doi.org/10.1371/journal.pone.0152796] [PMID: 27031728]
[102]
Thywißen, A.; Heinekamp, T.; Dahse, H-M.; Schmaler-Ripcke, J.; Nietzsche, S.; Zipfel, P.F.; Brakhage, A.A. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front. Microbiol., 2011, 2, 96-96.
[http://dx.doi.org/10.3389/fmicb.2011.00096] [PMID: 21747802]
[103]
Panepinto, J.C.; Oliver, B.G.; Fortwendel, J.R.; Smith, D.L.; Askew, D.S.; Rhodes, J.C. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect. Immun., 2003, 71(5), 2819-2826.
[http://dx.doi.org/10.1128/IAI.71.5.2819-2826.2003] [PMID: 12704156]
[104]
Schrettl, M.; Bignell, E.; Kragl, C.; Joechl, C.; Rogers, T.; Arst, H.N., Jr; Haynes, K.; Haas, H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med., 2004, 200(9), 1213-1219.
[http://dx.doi.org/10.1084/jem.20041242] [PMID: 15504822]
[105]
Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep., 2014, 31(10), 1266-1276.
[http://dx.doi.org/10.1039/C4NP00071D] [PMID: 25140791]
[106]
Amich, J.; Calera, J.A. Zinc acquisition: a key aspect in Aspergillus fumigatus virulence. Mycopathologia, 2014, 178(5-6), 379-385.
[http://dx.doi.org/10.1007/s11046-014-9764-2] [PMID: 24947168]
[107]
Vicentefranqueira, R.; Amich, J.; Laskaris, P.; Ibrahim-Granet, O.; Latgé, J.P.; Toledo, H.; Leal, F.; Calera, J.A. Targeting zinc homeostasis to combat Aspergillus fumigatus infections. Front. Microbiol., 2015, 6(160), 160.
[http://dx.doi.org/10.3389/fmicb.2015.00160] [PMID: 25774155]
[108]
Moreno, M.A.; Ibrahim-Granet, O.; Vicentefranqueira, R.; Amich, J.; Ave, P.; Leal, F.; Latgé, J.P.; Calera, J.A. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol. Microbiol., 2007, 64(5), 1182-1197.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05726.x] [PMID: 17542914]
[109]
Hu, G.; Cheng, P.Y.; Sham, A.; Perfect, J.R.; Kronstad, J.W. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol. Microbiol., 2008, 69(6), 1456-1475.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06374.x] [PMID: 18673460]
[110]
Price, M.S.; Betancourt-Quiroz, M.; Price, J.L.; Toffaletti, D.L.; Vora, H.; Hu, G.; Kronstad, J.W.; Perfect, J.R. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio, 2011, 2(3), e00103-e00111.
[http://dx.doi.org/10.1128/mBio.00103-11] [PMID: 21652778]
[111]
Lorenz, M.C.; Bender, J.A.; Fink, G.R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell, 2004, 3(5), 1076-1087.
[http://dx.doi.org/10.1128/EC.3.5.1076-1087.2004] [PMID: 15470236]
[112]
Lorenz, M.C.; Fink, G.R. The glyoxylate cycle is required for fungal virulence. Nature, 2001, 412(6842), 83-86.
[http://dx.doi.org/10.1038/35083594] [PMID: 11452311]
[113]
Hwang, C.S.; Rhie, G.E.; Oh, J.H.; Huh, W.K.; Yim, H.S.; Kang, S.O. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology, 2002, 148(Pt 11), 3705-3713.
[http://dx.doi.org/10.1099/00221287-148-11-3705] [PMID: 12427960]
[114]
Martchenko, M.; Alarco, A.M.; Harcus, D.; Whiteway, M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell, 2004, 15(2), 456-467.
[http://dx.doi.org/10.1091/mbc.e03-03-0179] [PMID: 14617819]
[115]
Wysong, D.R.; Christin, L.; Sugar, A.M.; Robbins, P.W.; Diamond, R.D. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun., 1998, 66(5), 1953-1961.
[PMID: 9573075]
[116]
Hromatka, B.S.; Noble, S.M.; Johnson, A.D. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell, 2005, 16(10), 4814-4826.
[http://dx.doi.org/10.1091/mbc.e05-05-0435] [PMID: 16030247]
[117]
Ullmann, B.D.; Myers, H.; Chiranand, W.; Lazzell, A.L.; Zhao, Q.; Vega, L.A.; Lopez-Ribot, J.L.; Gardner, P.R.; Gustin, M.C. Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot. Cell, 2004, 3(3), 715-723.
[http://dx.doi.org/10.1128/EC.3.3.715-723.2004] [PMID: 15189992]
[118]
Steinbach, W.J.; Cramer, R.A., Jr; Perfect, B.Z.; Asfaw, Y.G.; Sauer, T.C.; Najvar, L.K.; Kirkpatrick, W.R.; Patterson, T.F.; Benjamin, D.K., Jr; Heitman, J.; Perfect, J.R. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell, 2006, 5(7), 1091-1103.
[http://dx.doi.org/10.1128/EC.00139-06] [PMID: 16835453]
[119]
Juvvadi, P.R.; Arioka, M.; Nakajima, H.; Kitamoto, K. Cloning and sequence analysis of cnaA gene encoding the catalytic subunit of calcineurin from Aspergillus oryzae. FEMS Microbiol. Lett., 2001, 204(1), 169-174.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10881.x] [PMID: 11682197]
[120]
Missall, T.A.; Lodge, J.K. Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators. Mol. Microbiol., 2005, 57(3), 847-858.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04735.x] [PMID: 16045626]
[121]
Carlos, I.Z.; Sassá, M.F.; da Graça Sgarbi, D.B.; Placeres, M.C.; Maia, D.C. Current research on the immune response to experimental sporotrichosis. Mycopathologia, 2009, 168(1), 1-10.
[http://dx.doi.org/10.1007/s11046-009-9190-z] [PMID: 19241140]
[122]
Peres da Silva, R.; Puccia, R.; Rodrigues, M.L.; Oliveira, D.L.; Joffe, L.S.; César, G.V.; Nimrichter, L.; Goldenberg, S.; Alves, L.R. Extracellular vesicle-mediated export of fungal RNA. Sci. Rep., 2015, 5, 7763.
[http://dx.doi.org/10.1038/srep07763] [PMID: 25586039]
[123]
Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell, 2008, 7(1), 58-67.
[http://dx.doi.org/10.1128/EC.00370-07] [PMID: 18039940]
[124]
Vargas, G.; Rocha, J.D.; Oliveira, D.L.; Albuquerque, P.C.; Frases, S.; Santos, S.S.; Nosanchuk, J.D.; Gomes, A.M.; Medeiros, L.C.; Miranda, K.; Sobreira, T.J.; Nakayasu, E.S.; Arigi, E.A.; Casadevall, A.; Guimaraes, A.J.; Rodrigues, M.L.; Freire-de-Lima, C.G.; Almeida, I.C.; Nimrichter, L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell. Microbiol., 2015, 17(3), 389-407.
[http://dx.doi.org/10.1111/cmi.12374] [PMID: 25287304]
[125]
Albuquerque, P.C.; Nakayasu, E.S.; Rodrigues, M.L.; Frases, S.; Casadevall, A.; Zancope-Oliveira, R.M.; Almeida, I.C.; Nosanchuk, J.D. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol., 2008, 10(8), 1695-1710.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01160.x] [PMID: 18419773]
[126]
Ikeda, M.A.K.; de Almeida, J.R.F.; Jannuzzi, G.P.; Cronemberger-Andrade, A.; Torrecilhas, A.C.T.; Moretti, N.S.; da Cunha, J.P.C.; de Almeida, S.R.; Ferreira, K.S. Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental sporotrichosis. Front. Microbiol., 2018, 9, 2286.
[http://dx.doi.org/10.3389/fmicb.2018.02286] [PMID: 30333803]
[127]
Sugui, J.A.; Pardo, J.; Chang, Y.C.; Zarember, K.A.; Nardone, G.; Galvez, E.M.; Müllbacher, A.; Gallin, J.I.; Simon, M.M.; Kwon-Chung, K.J. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot. Cell, 2007, 6(9), 1562-1569.
[http://dx.doi.org/10.1128/EC.00141-07] [PMID: 17601876]
[128]
Cramer, R.A., Jr; Gamcsik, M.P.; Brooking, R.M.; Najvar, L.K.; Kirkpatrick, W.R.; Patterson, T.F.; Balibar, C.J.; Graybill, J.R.; Perfect, J.R.; Abraham, S.N.; Steinbach, W.J. Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot. Cell, 2006, 5(6), 972-980.
[http://dx.doi.org/10.1128/EC.00049-06] [PMID: 16757745]
[129]
Kupfahl, C.; Heinekamp, T.; Geginat, G.; Ruppert, T.; Härtl, A.; Hof, H.; Brakhage, A.A. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol. Microbiol., 2006, 62(1), 292-302.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05373.x] [PMID: 16956378]
[130]
Bok, J.W.; Chung, D.; Balajee, S.A.; Marr, K.A.; Andes, D.; Nielsen, K.F.; Frisvad, J.C.; Kirby, K.A.; Keller, N.P. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect. Immun., 2006, 74(12), 6761-6768.
[http://dx.doi.org/10.1128/IAI.00780-06] [PMID: 17030582]
[131]
Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; Murciano, C.; Blagojevic, M.; Thavaraj, S.; Förster, T.M.; Hebecker, B.; Kasper, L.; Vizcay, G.; Iancu, S.I.; Kichik, N.; Häder, A.; Kurzai, O.; Luo, T.; Krüger, T.; Kniemeyer, O.; Cota, E.; Bader, O.; Wheeler, R.T.; Gutsmann, T.; Hube, B.; Naglik, J.R. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532(7597), 64-68.
[http://dx.doi.org/10.1038/nature17625] [PMID: 27027296]
[132]
McClelland, E.E.; Ramagopal, U.A.; Rivera, J.; Cox, J.; Nakouzi, A.; Prabu, M.M.; Almo, S.C.; Casadevall, A. A small protein associated with fungal energy metabolism affects the virulence of Cryptococcus neoformans in mammals. PLoS Pathog., 2016, 12(9) e1005849
[http://dx.doi.org/10.1371/journal.ppat.1005849] [PMID: 27583447]
[133]
Trujillo-Esquivel, E.; Martínez-Álvarez, J.A.; Clavijo-Giraldo, D.M.; Hernández, N.V.; Flores-Martínez, A.; Ponce-Noyola, P.; Mora-Montes, H.M. The Sporothrix schenckii gene encoding for the ribosomal protein L6 has constitutive and stable expression and works as an endogenous control in gene expression analysis. Front. Microbiol., 2017, 8, 1676.
[http://dx.doi.org/10.3389/fmicb.2017.01676] [PMID: 28919888]
[134]
Lozoya-Pérez, N.E.; Casas-Flores, S.; Martínez-Álvarez, J.A.; López-Ramírez, L.A.; Lopes-Bezerra, L.M.; Franco, B.; Mora-Montes, H.M. Generation of Sporothrix schenckii mutants expressing the green fluorescent protein suitable for the study of host-fungus interactions. Fungal Biol., 2018, 122(10), 1023-1030.
[http://dx.doi.org/10.1016/j.funbio.2018.07.004] [PMID: 30227928]
[135]
Trujillo-Esquivel, E.; Franco, B.; Flores-Martínez, A.; Ponce-Noyola, P.; Mora-Montes, H.M. Purification of single-stranded cDNA based on RNA degradation treatment and adsorption chromatography. Nucleosides Nucleotides Nucleic Acids, 2016, 35(8), 404-409.
[http://dx.doi.org/10.1080/15257770.2016.1184277] [PMID: 27352216]
[136]
Tamez-Castrellón, A.K.; Romo-Lucio, R.; Martínez-Duncker, I.; Mora-Montes, H.M. Generation of a synthetic binary plasmid that confers resistance to nourseothricin for genetic engineering of Sporothrix schenckii. Plasmid, 2018, 100, 1-5.
[http://dx.doi.org/10.1016/j.plasmid.2018.09.006] [PMID: 30236508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy