Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

One Pot Multicomponent Biginelli Reaction Employing Ionic Liquids as an Organocatalyst

Author(s): Tanveer M. Shaikh*, Sankaranarayanan Nagarajan and Elango Kandasamy*

Volume 7, Issue 2, 2020

Page: [96 - 107] Pages: 12

DOI: 10.2174/2213337206666191001214521

Abstract

Introduction: The N-heterocyclic compounds have been extensively studied in pharmaceutical industries. Furthermore, syntheses of such compounds employing organo-catalyst have been associated with sustainable technology.

Methods: The synthesis of new, stable ionic liquids and their catalytic applications in one-pot multicomponent Biginelli reaction is presented. The method provides broad substrate scope, yielding the corresponding 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, in good to excellent yields, respectively.

Results and Conclusion: The developed reactions are associated with certain advantages, short reaction time and sustainable conditions. The protocol has advantages eco-friendly procedure, recovery and reusability of catalyst, which showed consistent activity.

Keywords: Biginelli reaction, multicomponent, Ionic liquid, organocatalyst, dihydropyrimidinones, dihydropyrimidinthiones.

Graphical Abstract
[1]
a) Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AIDANIE3168> 3.0.CO;2-U] [PMID: 11028061]
b) Hulme, C.; Gore, V. “Multi-component reactions : emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr. Med. Chem., 2003, 10(1), 51-80.
[http://dx.doi.org/10.2174/0929867033368600] [PMID: 12570721]
[2]
a) Posner, G.H. Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 1986, 86, 831-844.
[http://dx.doi.org/10.1021/cr00075a007]
b) Zhu, J.; Bienymé, H., Eds.; Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
c) van der Heijden, G.; Ruijter, E.; Orru, R.V.A. Efficiency, diversity and complexity with multicomponent reactions. Synlett, 2013, 24, 666-685.
[http://dx.doi.org/10.1055/s-0032-1318222]
[3]
Biginelli, P.; Gazz, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Chim. Ital., 1893, 23, 360-413.
[4]
Tron, G.C.; Minassi, A.; Appendino, G. Pietro Biginelli: The man behind the reaction. Eur. J. Org. Chem., 2011, 5541-5550.
[http://dx.doi.org/10.1002/ejoc.201100661]
[5]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[6]
Murata, H.; Ishitani, H.; Iwamoto, M. Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminium-planted mesoporous silica catalyst. Org. Biomol. Chem., 2010, 8, 1202-1211.
[http://dx.doi.org/10.1039/b920821f]
[7]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[8]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[9]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[10]
Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14(7), 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.039] [PMID: 15026060]
[11]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[12]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[13]
Kape, C.O. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators. Molecules, 1998, 3, 1-9.
[http://dx.doi.org/10.3390/30100001]
[14]
Jauk, B.; Pernat, T.; Kappe, C.O. Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel modulator SQ32,926. Molecules, 2000, 5, 227-239.
[http://dx.doi.org/10.3390/50300227]
[15]
Rudrawa, S. Lithium bromide: A versatile reagent in organic synthesis. Synlett, 2005, 7, 1197-1198.
[http://dx.doi.org/10.1055/s-2005-865222]
[16]
a) Cepanec, I.; Litvic, M.; Bartolincic, A.; Lovric, M. Ferric chloride/tetraethyl ortho silicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2005, 61, 4275-4280.
[http://dx.doi.org/10.1016/j.tet.2005.02.059]
b) Adibi, H.; Samimi, H.A.; Beygzadeh, M. Iron(III) trifluoroacetate and trifluoromethanesulfonate: recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal. Commun., 2007, 8, 2119-2124.
[http://dx.doi.org/10.1016/j.catcom.2007.04.022]
c) Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41(20), 6173-6181.
[http://dx.doi.org/10.1039/c2dt30106g] [PMID: 22475989]
d) Seyedi, N. Glycerin and [Iron(III)(salen)]Cl as an efficient catalytic medium for multicomponent reactions. Transition Met. Chem., 2013, 38, 93-103.
[http://dx.doi.org/10.1007/s11243-012-9665-5]
[17]
Lu, J.; Ma, H. Iron(III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction. Synlett, 2000, 1, 63-64.
[18]
Paraskar, A.S.; Dewkar, G.K.; Sudalai, A. Cu(OTf)2: A reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44, 3305-3308.
[http://dx.doi.org/10.1016/S0040-4039(03)00619-1]
[19]
Liu, C.J.; Wang, J.D. Copper(II) sulfamate: an efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones and thiones. Molecules, 2009, 14(2), 763-770.
[http://dx.doi.org/10.3390/molecules14020763] [PMID: 19223824]
[20]
Yarapathi, R.V.; Kurva, S.; Tammishetti, S. Synthesis of 3,4-dihydropyrimidin-2(1H)ones using reusable poly (4-vinylpyridine-co-divinylbenzene)-Cu(II)complex. Catal. Commun., 2004, 5, 511-513.
[http://dx.doi.org/10.1016/j.catcom.2004.06.007]
[21]
Gohain, M.; Prajapati, D.; Sandhu, J.S. A novel Cu-catalyzed three-component one-pot synthesis of dihydro¬pyrimidin-2(1H)-ones using microwaves under solvent-free conditions. Synlett, 2004, 2, 235-238.
[22]
Khaleghi, S.; Heravi, M.M.; Khosroshahi, M.; Behbahani, F.K.; Daroogheha, Z. A very high yielding and facile alkaline earth metals homogenous catalysis of Biginelli reaction: an improved protocol. Green Chem. Lett. Rev., 2008, 2, 133-139.
[http://dx.doi.org/10.1080/17518250802342527]
[23]
Bose, D.S.; Fatima, L.; Mereyala, H.B. Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions. J. Org. Chem., 2003, 68(2), 587-590.
[http://dx.doi.org/10.1021/jo0205199] [PMID: 12530887]
[24]
Adib, M.; Ghanbary, K.; Mostofi, M.; Ganjali, M.R. Efficient Ce(NO3)3 x 6H2O-catalyzed solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Molecules, 2006, 11(8), 649-654.
[http://dx.doi.org/10.3390/11080649] [PMID: 17971737]
[25]
Reddy, C.V.; Mahesh, M.; Raju, P.V.K.; Babu, T.R.; Reddy, V.V.N. Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2002, 43, 2657-2659.
[http://dx.doi.org/10.1016/S0040-4039(02)00280-0]
[26]
Besoluk, S.; Kucukislamoglu, M.; Zengin, M.; Arslan, M.; Nebioglu, M. An efficient one-pot synthesis of dihydropyrimidinones catalyzed by zirconium hydrogen phosphate under solvent-free conditions. Turk. J. Chem., 2010, 34, 411-416.
[27]
Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65(19), 6270-6272.
[http://dx.doi.org/10.1021/jo000711f] [PMID: 10987976]
[28]
Fu, N.; Yuan, Y.; Pang, M.; Wang, J.; Peppe, C. Indium(III)halide catalyzed preparation of ferrocene dihydropyrimidinone. J. Organomet. Chem., 2003, 672, 52-57.
[http://dx.doi.org/10.1016/S0022-328X(03)00139-6]
[29]
Ghosh, R.; Maiti, S.; Chakraborty, A. In(OTf)3-catalysed one-pot synthesis of dihydropyrimidin-2(1H)ones. J. Mol. Catal. Chem., 2004, 217, 47-50.
[http://dx.doi.org/10.1016/j.molcata.2004.02.025]
[30]
Maskrey, T.S.; Frischling, M.C.; Rice, M.L.; Wipf, P. A five-component Biginelli-Diels-Alder cascade reaction. Front Chem., 2018, 6, 376-385.
[http://dx.doi.org/10.3389/fchem.2018.00376] [PMID: 30211156]
[31]
Varala, R.; Mujahid, A.M.; Adapa, S.R. Bismuth triflate catalyzed one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones: An improved protocol for the Biginelli reaction. Synlett, 2003, 1, 67-70.
[32]
Ramalinga, K.; Vijayalakashmi, P.; Kaimal, T.N.B. Bismuth(III)-catalyzed synthesis of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. Synlett, 2001, 863-865.
[http://dx.doi.org/10.1055/s-2001-14587]
[33]
Zhang, H.; Zhou, Z.; Yao, Z.; Xu, F.; Shen, Q. Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1622-1624.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.103]
[34]
Dondoni, A.; Massi, A. Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction. Tetrahedron Lett., 2001, 42, 7975-7978.
[http://dx.doi.org/10.1016/S0040-4039(01)01728-2]
[35]
Lannou, M.I.; Helion, F.; Namy, J.L. Applications of lanthanide trichloride hydrates, prepared from Mischmetall, in the Biginelli reaction. Synlett, 2008, 105-107.
[36]
Lu, J.; Bay, Y.; Wang, Z.; Yang, B. Ma. H. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-one using lanthanum chloride as a catalyst. Tetrahedron Lett., 2000, 41, 9075-9078.
[http://dx.doi.org/10.1016/S0040-4039(00)01645-2]
[37]
Chen, R.F.; Qian, C.T. One‐pot syntheses of 3,4-dihydropyrimidine‐2(1H)‐thiones catalyzed by La(OTf)3. Chin. J. Chem., 2002, 20, 427-430.
[http://dx.doi.org/10.1002/cjoc.20020200505]
[38]
Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65(12), 3864-3868.
[http://dx.doi.org/10.1021/jo9919052] [PMID: 10864778]
[39]
a) Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R. KAl(SO4)2.12H2O supported on silica gel as a novel heterogeneous system catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidinones under solvent-free conditions. Appl. Catal. A Gen., 2006, 300, 85-88.
[http://dx.doi.org/10.1016/j.apcata.2005.11.001]
b) Sharghi, H.; Jokar, M. Al2O3/MeSO3H: A novel and recyclable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur derivatives in Biginelli condensation. Synth. Commun., 2009, 39, 958-979.
[http://dx.doi.org/10.1080/00397910802444258]
[40]
Singh, O.M.; Devi, N.S. Application of β-oxodithioesters in domino and multicomponent reactions: facile route to dihydropyrimidines and coumarins. J. Org. Chem., 2009, 74(8), 3141-3144.
[http://dx.doi.org/10.1021/jo802585b] [PMID: 19301883]
[41]
Russowsky, D.; Lopesa, F.A.; da Silva, V.S.S.; Cantoa, K.F.S.; D’Ocab, M.G.M.; Godoi, M.N. Multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones promoted by SnCl2.2H2O. J. Braz. Chem. Soc., 2004, 15, 165-169.
[http://dx.doi.org/10.1590/S0103-50532004000200002]
[42]
Kumar, K.A.; Kasthuraiah, M.; Reddy, C.S.; Reddy, C.D. Mn(OAc)2.2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones. Tetrahedron Lett., 2001, 42, 7873-7875.
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[43]
Safari, J.; Gandomi-Ravandi, S. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation. New J. Chem., 2014, 38, 3514-3521.
[http://dx.doi.org/10.1039/C3NJ01618H]
[44]
Safari, J.; Ravandi, S.G. Carbon nanotubes supported by titanium dioxide nanoparticles as recyclable and green catalyst for mild synthesis of dihydropyrimidinones/thiones. J. Mol. Struct., 2014, 1065-1066, 241-247.
[http://dx.doi.org/10.1016/j.molstruc.2014.02.035]
[45]
Khiar, C.; Tassadit, M.; Bennini, L.; Halouane, M.; González, M.J.B.; Menad, S.; Tezkratt, S.; Rabia, C. Cobalt supported on alumina as green catalyst for Biginelli reaction in mild conditions: effect of catalyst preparation method. Green Process Synth., 2017, 6, 533-541.
[http://dx.doi.org/10.1515/gps-2016-0149]
[46]
Lu, J.; Bai, Y.J.; Guo, Y.H.; Wang, Z.J.; Ma, H.R. CoCl2•6H2O or LaCl3•7H2O catalyzed Biginelli reaction. One-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones. Chin. J. Chem., 2002, 20, 681-687.
[http://dx.doi.org/10.1002/cjoc.20020200711]
[47]
Lu, J.; Bai, Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis, 2002, 12, 466-470.
[http://dx.doi.org/10.1055/s-2002-20956]
[48]
Tamaddon, F.; Moradi, S. Controllable selectivity in Biginelli and Hantzsch reactions using nano ZnO as structure base catalyst. J. Mol. Catal. Chem., 2013, 370, 117-122.
[http://dx.doi.org/10.1016/j.molcata.2012.12.005]
[49]
Kouachi, K.; Lafaye, G.; Pronier, S.; Bennini, L.; Menad, S. Mo/γ-Al2O3 catalysts for the Biginelli reaction. Effect of Mo loading. J. Mol. Catal. Chem., 2014, 395, 210-216.
[http://dx.doi.org/10.1016/j.molcata.2014.08.025]
[50]
De, S.K.; Gibbs, R.A. Ruthenium(III) chloride-catalyzed one-pot synthesis of 3,4-dihydro¬pyrimidin-2-(1H)-ones under solvent-free conditions. Synthesis, 2005, 11, 1333-1339.
[http://dx.doi.org/10.1055/s-2005-869899]
[51]
Venkatapathy, K.; Magesh, C.J.; Lavaya, G.; Perumal, P.T.; Sathishkumar, R. A nanocrystalline CdS thin film as a heterogeneous, recyclable catalyst for effective synthesis of dihydropyrimidinones and a new class of carbazolyl dihydropyrimidinones via an improved Biginelli protocol. New J. Chem., 2019, 43, 10989-11002.
[http://dx.doi.org/10.1039/C9NJ02139F]
[52]
Yadav, J.S.; Reddy, S.B.V.; Sridhar, P.; Reddy, J.S.S.; Nagaiah, K.; Lingaiah, N.; Saiprasad, P.S. Green protocol for the Biginelli three-component reaction: Ag3PW12O40 as a novel, water-tolerant hetero poly-acid for the synthesis of 3,4-dihydropyrimidinones. Eur. J. Org. Chem., 2004, 2004, 552-557.
[http://dx.doi.org/10.1002/ejoc.200300559]
[53]
Su, W.; Li, J.; Zheng, Z.; Shen, Y. One-pot synthesis of dihydropyrimidiones catalyzed by strontium(II) triflate under solvent-free conditions. Tetrahedron Lett., 2005, 46, 6037-6040.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.021]
[54]
Ahmed, N.; Lier, J.E.V. TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett., 2007, 48, 5407-5409.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.005]
[55]
Fan, Z.; Zhang, X.; Zhang, Y. Samarium chloride catalysed Biginelli reaction: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Res., 2002, 9, 436-438.
[http://dx.doi.org/10.3184/030823402103172563]
[56]
Zamani, F.; Izadi, E. Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction. Catal. Commun., 2013, 42, 104-108.
[http://dx.doi.org/10.1016/j.catcom.2013.08.006]
[57]
Nasr-Esfahani, M.; Hoseini, S.J.; Mohammadi, F. Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chin. J. Catal., 2011, 32, 1484-1489.
[http://dx.doi.org/10.1016/S1872-2067(10)60263-X]
[58]
Girija, D.; Naik, H.S.B.; Kumar, B.V.; Sudhamani, C.N.; Harish, K.N. Fe3O4 nanoparticle supported Ni(II) complexes: A magnetically recoverable catalyst for Biginelli reaction. Arab. J. Chem., 2019, 12, 420-428.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.008]
[59]
Safari, J.; Zarnegar, Z. Biginelli reaction on Fe3O4–MWCNT nanocomposite: excellent reactivity and facile recyclability of the catalyst combined with ultrasound irradiation. RSC Advances, 2013, 3, 17962-17967.
[http://dx.doi.org/10.1039/c3ra43014f]
[60]
Keivanloo, A.; Mirzaee, M.; Bakherad, M.; Soozani, A. Boehmite nanoparticle catalyst for the one-pot multicomponent synthesis of 3,4-dihydropyrimidin-2-(1H)-ones and thiones under solvent-free conditions. Chin. J. Catal., 2014, 35, 362-367.
[http://dx.doi.org/10.1016/S1872-2067(12)60759-1]
[61]
a) Mistry, S.R.; Joshi, R.S.; Sahoo, S.K.; Maheria, K.C. Synthesis of dihydropyrimidinones using large pore zeolites. Catal. Lett., 2011, 141, 1541-1547.
[http://dx.doi.org/10.1007/s10562-011-0639-6]
b) Rani, V.R.; Srinivas, N.; Kishan, M.R.; Kulkarni, S.J.; Raghavan, K.V. Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Green Chem., 2001, 3, 305-306.
[http://dx.doi.org/10.1039/b107612b]
c) Kang, L.; Jin, D.; Cai, Y. Silica-supported ionic liquid Si[SbSipim][PF6]: An efficient catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones. Synth. Commun., 2013, 43, 1896-1901.
[http://dx.doi.org/10.1080/00397911.2012.678462]
[62]
Pachore, S.S.; Ambhaikar, N.B.; Siddaiah, V.; Khobare, S.R.; Kumar, S.; Dhanukar, V.H.; Kumar, U.S. Successful utilization of β-ketonitrile in Biginelli reaction: synthesis of 5-cyanodihydro pyrimidine. J. Chem. Sci., 2018, 130, 69-78.
[http://dx.doi.org/10.1007/s12039-018-1467-7]
[63]
a) Narahari, S.R.; Reguri, B.R.; Gudaparthi, O.; Mukkanti, K. Synthesis of dihydropyrimidinones via Biginelli multi-component reaction. Tetrahedron Lett., 2012, 53, 1543-1545.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.134]
b) Rajack, A.; Yuvaraju, K.; Praveen, C.; Murthy, Y.L.N. A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid. J. Mol. Catal. Chem., 2013, 370, 197-204.
[http://dx.doi.org/10.1016/j.molcata.2013.01.003]
c) Ahmed, N.; Siddiqui, Z.N. Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines. J. Mol. Catal. Chem., 2014, 387, 45-56.
[http://dx.doi.org/10.1016/j.molcata.2014.02.019]
d) Kolvari, E.; Koukabi, N.; Armandpour, O. A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383-1386.
[http://dx.doi.org/10.1016/j.tet.2013.10.085]
[64]
Pourjavadi, A.; Salimi, H.; Barzegar, S.; Eftekharisis, B. A novel polymeric catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction. Acta Chim. Slov., 2007, 54, 140-143.
[65]
Li, J.T.; Han, J.F.; Yang, J.H.; Li, T.S. An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrason. Sonochem., 2003, 10(3), 119-122.
[http://dx.doi.org/10.1016/S1350-4177(03)00092-0] [PMID: 12726946]
[66]
Yadav, J.S.; Reddy, B.V.S.; Reddy, K.B.; Raj, K.S.; Prasad, A.R. Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones with ceric ammonium nitrate. J. Chem. Soc., Perkin Trans. 1, 2001, 1939-1941.
[http://dx.doi.org/10.1039/b102565c]
[67]
Cheng, J.; Qi, D.Y. An efficient and solvent-free one-pot synthesis of dihydropyrimidinones under microwave irradiation. Chin. Chem. Lett., 2007, 18, 647-650.
[http://dx.doi.org/10.1016/j.cclet.2007.04.002]
[68]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29, 986-992.
[http://dx.doi.org/10.1055/s-0036-1591900]
[69]
Misra, A.K.; Agnihotri, G.; Madhusudan, S.K. Microwave induced eco-friendly solvent-free Biginelli reaction catalyzed by calcium chloride. Indian J. Chem., 2001, 43B, 2018-2020.
[70]
Hazarkhani, H.; Karimi, B. N-Bromosuccinimide as an almost neutral catalyst for efficient synthesis of dihydropyrimidinones under microwave irradiation. Synthesis, 2004, 1239-1242.
[71]
M’hamed, M.O.; Alshammari, A.G.; Lemine, O.M. Green high-yielding one-pot approach to Biginelli reaction under catalyst-free and solvent-free ball milling conditions. Appl. Sci. (Basel), 2016, 6, 431-437.
[http://dx.doi.org/10.3390/app6120431]
[72]
Sahota, N.; AbuSalim, D.I.; Wang, M.L.; Brown, C.J.; Zhang, Z.; El-Baba, T.J.; Cook, S.P.; Clemmer, D.E. A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS. Chem. Sci. (Camb.), 2019, 10(18), 4822-4827.
[http://dx.doi.org/10.1039/C9SC00704K] [PMID: 31160956]
[73]
a) Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press, 2000.
b) Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev., 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677]
[74]
a) Yuan, C.; Huang, Z.; Chen, J. Basic ionic liquid supported on mesoporous SBA-15: An efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal. Commun., 2012, 24, 56-60.
[http://dx.doi.org/10.1016/j.catcom.2012.03.003]
b) Safari, J.; Zarnegar, Z. Brønsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. New J. Chem., 2014, 38, 358-365.
[http://dx.doi.org/10.1039/C3NJ01065A]
c) Srivastava, R. Assessment of the catalytic activities of novel Brönsted acidic ionic liquid catalysts. Catal. Lett., 2010, 139, 17-25.
[http://dx.doi.org/10.1007/s10562-010-0404-2]
d) Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639c]
[75]
Peng, J.; Deng, Y. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett., 2001, 42, 5917-5919.
[http://dx.doi.org/10.1016/S0040-4039(01)01139-X]
[76]
Alvim, H.G.O.; de Lima, T.B.; de Oliveira, H.C.B.; Gozzo, F.C.; de Macedo, J.L.; Abdelnur, P.V.; Silva, W.A.; Neto, B.A.D. Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis. ACS Catal., 2013, 3, 1420-1430.
[http://dx.doi.org/10.1021/cs400291t]
[77]
Zhang, Y.; Wang, B.; Zhang, X.; Huang, J.; Liu, C. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules, 2015, 20(3), 3811-3820.
[http://dx.doi.org/10.3390/molecules20033811] [PMID: 25730389]
[78]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1 H)-ones using a microwave promoted Biginelli protocol in ionic liquid. J. Chem. Sci., 2012, 124, 921-926.
[http://dx.doi.org/10.1007/s12039-012-0278-5]
[79]
Shaabani, A.; Rahmati, A. Ionic liquid promoted efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Catal. Lett., 2005, 100, 177-179.
[http://dx.doi.org/10.1007/s10562-004-3451-8]
[80]
Chavan, S.S.; Sharma, Y.O.; Degani, M.S. Cost-effective ionic liquid for environmentally friendly synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Green Chem. Lett. Rev., 2009, 2, 175-179.
[http://dx.doi.org/10.1080/17518250903252260]
[81]
Sharma, N.; Sharma, U.K.; Kumar, R.; Sinha, A.K. Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Advances, 2012, 2, 10648-10651.
[http://dx.doi.org/10.1039/c2ra22037g]
[82]
Hajipour, A.R.; Khazdooz, L.; Zarei, A. Brønsted acidic ionic liquid–catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones under solvent-free conditions. Synth. Commun., 2011, 41, 2200-2208.
[http://dx.doi.org/10.1080/00397911.2010.501471]
[83]
Daily, L.A.; Miller, K.M. Correlating structure with thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium ionic liquids. J. Org. Chem., 2013, 78(8), 4196-4201.
[http://dx.doi.org/10.1021/jo4003932] [PMID: 23530931]
[84]
Siddiqui, I.R.; Srivastava, A.; Shamim, S.; Srivastava, A.; Waseem, M.A.; Rahila, S.; Abumhdi, A.H.; Srivastava, A.; Rai, P. Microwave accelerated facile and efficient synthesis of piperido[3′,4′:5,6]pyrano[2,3-d] pyrimidinones catalyzed by basic ionic liquid [BMIM]OH. J. Mol. Catal. Chem., 2014, 382, 126-135.
[http://dx.doi.org/10.1016/j.molcata.2013.10.026]
[85]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and –thiones. Synthesis, 2011, 14, 2261-2267.
[86]
Kumar, A.; Maurya, R.A. An efficient Bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett., 2007, 48, 4569-4571.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.130]
[87]
Dhumaskar, K.L.; Meena, S.N.; Ghadi, S.C.; Tilve, S.G. Graphite catalyzed solvent free synthesis of dihydropyrimidin-2(1H)-ones/thiones and their antidiabetic activity. Bioorg. Med. Chem. Lett., 2014, 24(13), 2897-2899.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.099] [PMID: 24835627]
[88]
Hamlich, M.; Harkati, S.; Safi, M.; Lazar, S.; Riadi, Y. A novel green synthesis of pyrimidinone derivatives via Biginelli reaction using animal bone meal as catalyst. J. Mater. Environ. Sci., 2016, 7, 4692-4696.
[89]
Yadav, J.S.; Kumar, S.P.; Kondaji, G.; Rao, R.S.; Nagaiah, K. A novel L-proline catalyzed Biginelli reaction: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chem. Lett., 2004, 33, 1168-1169.
[http://dx.doi.org/10.1246/cl.2004.1168]
[90]
Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction. Tetrahedron Lett., 2006, 47, 5697-5699.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.015]
[91]
Ryabukhin, S.V.; Plaskon, A.S.; Ostapchuk, E.N.; Volochnyuk, D.M.; Tolmachev, A.A. N-Substituted ureas and thioureas in Biginelli reaction promoted by chlorotrimethylsilane: convenient synthesis of N1-alkyl-, N1-aryl-, and N1,N3-dialkyl-3,4-dihydropyrimidin-2(1H)-(thi)ones. Synthesis, 2007, 417-427.
[92]
Yu, Y.; Liu, D.; Liu, C.; Luo, G. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg. Med. Chem. Lett., 2007, 17(12), 3508-3510.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.068] [PMID: 17490874]
[93]
Wang, Y.; Yang, H.; Yu, J.; Miao, Z.; Chen, R. Highly enantioselective Biginelli reaction promoted by chiral bifunctional primary amine-thiourea catalysts: Asymmetric synthesis of dihydropyrimidines. Adv. Synth. Catal., 2009, 351, 3057-3062.
[http://dx.doi.org/10.1002/adsc.200900597]
[94]
da Silva, D.L.; Fernandes, S.A.; Sabino, A.A.; Fatima, A. p-Sulfonic acid calixarenes as efficient and reusable organocatalysts for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/-thiones. Tetrahedron Lett., 2011, 52, 6328-6330.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.175]
[95]
Cervasio, R.J.; Ferero, J.S.B.; Munoz, J.A.H.; Jones, J.; da Silva, F.M. Biginelli reaction using propylene carbonate as green solvent: An elegant methodology for the synthesis of dihydropyrimidinones and dihydropyrimidinthiones. Curr. Org. Synth., 2017, 14, 715-720.
[http://dx.doi.org/10.2174/1570179414666161229162243]
[96]
Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J. Org. Chem., 2015, 80(14), 6959-6967.
[http://dx.doi.org/10.1021/acs.joc.5b00407] [PMID: 26066623]
[97]
a) Nagarajan, S.; Kandasamy, E. Reusable 1,2,4-Triazolium based Brønsted acidic room temperature ionic liquids as catalyst for Mannich Base reaction. Catal. Lett., 2014, 144, 1507-1514.
[http://dx.doi.org/10.1007/s10562-014-1312-7]
b) Nagarajan, S.; Shaikh, T.M.; Kandasamy, E. An ionic liquid catalyzed reusable protocol for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one under mild conditions. New J. Chem., 2015, 39, 9693-9699.
[http://dx.doi.org/10.1039/C5NJ01545F]
c) Nagarajan, S.; Shaikh, T.M.; Kandasamy, E. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction. J. Chem. Sci., 2015, 127, 1539-1545.
[http://dx.doi.org/10.1007/s12039-015-0919-6]
d) Kandasamy, E.; Nagarajan, S.; Shaikh, T.M. Knoevenagel reaction catalyzed by a reusable Bronsted acid based on 1-alkyl-1,2,4-triazolium tetrafluoroborate. Lett. Org. Chem., 2018, 15, 133-138.
[http://dx.doi.org/10.2174/1570178614666171017164516]

© 2024 Bentham Science Publishers | Privacy Policy