Review Article

Advances in Current Diabetes Proteomics: From the Perspectives of Label- free Quantification and Biomarker Selection

Author(s): Jianbo Fu, Yongchao Luo, Minjie Mou, Hongning Zhang, Jing Tang, Yunxia Wang and Feng Zhu*

Volume 21, Issue 1, 2020

Page: [34 - 54] Pages: 21

DOI: 10.2174/1389450120666190821160207

Price: $65

Abstract

Background: Due to its prevalence and negative impacts on both the economy and society, the diabetes mellitus (DM) has emerged as a worldwide concern. In light of this, the label-free quantification (LFQ) proteomics and diabetic marker selection methods have been applied to elucidate the underlying mechanisms associated with insulin resistance, explore novel protein biomarkers, and discover innovative therapeutic protein targets.

Objective: The purpose of this manuscript is to review and analyze the recent computational advances and development of label-free quantification and diabetic marker selection in diabetes proteomics.

Methods: Web of Science database, PubMed database and Google Scholar were utilized for searching label-free quantification, computational advances, feature selection and diabetes proteomics.

Results: In this study, we systematically review the computational advances of label-free quantification and diabetic marker selection methods which were applied to get the understanding of DM pathological mechanisms. Firstly, different popular quantification measurements and proteomic quantification software tools which have been applied to the diabetes studies are comprehensively discussed. Secondly, a number of popular manipulation methods including transformation, pretreatment (centering, scaling, and normalization), missing value imputation methods and a variety of popular feature selection techniques applied to diabetes proteomic data are overviewed with objective evaluation on their advantages and disadvantages. Finally, the guidelines for the efficient use of the computationbased LFQ technology and feature selection methods in diabetes proteomics are proposed.

Conclusion: In summary, this review provides guidelines for researchers who will engage in proteomics biomarker discovery and by properly applying these proteomic computational advances, more reliable therapeutic targets will be found in the field of diabetes mellitus.

Keywords: Label free quantification, diabetes proteomics, computation, target discovery, antidiabetic drug, mass spectrometry.

Graphical Abstract
[1]
Miller BR, Nguyen H, Hu CJ, Lin C, Nguyen QT. New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am Health Drug Benefits 2014; 7(8): 452-63.
[PMID: 25558307]
[2]
Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ, Ezzati M. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol 2018; 6(2): 95-104.
[http://dx.doi.org/10.1016/S2213-8587(17)30366-2] [PMID: 29195904]
[3]
Kaur P, Mittal A, Nayak SK, Vyas M, Mishra V, Khatik GL. Current strategies and drug targets in the management of type 2 diabetes mellitus. Curr Drug Targets 2018; 19(15): 1738-66.
[http://dx.doi.org/10.2174/1389450119666180727142902] [PMID: 30051787]
[4]
Gurudeeban S, Satyavani K, Ramanathan T, Balasubramanian T. Antidiabetic effect of a black mangrove species Aegiceras corniculatum in alloxan-induced diabetic rats. J Adv Pharm Technol Res 2012; 3(1): 52-6.
[PMID: 22470894]
[5]
Selvaraj G, Kaliamurthi S, Thirugnasambandan R. Effect of Glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Phytomedicine 2016; 23(6): 632-40.
[http://dx.doi.org/10.1016/j.phymed.2016.03.004] [PMID: 27161404]
[6]
Mullard A. 2018 FDA drug approvals. Nat Rev Drug Discov 2019; 18(2): 85-9.
[http://dx.doi.org/10.1038/d41573-019-00014-x] [PMID: 30710142]
[7]
Grolmusz VI. Identifying diabetes-related important protein targets with few interacting partners with the PageRank algorithm. R Soc Open Sci 2015; 2(4)140252
[http://dx.doi.org/10.1098/rsos.140252] [PMID: 26064627]
[8]
Li YH, Yu CY, Li XX, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 2018; 46(D1): D1121-7.
[PMID: 29140520]
[9]
Wei DQ, Selvaraj G, Kaushik AC. Computational perspective on the current state of the methods and new challenges in cancer drug discovery. Curr Pharm Des 2018; 24(32): 3725-6.
[http://dx.doi.org/10.2174/138161282432190109105339] [PMID: 30675829]
[10]
Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 2016; 44(D1): D1069-74.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[11]
Nagaraj NS, Singh OV, Merchant NB. Proteomics: a strategy to understand the novel targets in protein misfolding and cancer therapy. Expert Rev Proteomics 2010; 7(4): 613-23.
[http://dx.doi.org/10.1586/epr.10.70] [PMID: 20653514]
[12]
Zhu F, Li XX, Yang SY, Chen YZ. Clinical success of drug targets prospectively predicted by in silico study. Trends Pharmacol Sci 2018; 39(3): 229-31.
[http://dx.doi.org/10.1016/j.tips.2017.12.002] [PMID: 29295742]
[13]
Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses 2019; 11(1)E63
[http://dx.doi.org/10.3390/v11010063] [PMID: 30650527]
[14]
López-Villar E, Martos-Moreno GA, Chowen JA, Okada S, Kopchick JJ, Argente J. A proteomic approach to obesity and type 2 diabetes. J Cell Mol Med 2015; 19(7): 1455-70.
[http://dx.doi.org/10.1111/jcmm.12600] [PMID: 25960181]
[15]
Jayabalan N, Lai A, Nair S, et al. Quantitative proteomics by SWATH-MS suggest an association between circulating exosomes and maternal metabolic changes in gestational diabetes mellitus. Proteomics 2019; 19(1-2)e1800164
[PMID: 30536821]
[16]
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133-48.
[http://dx.doi.org/10.1038/nrendo.2016.162] [PMID: 27739515]
[17]
Tuerxunyiming M, Xian F, Zi J, et al. Quantitative evaluation of serum proteins uncovers a protein signature related to maturity-onset diabetes of the young (MODY). J Proteome Res 2018; 17(1): 670-9.
[http://dx.doi.org/10.1021/acs.jproteome.7b00727] [PMID: 29182332]
[18]
Peters KE, Davis WA, Ito J, et al. Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the fremantle diabetes study phase II. Diabetes Care 2017; 40(11): 1548-55.
[http://dx.doi.org/10.2337/dc17-0911] [PMID: 28851702]
[19]
Zhang Q, Fillmore TL, Schepmoes AA, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 2013; 210(1): 191-203.
[http://dx.doi.org/10.1084/jem.20111843] [PMID: 23277452]
[20]
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic impact of tissue inhibitor of metalloproteinase-1 in non-small cell lung cancer: systematic review and meta-analysis. Curr Med Chem 2018.
[http://dx.doi.org/10.2174/0929867325666180904114455] [PMID: 30182835]
[21]
Maris M, Ferreira GB, D’Hertog W, et al. High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach. J Proteome Res 2010; 9(12): 6274-87.
[http://dx.doi.org/10.1021/pr100557w] [PMID: 20942503]
[22]
Singh S, Singh DB, Singh A, et al. An approach for identification of novel drug targets in streptococcus pyogenes SF370 through pathway analysis. Interdiscip Sci 2016; 8(4): 388-94.
[http://dx.doi.org/10.1007/s12539-015-0139-2] [PMID: 26750924]
[23]
Rondeau P, Navarra G, Militello V, Bourdon E. On the aggregation of albumin: influences of the protein glycation. Protein Aggregation 2011; pp. 139-59.
[24]
Toyokuni S, Yamada S, Kashima M, et al. Serum 4-hydroxy-2-nonenal-modified albumin is elevated in patients with type 2 diabetes mellitus. Antioxid Redox Signal 2000; 2(4): 681-5.
[http://dx.doi.org/10.1089/ars.2000.2.4-681] [PMID: 11213473]
[25]
Bhat S, Jagadeeshaprasad MG, Venkatasubramani V, Kulkarni MJ. Abundance matters: role of albumin in diabetes, a proteomics perspective. Expert Rev Proteomics 2017; 14(8): 677-89.
[http://dx.doi.org/10.1080/14789450.2017.1352473] [PMID: 28689445]
[26]
Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J Protein Chem 1995; 14(5): 359-72.
[http://dx.doi.org/10.1007/BF01886793] [PMID: 8590604]
[27]
Arif B, Ashraf JM, Moinuddin D, Ahmad J, Arif Z, Alam K. Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus. Arch Biochem Biophys 2012; 522(1): 17-25.
[http://dx.doi.org/10.1016/j.abb.2012.04.005] [PMID: 22516656]
[28]
Cohen MP, Sharma K, Jin Y, et al. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest 1995; 95(5): 2338-45.
[http://dx.doi.org/10.1172/JCI117926] [PMID: 7738197]
[29]
Lapolla A, Gerhardinger C, Baldo L, et al. A study on in vitro glycation processes by matrix-assisted laser desorption ionization mass spectrometry. Biochim Biophys Acta 1993; 1225(1): 33-8.
[http://dx.doi.org/10.1016/0925-4439(93)90118-K] [PMID: 8241287]
[30]
Lapolla A, Fedele D, Reitano R, et al. Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. J Am Soc Mass Spectrom 2004; 15(4): 496-509.
[http://dx.doi.org/10.1016/j.jasms.2003.11.014] [PMID: 15047055]
[31]
Stefanowicz P, Kijewska M, Kluczyk A, Szewczuk Z. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling. Anal Biochem 2010; 400(2): 237-43.
[http://dx.doi.org/10.1016/j.ab.2010.02.011] [PMID: 20156417]
[32]
Bhonsle HS, Korwar AM, Kote SS, et al. Low plasma albumin levels are associated with increased plasma protein glycation and HbA1c in diabetes. J Proteome Res 2012; 11(2): 1391-6.
[http://dx.doi.org/10.1021/pr201030m] [PMID: 22181049]
[33]
Korwar AM, Vannuruswamy G, Jagadeeshaprasad MG, et al. Development of diagnostic fragment ion library for glycated peptides of human serum albumin: targeted quantification in prediabetic, diabetic, and microalbuminuria plasma by parallel reaction monitoring, SWATH, and MSE. Mol Cell Proteomics 2015; 14(8): 2150-9.
[http://dx.doi.org/10.1074/mcp.M115.050518] [PMID: 26023067]
[34]
Soboleva A, Modzel M, Didio A, et al. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. Anal Methods 2017; 9: 409-18.
[http://dx.doi.org/10.1039/C6AY02483A]
[35]
Selvin E, Rawlings AM, Grams M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol 2014; 2(4): 279-88.
[http://dx.doi.org/10.1016/S2213-8587(13)70199-2] [PMID: 24703046]
[36]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[37]
Tang W, Shi YQ, Zou JJ, et al. Serum biomarker of diabetic peripheral neuropathy indentified by differential proteomics. Front Biosci 2011; 16: 2671-81.
[http://dx.doi.org/10.2741/3879] [PMID: 21622202]
[38]
Loukovaara S, Nurkkala H, Tamene F, et al. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Proteome Res 2015; 14(12): 5131-43.
[http://dx.doi.org/10.1021/acs.jproteome.5b00900] [PMID: 26490944]
[39]
Trinh VM, Le VD, Nguyen DV. [The anatomical basis and sources of error of selective and supraselective gastric vagotomies (author’s transl)] J Chir (Paris) 1981; 118(12): 725-38.
[PMID: 7320100]
[40]
Papale M, Di Paolo S, Magistroni R, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care 2010; 33(11): 2409-15.
[http://dx.doi.org/10.2337/dc10-0345] [PMID: 20671095]
[41]
Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017; 18(1): 105-24.
[http://dx.doi.org/10.1093/bib/bbv118] [PMID: 26876889]
[42]
Li YH, Li XX, Hong JJ, et al. Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bby130] [PMID: 30689717]
[43]
Kaliamurthi S, Demir-Korkmaz A, Selvaraj G, et al. Viewing the emphasis on state-of-the-art magnetic nanoparticles: synthesis, physical oroperties, and applications in cancer theranostics. Curr Pharm Des 2019.
[http://dx.doi.org/10.2174/1381612825666190523105004] [PMID: 31119998]
[44]
Shao S, Guo T, Aebersold R. Mass spectrometry-based proteomic quest for diabetes biomarkers. Biochim Biophys Acta 2015; 1854(6): 519-27.
[http://dx.doi.org/10.1016/j.bbapap.2014.12.012] [PMID: 25556002]
[45]
Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform 2017; 18(3): 467-78.
[PMID: 27016393]
[46]
Ma W, Zhang L, Zeng P, et al. An analysis of human microbe-disease associations. Brief Bioinform 2017; 18(1): 85-97.
[http://dx.doi.org/10.1093/bib/bbw005] [PMID: 26883326]
[47]
Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform 2017; 18(5): 820-9.
[PMID: 27444372]
[48]
Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief Bioinform 2017; 18(5): 870-85.
[PMID: 27402792]
[49]
Kaliamurthi S, Selvaraj G, Junaid M, Khan A, Gu K, Wei DQ. Cancer immunoinformatics: a promising era in the development of peptide vaccines for human papillomavirus-induced cervical cancer. Curr Pharm Des 2018; 24(32): 3791-817.
[http://dx.doi.org/10.2174/1381612824666181106094133] [PMID: 30398106]
[50]
Selvaraj G, Kaliamurthi S, Thirungnasambandam R, Vivekanandan L, Balasubramanian T. Anti-nociceptive effect in mice of thillai flavonoid rutin. Biomed Environ Sci 2014; 27(4): 295-9.
[PMID: 24758758]
[51]
Han ZJ, Xue WW, Tao L, Zhu F. Identification of novel immune-relevant drug target genes for Alzheimer’s Disease by combining ontology inference with network analysis. CNS Neurosci Ther 2018; 24(12): 1253-63.
[http://dx.doi.org/10.1111/cns.13051] [PMID: 30106219]
[52]
Li XX, Yin J, Tang J, et al. Determining the balance between drug efficacy and safety by the network and biological system profile of its therapeutic target. Front Pharmacol 2018; 9: 1245.
[http://dx.doi.org/10.3389/fphar.2018.01245] [PMID: 30429792]
[53]
Xue W, Wang P, Tu G, et al. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys Chem Chem Phys 2018; 20(9): 6606-16.
[http://dx.doi.org/10.1039/C7CP07869B] [PMID: 29451287]
[54]
Zheng G, Yang F, Fu T, et al. Computational characterization of the selective inhibition of human norepinephrine and serotonin transporters by an escitalopram scaffold. Phys Chem Chem Phys 2018; 20(46): 29513-27.
[http://dx.doi.org/10.1039/C8CP06232C] [PMID: 30457616]
[55]
Zhang Y, Ying JB, Hong JJ, et al. How does chirality determine the selective inhibition of histone deacetylase 6? A lesson from trichostatin A enantiomers based on molecular dynamics. ACS Chem Neurosci 2019; 10(5): 2467-80.
[http://dx.doi.org/10.1021/acschemneuro.8b00729] [PMID: 30784262]
[56]
Wang P, Zhang X, Fu T, et al. Differentiating physicochemical properties between addictive and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem Neurosci 2017; 8(6): 1416-28.
[http://dx.doi.org/10.1021/acschemneuro.7b00173] [PMID: 28557437]
[57]
Wang P, Fu T, Zhang X, et al. Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim Biophys Acta, Gen Subj 2017; 1861(11 Pt A): 2766-77.
[http://dx.doi.org/10.1016/j.bbagen.2017.07.022] [PMID: 28757337]
[58]
Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010.2010840518
[http://dx.doi.org/10.1155/2010/840518] [PMID: 19911078]
[59]
Cretu D, Prassas I, Saraon P, et al. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics 2014; 11(1): 27.
[http://dx.doi.org/10.1186/1559-0275-11-27] [PMID: 25097465]
[60]
Navarro P, Kuharev J, Gillet LC, et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotechnol 2016; 34(11): 1130-6.
[http://dx.doi.org/10.1038/nbt.3685] [PMID: 27701404]
[61]
Fu J, Tang J, Wang Y, et al. Discovery of the consistently well-performed analysis chain for SWATH-MS based pharmacoproteomic quantification. Front Pharmacol 2018; 9: 681.
[http://dx.doi.org/10.3389/fphar.2018.00681] [PMID: 29997509]
[62]
Yang Y, Gu Y, Wan B, Ren X, Guo LH. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation. Biosens Bioelectron 2017; 95: 94-9.
[http://dx.doi.org/10.1016/j.bios.2017.04.009] [PMID: 28427012]
[63]
Zhang M, Xu W, Deng Y. A new strategy for early diagnosis of type 2 diabetes by standard-free, label-free LC-MS/MS quantification of glycated peptides. Diabetes 2013; 62(11): 3936-42.
[http://dx.doi.org/10.2337/db13-0347] [PMID: 23894188]
[64]
Geetha T, Langlais P, Luo M, et al. Label-free proteomic identification of endogenous, insulin-stimulated interaction partners of insulin receptor substrate-1. J Am Soc Mass Spectrom 2011; 22(3): 457-66.
[http://dx.doi.org/10.1007/s13361-010-0051-2] [PMID: 21472564]
[65]
do Nascimento de Oliveira V, Lima-Neto ABM, van Tilburg MF, et al. Proteomic analysis to identify candidate biomarkers associated with type 1 diabetes. Diabetes Metab Syndr Obes 2018; 11: 289-301.
[http://dx.doi.org/10.2147/DMSO.S162008] [PMID: 29942143]
[66]
Moulder R, Bhosale SD, Erkkilä T, et al. Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 2015; 64(6): 2265-78.
[http://dx.doi.org/10.2337/db14-0983] [PMID: 25616278]
[67]
Ma Y, Gao J, Yin J, et al. Identification of a novel function of adipocyte plasma membrane-associated protein (APMAP) in gestational diabetes mellitus by proteomic analysis of omental adipose tissue. J Proteome Res 2016; 15(2): 628-37.
[http://dx.doi.org/10.1021/acs.jproteome.5b01030] [PMID: 26767403]
[68]
Sandin M, Teleman J, Malmström J, Levander F. Data processing methods and quality control strategies for label-free LC-MS protein quantification. Biochim Biophys Acta 2014; 1844(1 Pt A): 29-41.
[http://dx.doi.org/10.1016/j.bbapap.2013.03.026] [PMID: 23567904]
[69]
Neilson KA, Ali NA, Muralidharan S, et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 2011; 11(4): 535-53.
[http://dx.doi.org/10.1002/pmic.201000553] [PMID: 21243637]
[70]
Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 2011; 286(29): 25443-9.
[http://dx.doi.org/10.1074/jbc.R110.199703] [PMID: 21632532]
[71]
Tang J, Fu J, Wang Y, et al. Simultaneous improvement in the precision, accuracy and robustness of label-free proteome quantification by optimizing data manipulation chains. Mol Cell Proteomics 2019; 18(8): 1683-99.
[http://dx.doi.org/10.1074/mcp.RA118.001169] [PMID: 31097671]
[72]
Lyutvinskiy Y, Yang H, Rutishauser D, Zubarev RA. In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Mol Cell Proteomics 2013; 12(8): 2324-31.
[http://dx.doi.org/10.1074/mcp.O112.023804] [PMID: 23589346]
[73]
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 2014; 13(9): 2513-26.
[http://dx.doi.org/10.1074/mcp.M113.031591] [PMID: 24942700]
[74]
Barschke P, Oeckl P, Steinacker P, Ludolph A, Otto M. Proteomic studies in the discovery of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 2017; 14(9): 769-77.
[http://dx.doi.org/10.1080/14789450.2017.1365602] [PMID: 28799854]
[75]
Hong JJ, Luo YC, Zhang Y, et al. Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bbz081]
[76]
Tang J, Fu J, Wang Y, et al. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bby127] [PMID: 30649171]
[77]
Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinform 2017; 18(3): 530-6.
[PMID: 27013646]
[78]
Kuharev J, Navarro P, Distler U, Jahn O, Tenzer S. In-depth evaluation of software tools for data-independent acquisition based label-free quantification. Proteomics 2015; 15(18): 3140-51.
[http://dx.doi.org/10.1002/pmic.201400396] [PMID: 25545627]
[79]
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural ariability of protein abundance. J Proteome Res 2017; 16(4): 1410-24.
[http://dx.doi.org/10.1021/acs.jproteome.6b00645] [PMID: 28217993]
[80]
Bubis JA, Levitsky LI, Ivanov MV, Tarasova IA, Gorshkov MV. Comparative evaluation of label-free quantification methods for shotgun proteomics. Rapid Commun Mass Spectrom 2017; 31(7): 606-12.
[http://dx.doi.org/10.1002/rcm.7829] [PMID: 28097710]
[81]
Ning K, Fermin D, Nesvizhskii AI. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J Proteome Res 2012; 11(4): 2261-71.
[http://dx.doi.org/10.1021/pr201052x] [PMID: 22329341]
[82]
Chawade A, Sandin M, Teleman J, Malmström J, Levander F. Data processing has major impact on the outcome of quantitative label-free LC-MS analysis. J Proteome Res 2015; 14(2): 676-87.
[http://dx.doi.org/10.1021/pr500665j] [PMID: 25407311]
[83]
Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Brief Bioinform 2017; 18(2): 279-90.
[PMID: 26979602]
[84]
Goh WW, Wong L. Evaluating feature-selection stability in next-generation proteomics. J Bioinform Comput Biol 2016; 14(5)1650029
[http://dx.doi.org/10.1142/S0219720016500293] [PMID: 27640811]
[85]
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 2015; 43(W1)W251-7
[http://dx.doi.org/10.1093/nar/gkv380] [PMID: 25897128]
[86]
Hoekman B, Breitling R, Suits F, Bischoff R, Horvatovich P. msCompare: a framework for quantitative analysis of label-free LC-MS data for comparative candidate biomarker studies. Mol Cell Proteomics 2012; 11(6)015974
[http://dx.doi.org/10.1074/mcp.M111.015974] [PMID: 22318370]
[87]
Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Pidetcha P, Prachayasittikul V. Identification of metabolic syndrome using decision tree analysis. Diabetes Res Clin Pract 2010; 90(1): e15-8.
[http://dx.doi.org/10.1016/j.diabres.2010.06.009] [PMID: 20619912]
[88]
Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Quantitative population-health relationship (QPHR) for assessing metabolic syndrome. EXCLI J 2013; 12: 569-83.
[PMID: 26622213]
[89]
Worachartcheewan A, Nantasenamat C, Prasertsrithong P, et al. Machine learning approaches for discerning intercorrelation of hematological parameters and glucose level for identification of diabetes mellitus. EXCLI J 2013; 12: 885-93.
[PMID: 27092034]
[90]
Worachartcheewan A, Shoombuatong W, Pidetcha P, Nopnithipat W, Prachayasittikul V, Nantasenamat C. Predicting metabolic syndrome using the random forest method. ScientificWorldJournal 2015.2015581501
[http://dx.doi.org/10.1155/2015/581501] [PMID: 26290899]
[91]
Bagherzadeh-Khiabani F, Ramezankhani A, Azizi F, Hadaegh F, Steyerberg EW, Khalili D. A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J Clin Epidemiol 2016; 71: 76-85.
[http://dx.doi.org/10.1016/j.jclinepi.2015.10.002] [PMID: 26475568]
[92]
Georga EI, Protopappas VC, Polyzos D, Fotiadis DI. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 2015; 53(12): 1305-18.
[http://dx.doi.org/10.1007/s11517-015-1263-1] [PMID: 25773366]
[93]
Spratt HM, Ju H. Statistical approaches to candidate biomarker panel selection. Adv Exp Med Biol 2016; 919: 463-92.
[http://dx.doi.org/10.1007/978-3-319-41448-5_22] [PMID: 27975231]
[94]
Liu Q, Sung AH, Qiao M, et al. Comparison of feature selection and classification for MALDI-MS data. BMC Genomics 2009; 10(Suppl. 1): S3.
[http://dx.doi.org/10.1186/1471-2164-10-S1-S3] [PMID: 19594880]
[95]
Christin C, Hoefsloot HC, Smilde AK, et al. A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol Cell Proteomics 2013; 12(1): 263-76.
[http://dx.doi.org/10.1074/mcp.M112.022566] [PMID: 23115301]
[96]
Lualdi M, Fasano M. Statistical analysis of proteomics data: A review on feature selection. J Proteomics 2019; 198: 18-26.
[http://dx.doi.org/10.1016/j.jprot.2018.12.004] [PMID: 30529743]
[97]
Wang W, Sue AC, Goh WWB. Feature selection in clinical proteomics: with great power comes great reproducibility. Drug Discov Today 2017; 22(6): 912-8.
[http://dx.doi.org/10.1016/j.drudis.2016.12.006] [PMID: 27988358]
[98]
Silva JC, Denny R, Dorschel CA, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 2005; 77(7): 2187-200.
[http://dx.doi.org/10.1021/ac048455k] [PMID: 15801753]
[99]
Hu A, Noble WS, Wolf-Yadlin A. Technical advances in proteomics: new developments in data-independent acquisition. F1000 Res 2016; 5: 5.
[http://dx.doi.org/10.12688/f1000research.7042.1] [PMID: 27092249]
[100]
Argentini A, Goeminne LJ, Verheggen K, et al. moFF: a robust and automated approach to extract peptide ion intensities. Nat Methods 2016; 13(12): 964-6.
[http://dx.doi.org/10.1038/nmeth.4075] [PMID: 27898063]
[101]
Nikolov M, Schmidt C, Urlaub H. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol 2012; 893: 85-100.
[http://dx.doi.org/10.1007/978-1-61779-885-6_7] [PMID: 22665296]
[102]
Arike L, Peil L. Spectral counting label-free proteomics. Methods Mol Biol 2014; 1156: 213-22.
[http://dx.doi.org/10.1007/978-1-4939-0685-7_14] [PMID: 24791991]
[103]
Anjo SI, Santa C, Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017; 17(3-4): 17.
[http://dx.doi.org/10.1002/pmic.201600278] [PMID: 28127880]
[104]
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016; 537(7620): 347-55.
[http://dx.doi.org/10.1038/nature19949] [PMID: 27629641]
[105]
Asara JM, Christofk HR, Freimark LM, Cantley LC. A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 2008; 8(5): 994-9.
[http://dx.doi.org/10.1002/pmic.200700426] [PMID: 18324724]
[106]
America AH, Cordewener JH. Comparative LC-MS: a landscape of peaks and valleys. Proteomics 2008; 8(4): 731-49.
[http://dx.doi.org/10.1002/pmic.200700694] [PMID: 18297651]
[107]
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 2007; 389(4): 1017-31.
[http://dx.doi.org/10.1007/s00216-007-1486-6] [PMID: 17668192]
[108]
Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 2008; 7(1): 51-61.
[http://dx.doi.org/10.1021/pr700758r] [PMID: 18173218]
[109]
Bringans SD, Ito J, Stoll T, et al. Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EuPA Open Proteom 2017; 14: 1-10.
[http://dx.doi.org/10.1016/j.euprot.2016.12.001] [PMID: 29900119]
[110]
Johnson LA, Zuloaga KL, Kugelman TL, et al. Amelioration of metabolic syndrome-associated cognitive impairments in mice via a reduction in dietary fat content or infusion of non-diabetic plasma. EBioMedicine 2015; 3: 26-42.
[http://dx.doi.org/10.1016/j.ebiom.2015.12.008] [PMID: 26870815]
[111]
Vähätupa M, Nättinen J, Jylhä A, et al. SWATH-MS proteomic analysis of oxygen-induced retinopathy reveals novel potential therapeutic targets. Invest Ophthalmol Vis Sci 2018; 59(8): 3294-306.
[http://dx.doi.org/10.1167/iovs.18-23831] [PMID: 30025079]
[112]
Banarjee R, Sharma A, Bai S, Deshmukh A, Kulkarni M. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteomics 2018; 187: 69-79.
[http://dx.doi.org/10.1016/j.jprot.2018.06.009] [PMID: 29935336]
[113]
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018; 14(8)e8126
[http://dx.doi.org/10.15252/msb.20178126] [PMID: 30104418]
[114]
Tsou CC, Avtonomov D, Larsen B, et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 2015; 12(3): 258-64. 7, 264
[http://dx.doi.org/10.1038/nmeth.3255] [PMID: 25599550]
[115]
Tsou CC, Tsai CF, Teo GC, Chen YJ, Nesvizhskii AI. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 2016; 16(15-16): 2257-71.
[http://dx.doi.org/10.1002/pmic.201500526] [PMID: 27246681]
[116]
Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 2015; 14(5): 1400-10.
[http://dx.doi.org/10.1074/mcp.M114.044305] [PMID: 25724911]
[117]
Meyer JG, Mukkamalla S, Steen H, Nesvizhskii AI, Gibson BW, Schilling B. PIQED: automated identification and quantification of protein modifications from DIA-MS data. Nat Methods 2017; 14(7): 646-7.
[http://dx.doi.org/10.1038/nmeth.4334] [PMID: 28661500]
[118]
Lawrence RT, Searle BC, Llovet A, Villén J. Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods 2016; 13(5): 431-4.
[http://dx.doi.org/10.1038/nmeth.3811] [PMID: 27018578]
[119]
Wu L, Amon S, Lam H. A hybrid retention time alignment algorithm for SWATH-MS data. Proteomics 2016; 16(15-16): 2272-83.
[http://dx.doi.org/10.1002/pmic.201500511] [PMID: 27302277]
[120]
Röst HL, Rosenberger G, Navarro P, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 2014; 32(3): 219-23.
[http://dx.doi.org/10.1038/nbt.2841] [PMID: 24727770]
[121]
Terfve C, Sabidó E, Wu Y, et al. System-wide quantitative proteomics of the metabolic syndrome in mice: genotypic and dietary effects. J Proteome Res 2017; 16(2): 831-41.
[http://dx.doi.org/10.1021/acs.jproteome.6b00815] [PMID: 27936760]
[122]
Välikangas T, Suomi T, Elo LL. A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation. Brief Bioinform 2018; 19(6): 1344-55.
[PMID: 28575146]
[123]
Rafiei A, Sleno L. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun Mass Spectrom 2015; 29(1): 119-27.
[http://dx.doi.org/10.1002/rcm.7094] [PMID: 25462372]
[124]
Li CY, Song HT, Liu SJ, et al. Systematic screening and characterization of astragalosides in an oral solution of Radix Astragali by liquid chromatography with quadrupole time-of-flight mass spectrometry and Peakview software. J Sep Sci 2016; 39(6): 1099-109.
[http://dx.doi.org/10.1002/jssc.201501278] [PMID: 27027590]
[125]
Li S, Cao Q, Xiao W, et al. Optimization of acquisition and data-processing parameters for improved proteomic quantification by sequential window acquisition of all theoretical fragment ion mass spectrometry. J Proteome Res 2017; 16(2): 738-47.
[http://dx.doi.org/10.1021/acs.jproteome.6b00767] [PMID: 27995803]
[126]
Gao Y, Lim TK, Lin Q, Li SF. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris. Electrophoresis 2016; 37(10): 1270-6.
[http://dx.doi.org/10.1002/elps.201500527] [PMID: 26935773]
[127]
Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 2017.
[http://dx.doi.org/10.1002/mas.21540] [PMID: 28691345]
[128]
MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010; 26(7): 966-8.
[http://dx.doi.org/10.1093/bioinformatics/btq054] [PMID: 20147306]
[129]
Henderson CM, Shulman NJ, MacLean B, MacCoss MJ, Hoofnagle AN. Skyline performs as well as Vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin. Clin Chem 2018; 64(2): 408-10.
[http://dx.doi.org/10.1373/clinchem.2017.282293] [PMID: 29203474]
[130]
Dwinovan J, Colella AD, Chegeni N, Chataway TK, Sokoya EM. Proteomic analysis reveals downregulation of housekeeping proteins in the diabetic vascular proteome. Acta Diabetol 2017; 54(2): 171-90.
[http://dx.doi.org/10.1007/s00592-016-0929-y] [PMID: 27796656]
[131]
Zhang X, Sun H, Paul SK, et al. The serum protein responses to treatment with Xiaoke Pill and Glibenclamide in type 2 diabetes patients. Clin Proteomics 2017; 14: 19.
[http://dx.doi.org/10.1186/s12014-017-9154-0] [PMID: 28529466]
[132]
Bruderer R, Bernhardt OM, Gandhi T, Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 2016; 16(15-16): 2246-56.
[http://dx.doi.org/10.1002/pmic.201500488] [PMID: 27213465]
[133]
Niersmann C, Hauck SM, Kannenberg JM, et al. Omentin-regulated proteins combine a pro-inflammatory phenotype with an anti-inflammatory counterregulation in human adipocytes: A proteomics analysis. Diabetes Metab Res Rev 2019; 35(1)e3074
[http://dx.doi.org/10.1002/dmrr.3074] [PMID: 30198166]
[134]
Weisser H, Nahnsen S, Grossmann J, et al. An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res 2013; 12(4): 1628-44.
[http://dx.doi.org/10.1021/pr300992u] [PMID: 23391308]
[135]
Sturm M, Bertsch A, Gröpl C, et al. OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 2008; 9: 163.
[http://dx.doi.org/10.1186/1471-2105-9-163] [PMID: 18366760]
[136]
Weisser H, Choudhary JS. Targeted feature detection for data-dependent shotgun proteomics. J Proteome Res 2017; 16(8): 2964-74.
[http://dx.doi.org/10.1021/acs.jproteome.7b00248] [PMID: 28673088]
[137]
Cisek K, Krochmal M, Klein J, Mischak H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 2016; 31(12): 2003-11.
[http://dx.doi.org/10.1093/ndt/gfv364] [PMID: 26487673]
[138]
Skeie JM, Aldrich BT, Goldstein AS, Schmidt GA, Reed CR, Greiner MA. Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus. PLoS One 2018; 13(3)e0192287
[http://dx.doi.org/10.1371/journal.pone.0192287] [PMID: 29529022]
[139]
Tran NH, Qiao R, Xin L, et al. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 2019; 16(1): 63-6.
[http://dx.doi.org/10.1038/s41592-018-0260-3] [PMID: 30573815]
[140]
Zhang J, Xin L, Shan B, et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 2012; 11(4)010587
[http://dx.doi.org/10.1074/mcp.M111.010587] [PMID: 22186715]
[141]
Di Guida R, Engel J, Allwood JW, et al. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics 2016; 12: 93.
[http://dx.doi.org/10.1007/s11306-016-1030-9] [PMID: 27123000]
[142]
Zhang J, Yang W, Li S, et al. An intelligentized strategy for endogenous small molecules characterization and quality evaluation of earthworm from two geographic origins by ultra-high performance HILIC/QTOF MS(E) and Progenesis QI. Anal Bioanal Chem 2016; 408(14): 3881-90.
[http://dx.doi.org/10.1007/s00216-016-9482-3] [PMID: 27055884]
[143]
Qi D, Brownridge P, Xia D, et al. A software toolkit and interface for performing stable isotope labeling and top3 quantification using Progenesis LC-MS. OMICS 2012; 16(9): 489-95.
[http://dx.doi.org/10.1089/omi.2012.0042] [PMID: 22888986]
[144]
Roverso M, Brioschi M, Banfi C, et al. A preliminary study on human placental tissue impaired by gestational diabetes: a comparison of gel-based versus gel-free proteomics approaches. Eur J Mass Spectrom (Chichester) 2016; 22(2): 71-82.
[http://dx.doi.org/10.1255/ejms.1412] [PMID: 27419900]
[145]
Ly A, Scheerer MF, Zukunft S, et al. Retinal proteome alterations in a mouse model of type 2 diabetes. Diabetologia 2014; 57(1): 192-203.
[http://dx.doi.org/10.1007/s00125-013-3070-2] [PMID: 24078137]
[146]
Li J, Lu Q, Lu P. Quantitative proteomics analysis of vitreous body from type 2 diabetic patients with proliferative diabetic retinopathy. BMC Ophthalmol 2018; 18(1): 151.
[http://dx.doi.org/10.1186/s12886-018-0821-3] [PMID: 29940965]
[147]
Colaert N, Barsnes H, Vaudel M, et al. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files. J Proteome Res 2011; 10(8): 3840-3.
[http://dx.doi.org/10.1021/pr2005154] [PMID: 21714566]
[148]
Tao L, Zhu F, Qin C, et al. Nature’s contribution to today’s pharmacopeia. Nat Biotechnol 2014; 32(10): 979-80.
[http://dx.doi.org/10.1038/nbt.3034] [PMID: 25299914]
[149]
Veit J, Sachsenberg T, Chernev A, Aicheler F, Urlaub H, Kohlbacher O. LFQProfiler and RNP(xl): open-source tools for label-free quantification and protein-RNA cross-linking integrated into proteome discoverer. J Proteome Res 2016; 15(9): 3441-8.
[http://dx.doi.org/10.1021/acs.jproteome.6b00407] [PMID: 27476824]
[150]
Aiyetan P, Zhang B, Chen L, Zhang Z, Zhang H. M2Lite: An open-source, light-weight, pluggable and fast proteome discoverer MSF to mzIdentML tool. J Bioinform 2014; 1(2): 40-9.
[PMID: 25346941]
[151]
Preil SA, Kristensen LP, Beck HC, et al. Quantitative proteome analysis reveals increased content of basement membrane proteins in arteries from patients with type 2 diabetes mellitus and lower levels among metformin users. Circ Cardiovasc Genet 2015; 8(5): 727-35.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001165] [PMID: 26371159]
[152]
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteomics 2014; 96: 92-102.
[http://dx.doi.org/10.1016/j.jprot.2013.10.037] [PMID: 24211404]
[153]
Park SK, Yates JR III. Census for proteome quantification.Curr Protoc Bioinformatics 2010; Chapter 13. 1-11.
[http://dx.doi.org/10.1002/0471250953.bi1312s29] ] [PMID: 20205189]
[154]
Park SK, Venable JD, Xu T, Yates JR III. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 2008; 5(4): 319-22.
[http://dx.doi.org/10.1038/nmeth.1195] [PMID: 18345006]
[155]
Deng WJ, Nie S, Dai J, Wu JR, Zeng R. Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 2010; 9(1): 100-16.
[http://dx.doi.org/10.1074/mcp.M900020-MCP200] [PMID: 19700791]
[156]
Yang FY, Fu TT, Zhang XY, et al. Comparison of computational model and X-ray crystal structure of human serotonin transporter: potential application for the pharmacology of human monoamine transporters. Mol Simul 2017; 43: 1089-98.
[http://dx.doi.org/10.1080/08927022.2017.1309653]
[157]
Cociorva DL, Tabb D, Yates JR. Validation of tandem mass spectrometry database search results using DTASelect. Curr Protoc Bioinformatics 2007; Chapter 13. 4.
[http://dx.doi.org/10.1002/0471250953.bi1304s16] [PMID: 18428785]
[158]
Tabb DL, McDonald WH, Yates JR III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 2002; 1(1): 21-6.
[http://dx.doi.org/10.1021/pr015504q] [PMID: 12643522]
[159]
Park GW, Hwang H, Kim KH, et al. Integrated proteomic pipeline using multiple search engines for a proteogenomic study with a controlled protein false discovery rate. J Proteome Res 2016; 15(11): 4082-90.
[http://dx.doi.org/10.1021/acs.jproteome.6b00376] [PMID: 27537616]
[160]
Dominguez E, Galmozzi A, Chang JW, et al. Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nat Chem Biol 2014; 10(2): 113-21.
[http://dx.doi.org/10.1038/nchembio.1429] [PMID: 24362705]
[161]
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 2016; 11(12): 2301-19.
[http://dx.doi.org/10.1038/nprot.2016.136] [PMID: 27809316]
[162]
Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 2015; 15(8): 1453-6.
[http://dx.doi.org/10.1002/pmic.201400449] [PMID: 25644178]
[163]
Zhang L, Liu CW, Zhang Q. Online 2D-LC-MS/MS platform for analysis of glycated proteome. Anal Chem 2018; 90(2): 1081-6.
[http://dx.doi.org/10.1021/acs.analchem.7b03342] [PMID: 29281256]
[164]
Liu CW, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics 2016; 16(9): 1432-46.
[http://dx.doi.org/10.1002/pmic.201500333] [PMID: 26935967]
[165]
Codrea MC, Nahnsen S. Platforms and pipelines for proteomics data analysis and management. Adv Exp Med Biol 2016; 919: 203-15.
[http://dx.doi.org/10.1007/978-3-319-41448-5_9] [PMID: 27975218]
[166]
Hussey SE, Sharoff CG, Garnham A, et al. Effect of exercise on the skeletal muscle proteome in patients with type 2 diabetes. Med Sci Sports Exerc 2013; 45(6): 1069-76.
[http://dx.doi.org/10.1249/MSS.0b013e3182814917] [PMID: 23274603]
[167]
Ahn JM, Kim BG, Yu MH, Lee IK, Cho JY. Identification of diabetic nephropathy-selective proteins in human plasma by multi-lectin affinity chromatography and LC-MS/MS. Proteomics Clin Appl 2010; 4(6-7): 644-53.
[http://dx.doi.org/10.1002/prca.200900196] [PMID: 21137083]
[168]
Zhao M, Li M, Yang Y, et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep 2017; 7(1): 3024.
[http://dx.doi.org/10.1038/s41598-017-03226-6] [PMID: 28596590]
[169]
de Roos B. Proteomic analysis of human plasma and blood cells in nutritional studies: development of biomarkers to aid disease prevention. Expert Rev Proteomics 2008; 5(6): 819-26.
[http://dx.doi.org/10.1586/14789450.5.6.819] [PMID: 19086861]
[170]
Li L, Wu J, Ghosh JK, Ritz B. Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmos Environ (1994) 2013; 71(71): 54-63.
[http://dx.doi.org/10.1016/j.atmosenv.2013.01.038] [PMID: 23606806]
[171]
Zheng G, Xue W, Yang F, et al. Revealing vilazodone’s binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder. Phys Chem Chem Phys 2017; 19(42): 28885-96.
[http://dx.doi.org/10.1039/C7CP05688E] [PMID: 29057413]
[172]
Mäkinen VP, Tynkkynen T, Soininen P, et al. Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane Study). J Proteome Res 2012; 11(3): 1782-90.
[http://dx.doi.org/10.1021/pr201036j] [PMID: 22204613]
[173]
Kahleova H, Klementova M, Herynek V, et al. The effect of a vegetarian vs conventional hypocaloric diabetic diet on thigh adipose tissue distribution in subjects with type 2 diabetes: a randomized study. J Am Coll Nutr 2017; 36(5): 364-9.
[http://dx.doi.org/10.1080/07315724.2017.1302367] [PMID: 28604251]
[174]
De Livera AM, Dias DA, De Souza D, et al. Normalizing and integrating metabolomics data. Anal Chem 2012; 84(24): 10768-76.
[http://dx.doi.org/10.1021/ac302748b] [PMID: 23150939]
[175]
Selvaraj G, Kaliamurthi S, Kaushik AC, et al. Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. J Biomed Inform 2018; 86: 120-34.
[http://dx.doi.org/10.1016/j.jbi.2018.09.004] [PMID: 30195659]
[176]
Lau CH, Muniandy S. Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels. Ann Hum Genet 2011; 75(3): 370-82.
[http://dx.doi.org/10.1111/j.1469-1809.2010.00635.x] [PMID: 21323646]
[177]
Fattuoni C, Mandò C, Palmas F, et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2018; 61: 89-95.
[http://dx.doi.org/10.1016/j.placenta.2017.11.014] [PMID: 29277276]
[178]
Raji Reddy C, Rani Valleti R, Dilipkumar U. One-pot sequential propargylation/cycloisomerization: a facile [4+2]-benzannulation approach to carbazoles. Chemistry 2016; 22(7): 2501-6.
[http://dx.doi.org/10.1002/chem.201503496] [PMID: 26836577]
[179]
Lucena S, Varela Coelho A, Anjo SI, et al. Comparative proteomic analysis of saliva from dogs with and without obesity-related metabolic dysfuntion. J Proteomics 2019; 201: 65-72.
[http://dx.doi.org/10.1016/j.jprot.2019.04.010] [PMID: 30991157]
[180]
Sakia RM. The Box-Cox transformation technique - a review. J R Stat Soc 1992; 41: 169-78.
[181]
Bruderer R, Muntel J, Müller S, et al. Analysis of 1508 plasma samples by capillary flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol Cell Proteomics 2019; 18(6): 1242-54.
[http://dx.doi.org/10.1074/mcp.RA118.001288] [PMID: 30948622]
[182]
Välikangas T, Suomi T, Elo LL. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform 2018; 19(1): 1-11.
[PMID: 27694351]
[183]
van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006; 7: 142.
[http://dx.doi.org/10.1186/1471-2164-7-142] [PMID: 16762068]
[184]
Qi Y, Jiang C, Cheng J, et al. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta 2015; 1851(1): 19-29.
[http://dx.doi.org/10.1016/j.bbalip.2014.04.008] [PMID: 24796972]
[185]
Guha Mazumder A, Chatterjee S, Chatterjee S, et al. Spectropathology-corroborated multimodal quantitative imaging biomarkers for neuroretinal degeneration in diabetic retinopathy. Clin Ophthalmol 2017; 11: 2073-89.
[http://dx.doi.org/10.2147/OPTH.S140110] [PMID: 29200821]
[186]
Mundt F, Johansson HJ, Forshed J, et al. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma. Mol Cell Proteomics 2014; 13(3): 701-15.
[http://dx.doi.org/10.1074/mcp.M113.030775] [PMID: 24361865]
[187]
Brennan L. NMR-based metabolomics: from sample preparation to applications in nutrition research. Prog Nucl Magn Reson Spectrosc 2014; 83: 42-9.
[http://dx.doi.org/10.1016/j.pnmrs.2014.09.001] [PMID: 25456316]
[188]
Kohl SM, Klein MS, Hochrein J, Oefner PJ, Spang R, Gronwald W. State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics 2012; 8(Suppl. 1): 146-60.
[http://dx.doi.org/10.1007/s11306-011-0350-z] [PMID: 22593726]
[189]
Gromski PS, Xu Y, Hollywood KA, Turner ML, Goodacre R. The influence of scaling metabolomics data on model classification accuracy. Metabolomics 2015; 11: 684-95.
[http://dx.doi.org/10.1007/s11306-014-0738-7]
[190]
Jiménez-Lucena R, Rangel-Zúñiga OA, Alcalá-Díaz JF, et al. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol Ther Nucleic Acids 2018; 12: 146-57.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[191]
Rosenling T, Stoop MP, Smolinska A, et al. The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid. Clin Chem 2011; 57(12): 1703-11.
[http://dx.doi.org/10.1373/clinchem.2011.167601] [PMID: 21998343]
[192]
Marco-Ramell A, Tulipani S, Palau-Rodriguez M, et al. Untargeted profiling of concordant/discordant phenotypes of high insulin resistance and obesity to predict the risk of developing diabetes. J Proteome Res 2018; 17(7): 2307-17.
[http://dx.doi.org/10.1021/acs.jproteome.7b00855] [PMID: 29905079]
[193]
Smilde AK, van der Werf MJ, Bijlsma S, van der Werff-van der Vat BJ, Jellema RH. Fusion of mass spectrometry-based metabolomics data. Anal Chem 2005; 77(20): 6729-36.
[http://dx.doi.org/10.1021/ac051080y] [PMID: 16223263]
[194]
Klont F, Bras L, Wolters JC, et al. Assessment of sample preparation bias in mass spectrometry-based proteomics. Anal Chem 2018; 90(8): 5405-13.
[http://dx.doi.org/10.1021/acs.analchem.8b00600] [PMID: 29608294]
[195]
Chawade A, Alexandersson E, Levander F. Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. J Proteome Res 2014; 13(6): 3114-20.
[http://dx.doi.org/10.1021/pr401264n] [PMID: 24766612]
[196]
Li B, Tang J, Yang Q, et al. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res 2017; 45(W1)W162-70
[http://dx.doi.org/10.1093/nar/gkx449] [PMID: 28525573]
[197]
Li B, Tang J, Yang Q, et al. Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis. Sci Rep 2016; 6: 38881.
[http://dx.doi.org/10.1038/srep38881] [PMID: 27958387]
[198]
Kim SJ, Chae S, Kim H, et al. A protein profile of visceral adipose tissues linked to early pathogenesis of type 2 diabetes mellitus. Mol Cell Proteomics 2014; 13(3): 811-22.
[http://dx.doi.org/10.1074/mcp.M113.035501] [PMID: 24403596]
[199]
Gaspari M, Chiesa L, Nicastri A, et al. Proteome speciation by mass spectrometry: characterization of composite protein mixtures in milk replacers. Anal Chem 2016; 88(23): 11568-74.
[http://dx.doi.org/10.1021/acs.analchem.6b02848] [PMID: 27792874]
[200]
Noonan MJ, Tinnesand HV, Buesching CD. Normalizing gas-chromatography-mass spectrometry data: method choice can alter biological inference. BioEssays 2018; 40(6)e1700210
[http://dx.doi.org/10.1002/bies.201700210] [PMID: 29709068]
[201]
Wulff JE, Mitchell MW. A comparison of various normalization methods for LC/MS metabolomics data. Adv Biosci Biotechnol 2018; 9: 339.
[http://dx.doi.org/10.4236/abb.2018.98022]
[202]
Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform 2017; 18(4): 547-57.
[PMID: 27255916]
[203]
Manjunatha S, Distelmaier K, Dasari S, Carter RE, Kudva YC, Nair KS. Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism 2016; 65(9): 1421-31.
[http://dx.doi.org/10.1016/j.metabol.2016.06.008] [PMID: 27506748]
[204]
García-Fontana B, Morales-Santana S, Díaz Navarro C, et al. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. Talanta 2016; 148: 135-43.
[http://dx.doi.org/10.1016/j.talanta.2015.10.070] [PMID: 26653434]
[205]
Cho WC, Yip TT, Chung WS, Leung AW, Cheng CH, Yue KK. Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. J Cell Biochem 2006; 99(1): 256-68.
[http://dx.doi.org/10.1002/jcb.20923] [PMID: 16598775]
[206]
Rao Y, Lee Y, Jarjoura D, et al. A comparison of normalization techniques for microRNA microarray data. Stat Appl Genet Mol Biol 2008; 7(1)e22
[http://dx.doi.org/10.2202/1544-6115.1287] [PMID: 18673291]
[207]
Wang W, Zhou H, Lin H, et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 2003; 75(18): 4818-26.
[http://dx.doi.org/10.1021/ac026468x] [PMID: 14674459]
[208]
Xu J, Bai J, Zhang X, et al. A comprehensive overview of lncRNA annotation resources. Brief Bioinform 2017; 18(2): 236-49.
[PMID: 26944085]
[209]
Kultima K, Nilsson A, Scholz B, Rossbach UL, Fälth M, Andrén PE. Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol Cell Proteomics 2009; 8(10): 2285-95.
[http://dx.doi.org/10.1074/mcp.M800514-MCP200] [PMID: 19596695]
[210]
Hajduk J, Klupczynska A, Dereziński P, et al. A combined metabolomic and proteomic analysis of gestational diabetes mellitus. Int J Mol Sci 2015; 16(12): 30034-45.
[http://dx.doi.org/10.3390/ijms161226133] [PMID: 26694367]
[211]
Matzke MM, Waters KM, Metz TO, et al. Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics 2011; 27(20): 2866-72.
[http://dx.doi.org/10.1093/bioinformatics/btr479] [PMID: 21852304]
[212]
Chung N, Zhang XD, Kreamer A, et al. Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen 2008; 13(2): 149-58.
[http://dx.doi.org/10.1177/1087057107312035] [PMID: 18216396]
[213]
Hill JA, Szabat M, Hoesli CA, et al. A multi-parameter, high-content, high-throughput screening platform to identify natural compounds that modulate insulin and Pdx1 expression. PLoS One 2010; 5(9)e12958
[http://dx.doi.org/10.1371/journal.pone.0012958] [PMID: 20886041]
[214]
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 2006; 78(13): 4281-90.
[http://dx.doi.org/10.1021/ac051632c] [PMID: 16808434]
[215]
Mao X, Chen X, Chen C, Zhang H, Law KP. Metabolomics in gestational diabetes. Clin Chim Acta 2017; 475: 116-27.
[http://dx.doi.org/10.1016/j.cca.2017.10.019] [PMID: 29066210]
[216]
Karpievitch YV, Taverner T, Adkins JN, et al. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 2009; 25(19): 2573-80.
[http://dx.doi.org/10.1093/bioinformatics/btp426] [PMID: 19602524]
[217]
Karpievitch YV, Nikolic SB, Wilson R, Sharman JE, Edwards LM. Metabolomics data normalization with EigenMS. PLoS One 2014; 9(12)e116221
[http://dx.doi.org/10.1371/journal.pone.0116221] [PMID: 25549083]
[218]
Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 2017; 18(6): 984-92.
[PMID: 27543790]
[219]
Law KP, Zhang H. The pathogenesis and pathophysiology of gestational diabetes mellitus: Deductions from a three-part longitudinal metabolomics study in China. Clin Chim Acta 2017; 468: 60-70.
[http://dx.doi.org/10.1016/j.cca.2017.02.008] [PMID: 28213010]
[220]
Yang YH, Dudoit S, Luu P, Speed TP. Normalization for cDNA microarray data Microarrays: optical Technologies And Informatics 2001; 4266: 141-52.
[221]
Stratz C, Nührenberg T, Fiebich BL, et al. Controlled type II diabetes mellitus has no major influence on platelet micro-RNA expression. Results from micro-array profiling in a cohort of 60 patients. Thromb Haemost 2014; 111(5): 902-11.
[http://dx.doi.org/10.1160/TH13-06-0476] [PMID: 24352417]
[222]
Kirchberg FF, Harder U, Weber M, et al. European Childhood Obesity Trial Study Group. Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months. J Clin Endocrinol Metab 2015; 100(1): 149-58.
[http://dx.doi.org/10.1210/jc.2014-3157] [PMID: 25368978]
[223]
Lin Y, Golovnina K, Chen ZX, et al. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster. BMC Genomics 2016; 17: 28.
[http://dx.doi.org/10.1186/s12864-015-2353-z] [PMID: 26732976]
[224]
Väremo L, Henriksen TI, Scheele C, et al. Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Med 2017; 9(1): 47.
[http://dx.doi.org/10.1186/s13073-017-0432-2] [PMID: 28545587]
[225]
Spiller S, Li Y, Blüher M, Welch L, Hoffmann R. Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA1c and fasting plasma glucose. Clin Proteomics 2017; 14: 10.
[http://dx.doi.org/10.1186/s12014-017-9145-1] [PMID: 28360826]
[226]
Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn 2003; 5(2): 73-81.
[http://dx.doi.org/10.1016/S1525-1578(10)60455-2] [PMID: 12707371]
[227]
Yang Q, Li B, Tang J, et al. Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief Bioinform 2019.bbz049
[http://dx.doi.org/10.1093/bib/bbz049] [PMID: 31157371]
[228]
Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene expression tissue-specificity metrics. Brief Bioinform 2017; 18(2): 205-14.
[PMID: 26891983]
[229]
Saha S, Dazard JE, Xu H, Ewing RM. Computational framework for analysis of prey-prey associations in interaction proteomics identifies novel human protein-protein interactions and networks. J Proteome Res 2012; 11(9): 4476-87.
[http://dx.doi.org/10.1021/pr300227y] [PMID: 22845868]
[230]
Karpievitch YV, Dabney AR, Smith RD. Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinformatics 2012; 13(Suppl. 16): S5.
[http://dx.doi.org/10.1186/1471-2105-13-S16-S5] [PMID: 23176322]
[231]
Chai LE, Law CK, Mohamad MS, et al. Investigating the effects of imputation methods for modelling gene networks using a dynamic bayesian network from gene expression data. Malays J Med Sci 2014; 21(2): 20-7.
[PMID: 24876803]
[232]
Cui X, Yang Q, Li B, et al. Assessing the effectiveness of direct data merging strategy in long-term and large-scale pharmacometabonomics. Front Pharmacol 2019; 10: 127.
[http://dx.doi.org/10.3389/fphar.2019.00127] [PMID: 30842738]
[233]
Jiang N, Liu HF, Li SD, et al. An integrated metabonomic and proteomic study on Kidney-Yin Deficiency Syndrome patients with diabetes mellitus in China. Acta Pharmacol Sin 2015; 36(6): 689-98.
[http://dx.doi.org/10.1038/aps.2014.169] [PMID: 25937635]
[234]
Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 2000; 97(18): 10101-6.
[http://dx.doi.org/10.1073/pnas.97.18.10101] [PMID: 10963673]
[235]
Law KP, Mao X, Han TL, Zhang H. Unsaturated plasma phospholipids are consistently lower in the patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women part 1. Clin Chim Acta 2017; 465: 53-71.
[http://dx.doi.org/10.1016/j.cca.2016.12.010] [PMID: 27988319]
[236]
Lehmann R, Friedrich T, Krebiehl G, et al. Metabolic profiles during an oral glucose tolerance test in pregnant women with and without gestational diabetes. Exp Clin Endocrinol Diabetes 2015; 123(7): 483-38.
[http://dx.doi.org/10.1055/s-0035-1549887] [PMID: 26171623]
[237]
Song X, Waitman LR, Hu Y, Yu ASL, Robins D, Liu M. Robust clinical marker identification for diabetic kidney disease with ensemble feature selection. J Am Med Inform Assoc 2019; 26(3): 242-53.
[http://dx.doi.org/10.1093/jamia/ocy165] [PMID: 30602020]
[238]
Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 2017; 60(9): 1740-50.
[http://dx.doi.org/10.1007/s00125-017-4325-0] [PMID: 28597074]
[239]
Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2017; 18(5): 851-69.
[PMID: 27473064]
[240]
Labani M, Moradi P, Ahmadizar F, Jalili M. A novel multivariate filter method for feature selection in text classification problems. Eng Appl Artif Intell 2018; 70: 25-37.
[http://dx.doi.org/10.1016/j.engappai.2017.12.014]
[241]
Tang J, Wang Y, Fu J, et al. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief Bioinform 2019.bbz061
[http://dx.doi.org/10.1093/bib/bbz061] [PMID: 31197323]
[242]
Sánchez-Maroño N, Alonso-Betanzos A, Tombilla-Sanromán M. Filter methods for feature selection–a comparative study. Inter Conf Intel Data Eng and Auto Learning 2007; pp. 178-87.
[http://dx.doi.org/10.1007/978-3-540-77226-2_19]
[243]
Cibrik DM, Warner RL, Kommareddi M, Song P, Luan FL, Johnson KJ. Identification of a protein signature in renal allograft rejection. Proteomics Clin Appl 2013; 7(11-12): 839-49.
[http://dx.doi.org/10.1002/prca.201200036] [PMID: 24323459]
[244]
Wright DB. Comparing groups in a before-after design: when t test and ANCOVA produce different results. Br J Educ Psychol 2006; 76(Pt 3): 663-75.
[http://dx.doi.org/10.1348/000709905X52210] [PMID: 16953968]
[245]
Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 2017; 18(5): 780-8.
[PMID: 27373735]
[246]
Mao P, Wang D. Top-down proteomics of a drop of blood for diabetes monitoring. J Proteome Res 2014; 13(3): 1560-9.
[http://dx.doi.org/10.1021/pr401074t] [PMID: 24533899]
[247]
Kempthorne O. The correlation between relatives on the supposition of mendelian inheritance. Sci T R So 1919; 52: 399-433.
[248]
McHugh ML. Multiple comparison analysis testing in ANOVA. Biochem Med (Zagreb) 2011; 21(3): 203-9.
[http://dx.doi.org/10.11613/BM.2011.029] [PMID: 22420233]
[249]
Pritchard CC, Hsu L, Delrow J, Nelson PS. Project normal: defining normal variance in mouse gene expression. Proc Natl Acad Sci USA 2001; 98(23): 13266-71.
[http://dx.doi.org/10.1073/pnas.221465998] [PMID: 11698685]
[250]
Roscioni SS, de Zeeuw D, Hellemons ME, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 2013; 56(2): 259-67.
[http://dx.doi.org/10.1007/s00125-012-2755-2] [PMID: 23086559]
[251]
Chee CS, Chang KM, Loke MF, Angela Loo VP, Subrayan V. Association of potential salivary biomarkers with diabetic retinopathy and its severity in type-2 diabetes mellitus: a proteomic analysis by mass spectrometry. PeerJ 2016.4e2022
[http://dx.doi.org/10.7717/peerj.2022] [PMID: 27280065]
[252]
Koletsi D, Pandis N. The chi-square test for trend. Am J Orthod Dentofacial Orthop 2016; 150(6): 1066-7.
[http://dx.doi.org/10.1016/j.ajodo.2016.10.001] [PMID: 27894529]
[253]
García-Fontana B, Morales-Santana S, Longobardo V, et al. Relationship between proinflammatory and antioxidant proteins with the severity of cardiovascular disease in type 2 diabetes mellitus. Int J Mol Sci 2015; 16(5): 9469-83.
[http://dx.doi.org/10.3390/ijms16059469] [PMID: 25923078]
[254]
Zhang W, Wang H, Guan X, Niu Q, Li W. Variant rs2237892 of KCNQ1 is potentially associated with hypertension and macrovascular complications in type 2 diabetes mellitus in a Chinese Han population. Genomics Proteomics Bioinformatics 2015; 13(6): 364-70.
[http://dx.doi.org/10.1016/j.gpb.2015.05.004] [PMID: 26678516]
[255]
Whitney J. Testing for differences with the nonparametric Mann-Whitney U test. J Wound Ostomy Continence Nurs 1997; 24(1): 12.
[http://dx.doi.org/10.1016/S1071-5754(97)90044-9] [PMID: 9213501]
[256]
Marx A, Backes C, Meese E, Lenhof HP, Keller A. EDISON-WMW: exact dynamic programing solution of the Wilcoxon-Mann-Whitney test. Genomics Proteomics Bioinformatics 2016; 14(1): 55-61.
[http://dx.doi.org/10.1016/j.gpb.2015.11.004] [PMID: 26829645]
[257]
Tang Y. Size and power estimation for the Wilcoxon-Mann-Whitney test for ordered categorical data. Stat Med 2011; 30(29): 3461-70.
[http://dx.doi.org/10.1002/sim.4407] [PMID: 22086799]
[258]
Soboleva A, Mavropulo-Stolyarenko G, Grishina T, et al. Individual glycation sites in blood plasma proteins–prospective biomarkers of type 2 diabetes mellitus. Young AGErs Symposium 2017; 24
[259]
Han Z, Xue W, Tao L, Zhu F. Identification of key long non-coding RNAs in the pathology of Alzheimer’s disease and their functions based on genome-wide associations study, microarray, and RNA-seq data. J Alzheimers Dis 2019; 68(1): 339-55.
[http://dx.doi.org/10.3233/JAD-181051] [PMID: 30776002]
[260]
Han Z, Xue W, Tao L, Lou Y, Qiu Y, Zhu F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief Bioinform 2019.bbz036
[http://dx.doi.org/10.1093/bib/bbz036] [PMID: 31323688]
[261]
Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med 2014; 31(9): 1138-47.
[http://dx.doi.org/10.1111/dme.12447] [PMID: 24661264]
[262]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[263]
Wang Z, Wang Z, Zhou Z, Ren Y. Crucial genes associated with diabetic nephropathy explored by microarray analysis. BMC Nephrol 2016; 17(1): 128.
[http://dx.doi.org/10.1186/s12882-016-0343-2] [PMID: 27613243]
[264]
Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intel Lab 2001; 58: 109-30.
[http://dx.doi.org/10.1016/S0169-7439(01)00155-1]
[265]
Wong KH, Razmovski-Naumovski V, Li KM, Li GQ, Chan K. Differentiation of Pueraria lobata and Pueraria thomsonii using partial least square discriminant analysis (PLS-DA). J Pharm Biomed Anal 2013; 84: 5-13.
[http://dx.doi.org/10.1016/j.jpba.2013.05.040] [PMID: 23777642]
[266]
Vitova L, Tuma Z, Moravec J, Kvapil M, Matejovic M, Mares J. Early urinary biomarkers of diabetic nephropathy in type 1 diabetes mellitus show involvement of kallikrein-kinin system. BMC Nephrol 2017; 18(1): 112.
[http://dx.doi.org/10.1186/s12882-017-0519-4] [PMID: 28359252]
[267]
Bylesjö M, Rantalainen M, Cloarec O, et al. OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification. J Chemometr 2006; 20: 341-51.
[http://dx.doi.org/10.1002/cem.1006]
[268]
Smilowitz JT, Totten SM, Huang J, et al. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J Nutr 2013; 143(12): 1906-12.
[http://dx.doi.org/10.3945/jn.113.180695] [PMID: 24047700]
[269]
Jiang M, Wang C, Zhang Y, Feng Y, Wang Y, Zhu Y. Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by (1) H-NMR-based metabolomics. Phytochem Anal 2014; 25(1): 50-8.
[http://dx.doi.org/10.1002/pca.2461] [PMID: 23868756]
[270]
Lê Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 2011; 12: 253.
[http://dx.doi.org/10.1186/1471-2105-12-253] [PMID: 21693065]
[271]
Gavin PG, Mullaney JA, Loo D, et al. Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for type 1 diabetes. Diabetes Care 2018; 41(10): 2178-86.
[http://dx.doi.org/10.2337/dc18-0777] [PMID: 30100563]
[272]
Sun Y, Todorovic S, Goodison S. Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans Pattern Anal Mach Intell 2010; 32(9): 1610-26.
[http://dx.doi.org/10.1109/TPAMI.2009.190] [PMID: 20634556]
[273]
Wang Y, Makedon FS, Ford JC, Pearlman J. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005; 21(8): 1530-7.
[http://dx.doi.org/10.1093/bioinformatics/bti192] [PMID: 15585531]
[274]
Xue W, Yang F, Wang P, et al. What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem Neurosci 2018; 9(5): 1128-40.
[http://dx.doi.org/10.1021/acschemneuro.7b00490] [PMID: 29300091]
[275]
Zhu F, Han B, Kumar P, et al. Update of TTD: therapeutic target database. Nucleic Acids Res 2010; 38(Database issue): D787-91.
[http://dx.doi.org/10.1093/nar/gkp1014] [PMID: 19933260]
[276]
Chen T, Cao Y, Zhang Y, et al. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evid Based Complement Alternat Med 2013; •••2013298183
[http://dx.doi.org/10.1155/2013/298183] [PMID: 23573122]
[277]
Sandler V, Reisetter AC, Bain JR, et al. HAPO Study Cooperative Research Group. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 2017; 60(3): 518-30.
[http://dx.doi.org/10.1007/s00125-016-4182-2] [PMID: 27981358]
[278]
Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 2010; 10: 16.
[http://dx.doi.org/10.1186/1472-6947-10-16] [PMID: 20307319]
[279]
Bottou L, Vapnik V. Local Learning Algorithms. Neural Comput 1992; 4: 888-900.
[http://dx.doi.org/10.1162/neco.1992.4.6.888]
[280]
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76.
[PMID: 27345524]
[281]
Rausch TK, Schillert A, Ziegler A, Lüking A, Zucht HD, Schulz-Knappe P. Comparison of pre-processing methods for multiplex bead-based immunoassays. BMC Genomics 2016; 17(1): 601.
[http://dx.doi.org/10.1186/s12864-016-2888-7] [PMID: 27515389]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy