Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Evaluation of Anticancer Activities of Gallic Acid and Tartaric Acid Vectorized on Iron Oxide Nanoparticles

Author(s): Lina Saleh, Eman A. Ragab, Heba K. Abdelhakim, Sabrein H. Mohamed and Zainab Zakaria*

Volume 10, Issue 2, 2020

Page: [123 - 132] Pages: 10

DOI: 10.2174/2210303109666190903161313

Price: $65

Abstract

Background: Cancer is one of the leading causes of death. New tactics targeting the survival pathways that provide effective drugs are being developed.

Objective: Super paramagnetic nanoparticle serves as drug carrier for drug delivery system. Herein, Iron oxide-CMC-TA and Iron oxide-CMC-GA nanoparticles are synthesized for this target.

Methods: Iron oxide (Fe2O3) nanoparticles are synthesized, bound to carboxymethyl chitosan (CMC) which are then conjugated to tartaric acid (TA) or gallic acid (GA) to form Iron oxide-CMC-TA and Iron oxide-CMC-GA nanoparticles. Those nanoparticles were characterized and the cytotoxicity effect was evaluated when associated with/without bee venom to measure the synergistic effect on A549 and WI-38 cell lines. In addition, apoptotic genes expression in A549 was evaluated when treated with both nanoparticles.

Results: We showed that the cytotoxicity effect of TA and GA on A549 and WI-38 cell lines was increased when they immobilized on iron oxide-CMC nanoparticles and the effect was synergistically elevated when added to bee venom. The cytotoxic activity of these two nanoparticles was higher in A549 cancer cell line when compared with WI-38 normal cell line. Moreover, the expression of apoptotic genes was elevated.

Conclusion: Iron oxide-CMC-TA nanoparticle and Iron oxide-CMC-GA nanoparticle can selectively induce apoptosis in cancer cell lines more than in normal cell lines, which is an important aspect in cancer cell targeting process to minimize damage upon normal cells.

Keywords: Super paramagnetic nanoparticle, gallic acid, bee venom, tartaric acid, cytotoxicity, gene expression.

Graphical Abstract
[1]
Vanden Berghe, W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol. Res., 2012, 65(6), 565-576.
[http://dx.doi.org/10.1016/j.phrs.2012.03.007] [PMID: 22465217]
[2]
Gurunathan, S.; Kang, M.H.; Kim, J.H. Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells. Molecules, 2018, 23(8), 23.
[http://dx.doi.org/10.3390/molecules23082046] [PMID: 30111752]
[3]
Gupta, A.; Landis, R.F.; Rotello, V.M. Nanoparticle-Based Antimicrobials: Surface Functionality is Critical. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.7595.1] [PMID: 27006760]
[4]
Kalantari, H. Nanotoxicology. Jundishapur J. Nat. Pharm. Prod., 2013, 8(1), 1-2.
[http://dx.doi.org/10.17795/jjnpp-9982] [PMID: 24624178]
[5]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312(5777), 1168-1171.
[http://dx.doi.org/10.1126/science.1125949] [PMID: 16728630]
[6]
Kohler, N.; Sun, C.; Fichtenholtz, A.; Gunn, J.; Fang, C.; Zhang, M. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2006, 2(6), 785-792.
[http://dx.doi.org/10.1002/smll.200600009] [PMID: 17193123]
[7]
Sun, E.Y.; Josephson, L.; Kelly, K.A.; Weissleder, R. Development of Nanoparticle Libraries for Biosensing, Bioconjugate Chemistry, 17 2006, 109-113.
[8]
Sivaraj, R.; Rahman, P.K.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 255-258.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[9]
Oldoni, T.L.C.; Melo, P.S.; Massarioli, A.P.; Moreno, I.A.M.; Bezerra, R.M.N.; Rosalen, P.L.; da Silva, G.V.J.; Nascimento, A.M.; Alencar, S.M. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques. Food Chem., 2016, 192, 306-312.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.004] [PMID: 26304352]
[10]
Nikolic, K.M. Theoretical study of phenolic antioxidants properties in reaction with oxygen-centered radicals. J. Mol. Struct. THEOCHEM, 2006, 774, 95-105.
[http://dx.doi.org/10.1016/j.theochem.2006.07.017]
[11]
Ferk, F.; Chakraborty, A.; Simic, T.; Kundi, M.; Knasmüller, S. Antioxidant and free radical scavenging activities of sumac (Rhus coriaria) and identification of gallic acid as its active principle. BMC Pharmacol., 2007, 7, A71.
[http://dx.doi.org/10.1186/1471-2210-7-S2-A71]
[12]
Kocabey, N.; Yilmaztekin, M.; Hayaloglu, A.A. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan. J. Food Sci. Technol., 2016, 53(9), 3557-3565.
[http://dx.doi.org/10.1007/s13197-016-2335-4] [PMID: 27777462]
[13]
Lee, J-D.; Park, H-J.; Chae, Y.; Lim, S. An Overview of Bee Venom Acupuncture in the Treatment of Arthritis. Evid. Based Complement. Alternat. Med., 2005, 2(1), 79-84.
[http://dx.doi.org/10.1093/ecam/neh070] [PMID: 15841281]
[14]
Berman, B.M.; Swyers, J.P.; Ezzo, J. The evidence for acupuncture as a treatment for rheumatologic conditions. Rheum. Dis. Clin. North Am., 2000, 26(1), 103-115, ix-x.
[http://dx.doi.org/10.1016/S0889-857X(05)70124-1] [PMID: 10680198]
[15]
Orsolić, N.; Sver, L.; Terzić, S.; Tadić, Z.; Basić, I. Inhibitory effect of water-soluble derivative of propolis and its polyphenolic compounds on tumor growth and metastasizing ability: a possible mode of antitumor action. Nutr. Cancer, 2003, 47(2), 156-163.
[http://dx.doi.org/10.1207/s15327914nc4702_8] [PMID: 15087268]
[16]
Kim, Y.-H.; Yook, T.H.; Song, B.-Y.; Lee, D.-H. Clinical Report of Oriental Medicine Treatment with Bee Venom Therapy of Progressive muscle atrophy 1 Patient 2000.
[17]
Moon, D-O.; Park, S-Y.; Choi, Y.H.; Kim, N.D.; Lee, C.; Kim, G-Y. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon, 2008, 51(1), 112-120.
[http://dx.doi.org/10.1016/j.toxicon.2007.08.015] [PMID: 17936321]
[18]
Vento, R.; D’Alessandro, N.; Giuliano, M.; Lauricella, M.; Carabillò, M.; Tesoriere, G. Induction of apoptosis by arachidonic acid in human retinoblastoma Y79 cells: involvement of oxidative stress. Exp. Eye Res., 2000, 70(4), 503-517.
[http://dx.doi.org/10.1006/exer.1998.0810] [PMID: 10865999]
[19]
Sugimoto, T.; Matijević, E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J. Colloid Interface Sci., 1980, 74, 227-243.
[http://dx.doi.org/10.1016/0021-9797(80)90187-3]
[20]
Shi, Z.; Neoh, K.G.; Kang, E.T.; Shuter, B.; Wang, S-C.; Poh, C.; Wang, W. (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl. Mater. Interfaces, 2009, 1(2), 328-335.
[http://dx.doi.org/10.1021/am8000538] [PMID: 20353220]
[21]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
[http://dx.doi.org/10.1016/j.tet.2005.08.031]
[22]
Kov, #xe1, #x159, D., Mal, #xe1, A., Ml, #x10d, ochov, #xe1, J., M. Kalina, Fohlerov, #xe1, Z., Hlav, #xe1, #x10d, A. ek, #xed, Z. Farka, #x11b, Skl, #xe1, P. dal, Star, #x10d, Z. uk, Ji, #x159, #xed, R. k, Slab, #xfd, O., #x159, ej, Hub, #xe1, J. lek, #xed, Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging. J. Nanomater., 2017, 2017, 8.
[23]
Shin, J.; Lee, H-J.; Jung, D-B.; Jung, J.H.; Lee, H-J.; Lee, E-O.; Lee, S.G.; Shim, B.S.; Choi, S.H.; Ko, S.G.; Ahn, K.S.; Jeong, S-J.; Kim, S-H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One, 2011, 6(6)e21492
[http://dx.doi.org/10.1371/journal.pone.0021492] [PMID: 21731766]
[24]
Samarakoon, S.R.; Thabrew, I.; Galhena, P.B.; Tennekoon, K.H. Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti- hepatocarcinogenic effects. BMC Complement. Altern. Med., 2012, 12, 25.
[http://dx.doi.org/10.1186/1472-6882-12-25] [PMID: 22458551]
[25]
Porichi, O.; Nikolaidou, M.E.; Apostolaki, A.; Tserkezoglou, A.; Arnogiannaki, N.; Kassanos, D.; Margaritis, L.; Panotopoulou, E. BCL-2, BAX and P53 expression profiles in endometrial carcinoma as studied by real-time PCR and immunohistochemistry. Anticancer Res., 2009, 29(10), 3977-3982.
[PMID: 19846939]
[26]
Danaei, M.; Kalantari, M.; Raji, M.; Samareh Fekri, H.; Saber, R.; Asnani, G.P.; Mortazavi, S.M.; Mozafari, M.R.; Rasti, B.; Taheriazam, A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon, 2018, 4(12)e01088
[http://dx.doi.org/10.1016/j.heliyon.2018.e01088] [PMID: 30603716]
[27]
Gupta, A.K.; Curtis, A.S.G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25(15), 3029-3040.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.095] [PMID: 14967536]
[28]
Yang, S-C.; Chang, S-S.; Chen, C.Y-C. Identifying HER2 inhibitors from natural products database. PLoS One, 2011, 6(12)e28793
[http://dx.doi.org/10.1371/journal.pone.0028793] [PMID: 22174899]
[29]
Maurya, D.K.; Nandakumar, N.; Devasagayam, T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr., 2011, 48(1), 85-90.
[http://dx.doi.org/10.3164/jcbn.11-004FR] [PMID: 21297918]
[30]
Lall, K.R.; Syed, N.D.; Adhami, M.V.; Khan, I.M.; Mukhtar, H. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer, International Journal of Molecular Sciences, 16. 2015.
[31]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[32]
Ip, S-W.; Liao, S-S.; Lin, S-Y.; Lin, J-P.; Yang, J-S.; Lin, M-L.; Chen, G-W.; Lu, H-F.; Lin, M-W.; Han, S-M.; Chung, J-G. The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo, 2008, 22(2), 237-245.
[PMID: 18468409]
[33]
Zarrinnahad, H.; Mahmoodzadeh, A.; Hamidi, M.P.; Mahdavi, M.; Moradi, A.; Bagheri, K.P.; Shahbazzadeh, D. Apoptotic Effect of Melittin Purified from Iranian Honey Bee Venom on Human Cervical Cancer HeLa Cell Line. Int. J. Pept. Res. Ther, 2017.
[PMID: 30416405]
[34]
Chan, M.M.; Fong, D. Overcoming drug resistance by phytochemicals. In Drug Resistance in Cancer Cells; Metha, K., Bates, S.E., Siddik, Z.H., Eds.; Springer Science+Business Media, LLC: New York, NY, USA. 2009, pp. 315-342.
[http://dx.doi.org/10.1007/978-0-387-89445-4_14]
[35]
Gupta, A.K.; Curtis, A.S.G. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J. Mater. Sci. Mater. Med., 2004, 15(4), 493-496.
[http://dx.doi.org/10.1023/B:JMSM.0000021126.32934.20] [PMID: 15332623]
[36]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[37]
Quinto, C.A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale, 2015, 7(29), 12728-12736.
[http://dx.doi.org/10.1039/C5NR02718G] [PMID: 26154916]
[38]
Nehls, O.; Okech, T.; Hsieh, C.J.; Enzinger, T.; Sarbia, M.; Borchard, F.; Gruenagel, H.H.; Gaco, V.; Hass, H.G.; Arkenau, H.T.; Hartmann, J.T.; Porschen, R.; Gregor, M.; Klump, B. Studies on p53, BAX and Bcl-2 protein expression and microsatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX. Br. J. Cancer, 2007, 96(9), 1409-1418.
[http://dx.doi.org/10.1038/sj.bjc.6603728] [PMID: 17426704]
[39]
Cinel, L.; Polat, A.; Aydin, O.; Düşmez, D.; Eğilmez, R. Bcl-2, iNOS, p53 and PCNA expression in normal, disordered proliferative, hyperplastic and malignant endometrium. Pathol. Int., 2002, 52(5-6), 384-389.
[http://dx.doi.org/10.1046/j.1440-1827.2002.01358.x] [PMID: 12100521]
[40]
Hsu, C-L.; Lo, W-H.; Yen, G-C. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway. J. Agric. Food Chem., 2007, 55(18), 7359-7365.
[http://dx.doi.org/10.1021/jf071223c] [PMID: 17685632]
[41]
Faried, A.; Kurnia, D.; Faried, L.S.; Usman, N.; Miyazaki, T.; Kato, H.; Kuwano, H.; Faried, A.; Kurnia, D.; Faried, L.S.; Usman, N.; Miyazaki, T.; Kato, H. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol., 2007, 30(3), 605-613.
[http://dx.doi.org/10.3892/ijo.30.3.605] [PMID: 17273761]
[42]
Jang, D.M.; Song, H.S. Inhibitory Effects of Bee Venom on Growth of A549 Lung Cancer Cells via Induction of Death Receptors※. J Korean Acupunct Moxib Soc, 2013, 30, 57-70.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy