Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Determination of Phenolic Compounds in the Methanolic Extract of Pourouma guianensis Leaves by UPLC-DAD-MS

Author(s): Queitilane de S. Sales*, Marcelo da S. Mathias and Rodrigo R. de Oliveira

Volume 10, Issue 5, 2020

Page: [566 - 570] Pages: 5

DOI: 10.2174/2210315509666190822100951

Price: $65

Abstract

Background: The presence of phenolic compounds is common in Urticaceae. However, only one report of the isolation of an apigenin in the Pourouma genus is available. Pourouma guianensis occurs widely throughout Brazil, mainly in the Southeastern region, and is popularly known as “pitinga”. The chemical profile of P. guianensis is marked by the presence of steroids and triterpenes.

Objective: This study carried out the characterization of phenolic substances using UPLC-DAD-MS separation, in order to increase the chemical knowledge on the Pourouma genus.

Methods: The extract was analyzed by UPLC-DAD-MS using a C-18 column, DAD detector at 190- 400nm and ESI-Q-TOF mass spectrometer. The solvent system consisted of water with 0.1% formic acid (phase A) and acetonitrile with 0.1% formic acid (phase B).

Results: The extract analysis identified the presence of ten compounds: two aryl propanoids (5-Ocaffeoylquinic acid and 3-O-feruloylquinic acid) and eight glycosylated flavones derived from apigenin, luteonin, and chrysoeryol (vicenin 2, saponarin, orientin, isoorientin, isoschaftoside, schaftoside, isovitexin, and isoscoparin).

Conclusion: The developed UPLC-DAD method was proven to be an efficient tool for the separation of phenolic mixtures and the UPLC-DAD-MS analysis enabled the identification of these compounds, reported for the first time in Pourouma genus.

Keywords: Flavonoids, phenolic compounds, Pourouma guianensis, UPLC-DAD-MS, steroids, triterpenes.

Graphical Abstract
[1]
Romaniuc-Neto, S.; Gaglioti, A.L. Urticaceae in Lista de Espécies da Flora do Brasil, 2015.http://floradobrasil.jbrj.gov.br/ jabot/ floradobrasil/FB15071
[2]
Treiber, E.L.; Gaglioti, A.L.; Romaniuc-Neto, S.; Madriñán, S.; Weiblen, G.D. Phylogeny of the Cecropieae (Urticaceae) and the evolution of an ant-plant mutualism. Syst. Bot., 2016, 41, 1-11.
[http://dx.doi.org/10.1600/036364416X690633]
[3]
Gaglioti, A.L. Pourouma in Flora do Brasil 2020 em construção, 2020.http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB15071
[4]
Gaglioti, A.L.; Romaniuc-Neto, D. Urticaceae. Flora fanerogâmica do Estado de São Paulo; Wanderley, M.G.L.; Martins, S.E.; Romanini, R.P.; Melhem, T.S.; Shepherd, G.J.; Giulietii, A.M.; Pirani, J.R.; Kirizawa, M.; Melo, M.M.R.F.; Cordeiro, I.; Kinoshita, L.S., Eds; Instituto de Botânica: São Paulo, Brazil,, 2012, 7, pp. 331-362.
[5]
Berg, C.C.; Akkermans, R.W.A.P.; Heusden, E.C.H. Flora Neotropica. Cecropiaceae: Coussapoa and Pourouma, with an introduction to the family; The New York Botanical Garden: New York, 1990, p. 208.
[6]
Lorenzi, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum de estudos da Flora,, 2009, pp. 384, .
[7]
Gaglioti, A.L.; Carvalho, L.T.; Margalho, L.; Martins-da-Silva, R.C.V.; Gomes, J.I.; Costa, C.C. Conhecendo espécies de plantas da Amazônia: Mapati (Pourouma guianensis Aubl. Urticaceae), Embrapa Amazônia Oriental-Comunicado Técnico; (INFOTECAE): Belém, PA, 2013, pp. 1-4.
[8]
Torres-Santos, E.C.; Lopes, D.; Oliveira, R.R.; Carauta, J.P.P.; Falcão, C.A.B.; Kaplan, M.A.C.; Rossi-Bergmann, B. Antileishmanial activity of isolated triterpnoids from Pourouma guianensis. Phytomedicine, 2015, 11(2-3), 114-120.
[9]
Lopes. D. Estudo Químico e Farmacológico de Moráceas da Flora Brasileira, Tese (Doutorado em Ciências/Química de produtos naturais), Rio de Janeiro – RJ, Universidade Federal do Rio de Janeiro, 1997, pp. 252
[10]
da Silva Mathias, M.; Rodrigues de Oliveira, R. Differentiation of the phenolic chemical profiles of Cecropia pachystachya and Cecropia hololeuca. Phytochem. Anal., 2019, 30(1), 73-82.
[http://dx.doi.org/10.1002/pca.2791 ] [PMID: 30144200]
[11]
Mocan, A.; Schafberg, M.; Crisan, G.; Rohn, S. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall anti-oxidant activity and comparison with traditional antioxidant assays. J. Funct. Foods, 2016, 24, 579-594.
[http://dx.doi.org/10.1016/j.jff.2016.05.007]
[12]
Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: Application to seeds of quince (Cydonia oblonga). Phytochem. Anal., 2003, 14(6), 352-359.
[http://dx.doi.org/10.1002/pca.727 ] [PMID: 14667061]
[13]
Zhang, M.; Duan, C.; Zang, Y.; Huang, Z.; Liu, G. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chem., 2011, 129, 1530-1536.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.136]
[14]
Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I. Fer-nández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal., 2015, 26(5), 320-330.
[http://dx.doi.org/10.1002/pca.2566 ] [PMID: 25982347]
[15]
Waridel, P.; Wolfender, J.L.; Ndjoko, K.; Hobby, K.R.; Major, H.J.; Hostettmann, K. Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. J. Chromatogr. A, 2001, 926(1), 29-41.
[http://dx.doi.org/10.1016/S0021-9673(01)00806-8 ] [PMID: 11554416]
[16]
Qiao, X.; Li, R.; Song, W.; Miao, W.J.; Liu, J.; Chen, H.B.; Guo, D.A.; Ye, M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J. Chromatogr. A, 2016, 1441, 83-95.
[http://dx.doi.org/10.1016/j.chroma.2016.02.079 ] [PMID: 26952367]
[17]
Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; Naggar, E.M.B.E.; El-Shabrawy, A.E.R.O.; El-Hawary, S.S. HPLC-DADMS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn., 2015, 25, 134-141.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[18]
Deng, X.; Gao, G.; Zheng, S.; Li, F. Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. J. Pharm. Biomed. Anal., 2008, 48(3), 562-567.
[http://dx.doi.org/10.1016/j.jpba.2008.05.020 ] [PMID: 18585883]
[19]
Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom., 2015, 50(3), 513-532.
[http://dx.doi.org/10.1002/jms.3557 ] [PMID: 25800187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy