Research Article

A Mendelian Randomization Study on Infant Length and Type 2 Diabetes Mellitus Risk

Author(s): He Zhuang, Ying Zhang, Shuo Yang, Liang Cheng* and Shu-Lin Liu*

Volume 19, Issue 4, 2019

Page: [224 - 231] Pages: 8

DOI: 10.2174/1566523219666190925115535

Price: $65

Abstract

Objective: Infant length (IL) is a positively associated phenotype of type 2 diabetes mellitus (T2DM), but the causal relationship of which is still unclear. Here, we applied a Mendelian randomization (MR) study to explore the causal relationship between IL and T2DM, which has the potential to provide guidance for assessing T2DM activity and T2DM- prevention in young at-risk populations.

Materials and Methods: To classify the study, a two-sample MR, using genetic instrumental variables (IVs) to explore the causal effect was applied to test the influence of IL on the risk of T2DM. In this study, MR was carried out on GWAS data using 8 independent IL SNPs as IVs. The pooled odds ratio (OR) of these SNPs was calculated by the inverse-variance weighted method for the assessment of the risk the shorter IL brings to T2DM. Sensitivity validation was conducted to identify the effect of individual SNPs. MR-Egger regression was used to detect pleiotropic bias of IVs.

Results: The pooled odds ratio from the IVW method was 1.03 (95% CI 0.89-1.18, P = 0.0785), low intercept was -0.477, P = 0.252, and small fluctuation of ORs ranged from -0.062 ((0.966 - 1.03) / 1.03) to 0.05 ((1.081 - 1.03) / 1.03) in leave-one-out validation.

Conclusion: We validated that the shorter IL causes no additional risk to T2DM. The sensitivity analysis and the MR-Egger regression analysis also provided adequate evidence that the above result was not due to any heterogeneity or pleiotropic effect of IVs.

Keywords: Infant length, T2DM, mendelian randomization, causal effect, instrumental variables, MR-egger.

Graphical Abstract
[1]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[2]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol 2011; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[3]
Dhiraviam KN, Balasubramanian S, Jayavel S. Indole alkaloids as new leads for the design and development of novel DPP-IV inhibitors for the treatment of diabetes. Curr Bioinform 2018; 13: 157-69.
[http://dx.doi.org/10.2174/1574893611207040366]
[4]
Teoh H, Braga MF, Casanova A, et al. T2DM QUERI Investigators. Patient age, ethnicity, medical history, and risk factor profile, but not drug insurance coverage, predict successful attainment of glycemic targets: Time 2 Do More Quality Enhancement Research Initiative (T2DM QUERI). Diabetes Care 2010; 33(12): 2558-60.
[http://dx.doi.org/10.2337/dc10-0440] [PMID: 20823344]
[5]
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017; 11(2): 65-71.
[PMID: 28539866]
[6]
Cullmann M, Hilding A, Östenson CG. Alcohol consumption and risk of pre-diabetes and type 2 diabetes development in a Swedish population. Diabet Med 2012; 29(4): 441-52.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03450.x] [PMID: 21916972]
[7]
Manson JE, Ajani UA, Liu S, Nathan DM, Hennekens CH. A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians. Am J Med 2000; 109(7): 538-42.
[http://dx.doi.org/10.1016/S0002-9343(00)00568-4] [PMID: 11063954]
[8]
Bauman A, St George A. Diabetes: T2DM--will tertiary prevention solve the problem? Nat Rev Endocrinol 2013; 9(4): 190-2.
[http://dx.doi.org/10.1038/nrendo.2013.44] [PMID: 23438836]
[9]
Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting diabetes mellitus with machine learning techniques. Front Genet 2018; 9: 515.
[http://dx.doi.org/10.3389/fgene.2018.00515] [PMID: 30459809]
[10]
Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. BMJ 1993; 307(6918): 1519-24.
[http://dx.doi.org/10.1136/bmj.307.6918.1519] [PMID: 8274920]
[11]
Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Hertfordshire Study Group. Fetal programming of body composition: Relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 2005; 82(5): 980-7.
[http://dx.doi.org/10.1093/ajcn/82.5.980] [PMID: 16280428]
[12]
Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D. Growth in infancy and bone mass in later life. Ann Rheum Dis 1997; 56(1): 17-21.
[http://dx.doi.org/10.1136/ard.56.1.17] [PMID: 9059135]
[13]
Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1(8489): 1077-81.
[http://dx.doi.org/10.1016/S0140-6736(86)91340-1] [PMID: 2871345]
[14]
Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. 1992. Int J Epidemiol 2013; 42(5): 1215-22.
[http://dx.doi.org/10.1093/ije/dyt133] [PMID: 24159065]
[15]
Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303(6809): 1019-22.
[http://dx.doi.org/10.1136/bmj.303.6809.1019] [PMID: 1954451]
[16]
van der Valk RJ, Kreiner-Møller E, Kooijman MN, et al. A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 2015; 24(4): 1155-68.
[http://dx.doi.org/10.1093/hmg/ddu510] [PMID: 25281659]
[17]
Kim CH, Kim HK, Kim EH, Bae SJ, Park JY. Association between changes in body composition and risk of developing Type 2 diabetes in Koreans. Diabet Med 2014; 31(11): 1393-8.
[http://dx.doi.org/10.1111/dme.12527] [PMID: 24957933]
[18]
Gómez-Ambrosi J, Silva C, Galofré JC, et al. Body adiposity and type 2 diabetes: Increased risk with a high body fat percentage even having a normal BMI. Obesity (Silver Spring) 2011; 19(7): 1439-44.
[http://dx.doi.org/10.1038/oby.2011.36] [PMID: 21394093]
[19]
Springer F, Ballweg V, Schweizer R, et al. DISKUS Study Group. Changes in whole-body fat distribution, intrahepatic lipids, and insulin resistance of obese adolescents during a low-level lifestyle intervention. Eur J Pediatr 2015; 174(12): 1603-12.
[http://dx.doi.org/10.1007/s00431-015-2577-6] [PMID: 26074370]
[20]
Scott RA, Fall T, Pasko D, et al. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. Diabetes 2014; 63(12): 4378-87.
[http://dx.doi.org/10.2337/db14-0319] [PMID: 24947364]
[21]
Goedecke JH, Micklesfield LK. The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes. Med Sport Sci 2014; 60: 82-93.
[http://dx.doi.org/10.1159/000357338] [PMID: 25226803]
[22]
Noyce AJ, Kia DA, Hemani G. Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study 2017. 14: e1002314.
[23]
Zhao JV, Kwok MK, Schooling CM. Effect of glutamate and aspartate on ischemic heart disease, blood pressure, and diabetes: A Mendelian randomization study. Am J Clin Nutr 2019; 109(4): 1197-206.
[http://dx.doi.org/10.1093/ajcn/nqy362] [PMID: 30949673]
[24]
Kho PF, Glubb DM, Thompson DJ, Spurdle AB, O’Mara TA. Assessing the role of selenium in endometrial cancer risk: A Mendelian randomization study. Front Oncol 2019; 9: 182.
[http://dx.doi.org/10.3389/fonc.2019.00182] [PMID: 30972295]
[25]
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA 2017; 318(19): 1925-6.
[http://dx.doi.org/10.1001/jama.2017.17219] [PMID: 29164242]
[26]
Cheng L, Zhuang H, Yang S, Jiang H, Wang S, Zhang J. Exposing the causal effect of C-Reactive Protein on the risk of type 2 diabetes mellitus: A Mendelian randomization study. Front Genet 2018; 9: 657.
[http://dx.doi.org/10.3389/fgene.2018.00657] [PMID: 30619477]
[27]
Cheng L, Sun J, Xu W, Dong L, Hu Y, Zhou M. OAHG: An integrated resource for annotating human genes with multi-level ontologies. Sci Rep 2016; 6: 34820.
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]
[28]
Li P, Guo M, Wang C, Liu X, Zou Q. An overview of SNP interactions in genome-wide association studies. Brief Funct Genomics 2015; 14(2): 143-55.
[http://dx.doi.org/10.1093/bfgp/elu036] [PMID: 25241224]
[29]
Dehury B, Behera SK, Negi S. Overcoming the limitation of GWAS platforms using systems biology approach. Curr Bioinform 2017; 12: 156-70.
[http://dx.doi.org/10.2174/1574893611666160426170806]
[30]
Liu G, Xu Y, Jiang Y, Zhang L, Feng R, Jiang Q. PICALM rs3851179 variant confers susceptibility to alzheimer’s disease in chinese population. Mol Neurobiol 2017; 54(5): 3131-6.
[31]
Jiang Q, Jin S, Jiang Y, et al. Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol Neurobiol 2017; 54(1): 594-600.
[http://dx.doi.org/10.1007/s12035-015-9670-8] [PMID: 26746668]
[32]
Liu G, Jin S, Hu Y, Jiang Q. Disease status affects the association between rs4813620 and the expression of Alzheimer’s disease susceptibility gene TRIB3. Proc Natl Acad Sci USA 2018; 115(45): E10519-20.
[http://dx.doi.org/10.1073/pnas.1812975115] [PMID: 30355771]
[33]
Liu G, Wang T, Tian R, et al. Alzheimer’s disease risk variant rs2373115 regulates GAB2 and NARS2 expression in human brain tissues. J Mol Neurosci 2018; 66(1): 37-43.
[http://dx.doi.org/10.1007/s12031-018-1144-9] [PMID: 30088171]
[34]
Liu G, Zhao Y, Jin S, et al. Circulating vitamin E levels and Alzheimer’s disease: A Mendelian randomization study. Neurobiol Aging 2018; 72(189): e181-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.08.008]
[35]
Cheng L, Zhuang H, Ju H, et al. Exposing the causal effect of body mass index on the risk of type 2 diabetes mellitus: A Mendelian randomization study. Front Genet 2019; 10: 94.
[http://dx.doi.org/10.3389/fgene.2019.00094] [PMID: 30891058]
[36]
Guo F, Wang D, Wang L. Progressive approach for SNP calling and haplotype assembly using single molecular sequencing data. Bioinformatics 2018; 34(12): 2012-8.
[http://dx.doi.org/10.1093/bioinformatics/bty059] [PMID: 29474523]
[37]
Monaghan F, Corcos A. On the origins of the Mendelian laws. J Hered 1984; 75(1): 67-9.
[http://dx.doi.org/10.1093/oxfordjournals.jhered.a109868] [PMID: 6368675]
[38]
Hu Y, Zhao T, Zang T, Zhang Y, Cheng L. Identification of Alzheimer’s disease-related genes based on data integration method. Front Genet 2018; 9: 703.
[PMID: 30740125]
[39]
Baird SJ. Exploring linkage disequilibrium. Mol Ecol Resour 2015; 15(5): 1017-9.
[http://dx.doi.org/10.1111/1755-0998.12424] [PMID: 26261040]
[40]
Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44(9): 981-90.
[http://dx.doi.org/10.1038/ng.2383] [PMID: 22885922]
[41]
Boucher M. Imputation of missing variance data using non-linear mixed effects modelling to enable an inverse variance weighted meta-analysis of summary-level longitudinal data: A case study. Pharm Stat 2012; 11(4): 318-24.
[http://dx.doi.org/10.1002/pst.1515] [PMID: 22566382]
[42]
Lee CH, Cook S, Lee JS, Han B. Comparison of two meta-analysis methods: Inverse-Variance-Weighted average and weighted sum of Z-Scores. Genomics Inform 2016; 14(4): 173-80.
[http://dx.doi.org/10.5808/GI.2016.14.4.173] [PMID: 28154508]
[43]
Zhang S, Zhang D, Jiang Y, et al. CLU rs2279590 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian and Asian populations. J Neural Transm 2015; 1996(122): 433-9.
[http://dx.doi.org/10.1007/s00702-014-1260-9]
[44]
Zhao Q, Laukkanen JA, Li Q, Li G. Body mass index is associated with type 2 diabetes mellitus in Chinese elderly. Clin Interv Aging 2017; 12: 745-52.
[http://dx.doi.org/10.2147/CIA.S130014] [PMID: 28496312]
[45]
Tan JX, Li SH, Zhang ZM, et al. Identification of hormone binding proteins based on machine learning methods. Math Biosci Eng 2019; 16(4): 2466-80.
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[46]
Lv H, Zhang ZM, Li SH, Tan JX, Chen W, Lin H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief in Bioinform 2019.
[47]
Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: A sequence-based predictor for identifying 2′-O-Methylation sites in homo sapiens. J Comput Biol 2018; 25(11): 1266-77.
[48]
Hu Y, Zhao T, Zhang N, Zang T, Zhang J, Cheng L. Identifying diseases-related metabolites using random walk. BMC Bioinformatics 2018; 19(Suppl. 5): 116.
[http://dx.doi.org/10.1186/s12859-018-2098-1] [PMID: 29671398]
[49]
Zheng Q. rSalvador: An R package for the fluctuation experiment. G3 (Bethesda) 2017; 7(12): 3849-56.
[http://dx.doi.org/10.1534/g3.117.300120] [PMID: 29084818]
[50]
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512-25.
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[51]
Zhu XJ, Feng CQ, Lai HY, Chen W, Lin H. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl Base Syst 2019; 163: 787-93.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[52]
Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H. iRNAD: A computational tool for identifying D modification sites in RNA sequence. Bioinformatics 2019.pii: btz358
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[53]
Lai HY, Chen XX, Chen W, Tang H, Lin H. Sequence-based predictive modeling to identify cancerlectins. Oncotarget 2017; 8(17): 28169-75.
[http://dx.doi.org/10.18632/oncotarget.15963] [PMID: 28423655]
[54]
Reddy S, Amutha A, Rajalakshmi R, et al. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31(5): 804-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.02.017] [PMID: 28336215]
[55]
Schober E, Rami B, Grabert M, et al. DPV-Wiss Initiative of the German Working Group for Paediatric Diabetology and. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: Experience from a large multicentre database. Diabet Med 2009; 26(5): 466-73.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02720.x] [PMID: 19646184]
[56]
Wang T, Huang T, Li Y, et al. Low birthweight and risk of type 2 diabetes: A Mendelian randomisation study. Diabetologia 2016; 59(9): 1920-7.
[http://dx.doi.org/10.1007/s00125-016-4019-z] [PMID: 27333884]
[57]
Mook-Kanamori DO, van Beijsterveldt CE, Steegers EA, et al. Heritability estimates of body size in fetal life and early childhood. PLoS One 2012; 7(7)e39901
[http://dx.doi.org/10.1371/journal.pone.0039901] [PMID: 22848364]
[58]
Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467(7317): 832-8.
[http://dx.doi.org/10.1038/nature09410] [PMID: 20881960]
[59]
Feng YM. Gene therapy on the road. Curr Gene Ther 2019; 1: 6.
[http://dx.doi.org/10.2174/1566523219999190426144513]
[60]
Lu XX, Zhao SZ. Gene-based therapeutic tools in the treatment of Cornea Disease. Curr Gene Ther 2019; 19(1): 7-19.
[PMID: 30543166]
[61]
Cheng L, Hu Y. Human disease system biology. Curr Gene Ther 2018; 18(5): 255-6.
[http://dx.doi.org/10.2174/1566523218666181010101114]
[62]
Zhang J, Zhang Z, Chen Z, Deng L. Integrating multiple heterogeneous networks for novel LncRNA-Disease association inference. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 396-406.
[http://dx.doi.org/10.1109/TCBB.2017.2701379] [PMID: 28489543]
[63]
Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinformatics 2018; 19(1): 370.
[http://dx.doi.org/10.1186/s12859-018-2390-0] [PMID: 30309340]
[64]
Zhang J, Zou S, Deng L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk. BMC Med Genomics 2018; 11(Suppl. 5): 99.
[http://dx.doi.org/10.1186/s12920-018-0414-2] [PMID: 30453964]
[65]
Zhang Z, Zhang J, Fan C, Tang Y, Deng L. KATZLGO: Large-scale prediction of LncRNA functions by using the KATZ measure based on multiple networks. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 99: 1.
[http://dx.doi.org/10.1109/TCBB.2017.2704587] [PMID: 28534780]
[66]
Deng L, Wang J, Zhang J. Predicting gene ontology function of human MicroRNAs by integrating multiple networks. Front Genet 2019; 10: 3.
[http://dx.doi.org/10.3389/fgene.2019.00003] [PMID: 30761178]
[67]
Xiao Y, Zhang J, Deng L. Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks. Sci Rep 2017; 7(1): 3664.
[http://dx.doi.org/10.1038/s41598-017-03986-1] [PMID: 28623317]
[68]
Zhang X, Zou Q, Rodriguez-Paton A, Zeng X. Meta-Path methods for prioritizing candidate disease miRNAs. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(1): 283-91.
[http://dx.doi.org/10.1109/TCBB.2017.2776280] [PMID: 29990255]
[69]
Zeng X, Liu L, Lü L, Zou Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 2018; 34(14): 2425-32.
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[70]
Ding Y, Tang J, Guo F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing 2019; 325: 211-24.
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[71]
Ding Y, Tang J, Guo F. Identification of Drug-side effect association via Semi-supervised model and multiple kernel learning. IEEE J Biomed Health Inform 2018; 99: 1.
[http://dx.doi.org/10.1109/JBHI.2018.2883834] [PMID: 30507518]
[72]
Jiang L, Ding Y, Tang J, Guo F. MDA-SKF: Similarity kernel fusion for accurately discovering miRNA-Disease association. Front Genet 2018; 9: 618.
[http://dx.doi.org/10.3389/fgene.2018.00618] [PMID: 30619454]
[73]
Jiang L, Xiao Y, Ding Y, Tang J, Guo F. FKL-Spa-LapRLS: An accurate method for identifying human microRNA-disease association. BMC Genomics 2018; 19(Suppl. 10): 911.
[http://dx.doi.org/10.1186/s12864-018-5273-x] [PMID: 30598109]
[74]
Shen C, Jiang L, Ding Y, Tang J, Guo F. LPI-KTASLP: Prediction of lncRNA-Protein interaction by semi-supervised link learning with multivariate information. IEEE Access 2019; 7: 13486-96.
[http://dx.doi.org/10.1109/ACCESS.2019.2894225]
[75]
Liu G, Zhang Y, Wang L, et al. Alzheimer’s Disease rs11767557 variant regulates EPHA1 gene expression specifically in human whole blood. J Alzheimers Dis 2018; 61(3): 1077-88.
[http://dx.doi.org/10.3233/JAD-170468] [PMID: 29332039]
[76]
Liu G, Hu Y, Han Z, Jin S, Jiang Q. Genetic variant rs17185536 regulates SIM1 gene expression in human brain hypothalamus. Proc Natl Acad Sci USA 2019; 116(9): 3347-8.
[http://dx.doi.org/10.1073/pnas.1821550116] [PMID: 30755538]
[77]
Peng J, Zhu L, Wang Y, Chen J. Mining relationships among multiple entities in biological networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019. Epub ahead of print
[http://dx.doi.org/10.1109/TCBB.2019.2904965] [PMID: 30872239]
[78]
Zeng X, Ding N, Rodríguez-Patón A, Zou Q. Probability-based collaborative filtering model for predicting gene-disease associations. BMC Med Genomics 2017; 10(Suppl. 5): 76.
[http://dx.doi.org/10.1186/s12920-017-0313-y] [PMID: 29297351]
[79]
Cheng L, Qi C, Zhuang H, Fu T, Zhang X. gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res 2019.gkz843
[http://dx.doi.org/10.1093/nar/gkz843]
[80]
Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol 2019; 9: 112.
[http://dx.doi.org/10.3389/fcimb.2019.00112] [PMID: 31065547]
[81]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: A comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[82]
Liu Y, Zeng X, He Z, Zou Q. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(4): 905-15.
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[83]
Zhavoronkov A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol Pharm 2018; 15(10): 4311-31.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00930] [PMID: 30269508]
[84]
Pan Y, Wang Z, Zhan W, Deng L. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach. Bioinformatics 2018; 34(9): 1473-80.
[http://dx.doi.org/10.1093/bioinformatics/btx822] [PMID: 29281004]
[85]
Su R, Liu X, Wei L, Zou Q. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods 2019; 166: 91-102.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009] [PMID: 30772464]
[86]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2018; 35(9): 1469-77.
[PMID: 30247625]
[87]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[PMID: 30428009]
[88]
Peng J, Hui W, Li Q, et al. A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 2019.btz254
[http://dx.doi.org/10.1093/bioinformatics/btz254] [PMID: 30977780]
[89]
Peng J, Guan J, Shang X. Predicting Parkinson’s disease genes based on node2vec and autoencoder. Front Genet 2019; 10: 226.
[http://dx.doi.org/10.3389/fgene.2019.00226] [PMID: 31001311]
[90]
Zou Q, Li J, Hong Q, et al. Prediction of MicroRNA-Disease Associations based on social network analysis methods. BioMed Res Int 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/810514] [PMID: 26273645]
[91]
Lu Y, Qin B, Hu H, et al. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney. PeerJ 2016; 4e1884
[http://dx.doi.org/10.7717/peerj.1884] [PMID: 27069814]
[92]
Sun W, Han Y, Yang S, et al. The assessment of Interleukin-18 on the risk of coronary heart disease. Med Chem 2019. [Epub Ahead of print
[http://dx.doi.org/10.2174/1573406415666191004115128]
[93]
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2.0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2019; 47(D1): D140-4.
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[94]
Wei L, Wan S, Guo J, Wong KK. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif Intell Med 2017; 83: 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[95]
Cheng L, Yang H, Zhao H, et al. MetSigDis: A manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2019; 20(1): 203-9.
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[96]
Cheng L, Jiang Y, Ju H, et al. InfAcrOnt: Calculating cross-ontology term similarities using information flow by a random walk. BMC Genomics 2018; 19(Suppl. 1): 919.
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy