Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Systematic Review Article

Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review

Author(s): Nasibeh Amirzargar, Saeid Heidari-Soureshjani, Qian Yang, Saber Abbaszadeh and Mojtaba Khaksarian*

Volume 10, Issue 5, 2020

Page: [550 - 565] Pages: 16

DOI: 10.2174/2210315509666190820103658

Price: $65

Abstract

Background: Hypoxia and anoxia are dangerous and sometimes irreversible complications in the central nervous system (CNS), which in some cases lead to death.

Objective: The aim of this review was to investigate the neuroprotective effects of medicinal plants in cerebral hypoxia and anoxia.

Methods: The word hypox*, in combination with some herbal terms such as medicinal plant, phyto* and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information (ISI) and PubMed from 2000-2019.

Results: Certain medicinal plants and herbal derivatives can exert their protective effects in several ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS), production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation, and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase. Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia, increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.

Conclusion: The results indicated that medicinal plants and their compounds mainly exert their neuroprotective effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis and anti-inflammatory activities.

Keywords: Anti-hypoxic, medicinal plants, hypoxia, neuroprotective agents, brain hypoxia, cytotoxicity.

Graphical Abstract
[1]
Gossman, W.; Alghoula, F.; Berim, I. Anoxia (Hypoxic Hypoxia); StatPearls Publishing: Treasure Island, FL, USA, 2019.
[2]
Siegel, G.J. Basic neurochemistry: Molecular, cellular and medical aspects; Lippincott-Raven: Philadelphia, 1999.
[3]
Thornton, C.; Leaw, B.; Mallard, C.; Nair, S.; Jinnai, M.; Hagberg, H. Cell death in the developing brain after hypoxia-ischemia. Front. Cell. Neurosci., 2017, 11, 248-248.
[http://dx.doi.org/10.3389/fncel.2017.00248 ] [PMID: 28878624]
[4]
Sun, M.; Zhou, T.; Zhou, L.; Chen, Q.; Yu, Y.; Yang, H.; Zhong, K.; Zhang, X.; Xu, F.; Cai, S.; Yu, A.; Zhang, H.; Xiao, R.; Xiao, D.; Chui, D. Formononetin protects neurons against hypoxia induced cytotoxicity through upregulation of ADAM10 and sAβPPα. J. Alzheimers Dis., 2012, 28(4), 795-808.
[http://dx.doi.org/10.3233/JAD-2011-110506 ] [PMID: 22085862]
[5]
Howard, R.S.; Holmes, P.A.; Koutroumanidis, M.A. Hypoxicischaemic brain injury. Pract. Neurol., 2011, 11(1), 4-18.
[http://dx.doi.org/10.1136/jnnp.2010.235218 ] [PMID: 21239649]
[6]
Parsaei, P.; Bahmani, M.; Naghdi, N.; Asadi-Samani, M.; Rafieian-Kopaei, M.; Tajeddini, P. Identification of medicinal plants effective on common cold: An ethnobotanical study of Shiraz. South Iran. Der Pharmacia Lettre, 2016, 8(2), 90-97.
[7]
Asadi-Samani, M.; Moradi, M.T.; Bahmani, M.; Shahrani, M. Antiviral medicinal plants of Iran: A review of ethnobotanical evidence. Int. J. Pharm. Tech. Res., 2016, 9(5), 427-434.
[8]
Asadi-Samani, M.; Moradi, M.T.; Mahmoodnia, L.; Alaei, S.; Asadi-Samani, F.; Luther, T. Traditional uses of medicinal plants to prevent and treat diabetes: An updated review of ethnobotanical studies in Iran. J. Nephropathol., 2017, 6(3), 118-125.
[http://dx.doi.org/10.15171/jnp.2017.20 ] [PMID: 28975089]
[9]
Rouhi-Boroujeni, H.; Asadi-Samani, M.; Moradi, M.T. A review of the medicinal plants effective on headache based on the ethnobotanical documents of Iran. Der Pharmacia Lettre, 2016, 8(3), 37-42.
[10]
Bahmani, M.; Khaksarian, M.; Rafieian-Kopaei, M.; Abbasi, N. Overview of the therapeutic effects of Origanum vulgare and Hypericum perforatum based on Iran’s ethnopharmacological documents. J. Clin. Diagn. Res., 2018, 12(7), FE01-FE04.
[11]
Memarzadeh, E.; Luther, T.; Heidari-Soureshjani, S. Effect and mechanisms of medicinal plants on dry eye disease: A systematic review. J. Clin. Diagn. Res., 2018, 12(9), NE1-NE4.
[http://dx.doi.org/10.7860/JCDR/2018/36409.12042]
[12]
Shabanian, G.; Heidari-Soureshjani, S.; Rafieian-Kopaei, M.; Saadat, M.; Shabanian, M. Therapeutic effects of Quercus persica L. fruit skin on healing of second-degree burn wounds in animal model. J. Zanjan Uni. Med. Sci. Health Serv., 2017, 25(113), 81-92.
[13]
Shabanian, S.; Khalili, S.; Lorigooini, Z.; Malekpour, A.; Heidari-Soureshjani, S. The effect of vaginal cream containing ginger in users of clotrimazole vaginal cream on vaginal candidiasis. J. Adv. Pharm. Technol. Res., 2017, 8(2), 80-84.
[PMID: 28516061]
[14]
Shirani, M.; Raeisi, R.; Heidari-Soureshjani, S.; Asadi-Samani, M.; Luther, T. A review for discovering hepatoprotective herbal drugs with least side effects on kidney. J. Nephropharmacol., 2017, 6(2)
[http://dx.doi.org/10.15171/npj.2017.03]
[15]
Yavangi, M.; Rabiee, S.; Nazari, S.; Farimani-Sanoee, M.; Amiri, I.; Bahmanzadeh, M. Comparison of the effect of Oestrogen plus Foeniculum vulgare seed and oestrogen alone on increase in endometrial thickness in infertile women. J. Clin. Diagn. Res., 2018, 12(1), QC01-QC04.
[16]
Heidari-Soreshjani, S.; Asadi-Samani, M.; Yang, Q.; Saeedi-Boroujeni, A. Phytotherapy of nephrotoxicity-induced by cancer drugs: An updated review. J. Nephropathol., 2017, 6(3), 254-263.
[http://dx.doi.org/10.15171/jnp.2017.41 ] [PMID: 28975109]
[17]
Shirani-Boroujeni, M.; Heidari-Soureshjani, S. Keivani Hafshejani, Z. Impact of oral capsule of Peganum harmala on alleviating urinary symptoms in men with benign prostatic hyperplasia; A randomized clinical trial. J. Renal Inj. Prev., 2016, 6(2), 127-131.
[http://dx.doi.org/10.15171/jrip.2017.25 ] [PMID: 28497089]
[18]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, Part 2: Review Study. J. Evid. Based Complementary. Alternat. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927 ] [PMID: 28359161]
[19]
Sani, M.R.M.; Asadi-Samani, M.; Rouhi-Boroujeni, H.; Banitalebi-Dehkordi, M. Phytopharmacology and phytotherapy of regulatory T cells: A new approach to treat multiple sclerosis. Der Pharmacia Lettre, 2016, 8(3), 215-220.
[20]
Arteaga, O.; Álvarez, A.; Revuelta, M.; Santaolalla, F.; Urtasun, A.; Hilario, E. Role of antioxidants in neonatal hypoxic-ischemic brain injury: New therapeutic approaches. Int. J. Mol. Sci., 2017, 18(2)E265
[http://dx.doi.org/10.3390/ijms18020265 ] [PMID: 28134843]
[21]
Karcher, L.; Zagermann, P.; Krieglstein, J. Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn Schmiedebergs Arch. Pharmacol., 1984, 327(1), 31-35.
[http://dx.doi.org/10.1007/BF00504988 ] [PMID: 6493348]
[22]
Akisü, M.; Kültürsay, N.; Coker, I.; Hüseyinov, A. Platelet activating factor is an important mediator in hypoxic ischemic brain injury in the newborn rat. Flunarizine and Ginkgo biloba extract reduce PAF concentration in the brain. Biol. Neonate, 1998, 74(6), 439-444.
[http://dx.doi.org/10.1159/000014065 ] [PMID: 9784635]
[23]
Rawal, A.; Muddeshwar, M.; Biswas, S. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices. Biochem. Biophys. Res. Commun., 2004, 324(2), 588-596.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.094 ] [PMID: 15474468]
[24]
Rawal, A.K.; Muddeshwar, M.G.; Biswas, S.K. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation. BMC Complement. Altern. Med., 2004, 4, 11.
[http://dx.doi.org/10.1186/1472-6882-4-11 ] [PMID: 15310392]
[25]
Yokoyama, K.; Shimada, Y.; Hori, E.; Sekiya, N.; Goto, H.; Sakakibara, I.; Nishijo, H.; Terasawa, K. Protective effects of Chotosan and hooks and stems of Uncaria sinensis against delayed neuronal death after transient forebrain ischemia in gerbil. Phytomedicine, 2004, 11(6), 478-489.
[http://dx.doi.org/10.1016/j.phymed.2003.04.001 ] [PMID: 15500258]
[26]
Wang, W.; Gu, L.; Dong, L.; Wang, X.; Ling, C.; Li, M. Protective effect of Portulaca oleracea extracts on hypoxic nerve tissue and its mechanism. Asia Pac. J. Clin. Nutr., 2007, 16(Suppl. 1), 227-233.
[PMID: 17392109]
[27]
Schild, L.; Roth, A.; Keilhoff, G.; Gardemann, A.; Brödemann, R. Protection of hippocampal slices against hypoxia/hypoglycemia injury by a Gynostemma pentaphyllum extract. Phytomedicine, 2009, 16(8), 734-743.
[http://dx.doi.org/10.1016/j.phymed.2009.03.006 ] [PMID: 19406629]
[28]
Liu, Z.; Li, P.; Zhao, D.; Tang, H.; Guo, J. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusioninduced focal cerebral ischemia in rats. Behav. Brain Funct., 2010, 6, 61.
[http://dx.doi.org/10.1186/1744-9081-6-61 ] [PMID: 20955613]
[29]
Brimson, J.M.; Tencomnao, T. Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death. Molecules, 2011, 16(8), 6322-6338.
[http://dx.doi.org/10.3390/molecules16086322 ] [PMID: 21792150]
[30]
Bayat, M.; Azami Tameh, A.; Hossein Ghahremani, M.; Akbari, M.; Mehr, S.E.; Khanavi, M.; Hassanzadeh, G. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo. Daru, 2012, 20(1), 42.
[http://dx.doi.org/10.1186/2008-2231-20-42 ] [PMID: 23351182]
[31]
Jebasingh, D.; Devavaram Jackson, D.; Venkataraman, S.; Adeghate, E.; Starling Emerald, B. The protective effects of Cyperus rotundus on behavior and cognitive function in a rat model of hypoxia injury. Pharm. Biol., 2014, 52(12), 1558-1569.
[http://dx.doi.org/10.3109/13880209.2014.908395 ] [PMID: 25026346]
[32]
Saraswat, D.; Nehra, S.; Saxena, S.; Singh, S.B. Ameliorative effect of Vitex peduncularis in neuroblastoma cells against oxidative stress under hypoxic condition. J. Herb. Med., 2014, 4(3), 115-126.
[http://dx.doi.org/10.1016/j.hermed.2014.04.005]
[33]
Mohammad Alharbi, W.D.; Azmat, A. Anticonvulsant and neuroprotective effects of the Acacia tortilis growing in KSA. Pak. J. Pharm. Sci., 2015, 28(2), 531-534.
[PMID: 25730808]
[34]
Ba, X.H.; Min, L.Q. Effects of Ginkgo biloba extract on the apoptosis of oxygen and glucose-deprived SH-SY5Y cells and its mechanism. Indian J. Pharmacol., 2015, 47(1), 101-104.
[http://dx.doi.org/10.4103/0253-7613.150372 ] [PMID: 25821320]
[35]
Tsai, H.D.; Wu, J.S.; Kao, M.H.; Chen, J.J.; Sun, G.Y.; Ong, W.Y.; Lin, T.N. Clinacanthus nutans protects cortical neurons against hypoxia-induced toxicity by downregulating HDAC1/6. Neuromolecular Med., 2016, 18(3), 274-282.
[http://dx.doi.org/10.1007/s12017-016-8401-2 ] [PMID: 27165113]
[36]
Wu, J.S.; Kao, M.H.; Tsai, H.D.; Cheung, W.M.; Chen, J.J.; Ong, W.Y.; Sun, G.Y.; Lin, T.N. Clinacanthus nutans mitigates neuronal apoptosis and ischemic brain damage through augmenting the C/EBPβ-Driven PPAR-γ transcription. Mol. Neurobiol., 2018, 55(7), 5425-5438.
[http://dx.doi.org/10.1007/s12035-017-0776-z ] [PMID: 28942553]
[37]
Zhang, D.J.; Lei, J.; Hong, E.K.; Lu, D.X.; Yuan, W.T.; Yang, Z.T. Anti-hypoxia effects of the ethanol extract of Oxytropis ochrocephala. Legume Res., 2016, 39(6), 914-920.
[http://dx.doi.org/10.18805/lr.v0iOF.3544]
[38]
Cheng, C.Y.; Ho, T.Y.; Hsiang, C.Y.; Tang, N.Y.; Hsieh, C.L.; Kao, S.T.; Lee, Y.C. Angelica sinensis exerts angiogenic and antiapoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1[Formula: see text]/VEGF-A signaling in rats. Am. J. Chin. Med., 2017, 45(8), 1683-1708.
[http://dx.doi.org/10.1142/S0192415X17500914 ] [PMID: 29121798]
[39]
Sharma, D.; Biswal, S.N.; Kumar, K.; Bhardwaj, P.; Barhwal, K.K.; Kumar, A.; Hota, S.K.; Chaurasia, O.P. Estrogen receptor β mediated neuroprotective efficacy of Cicer microphyllum seed extract in global hypoxia. Neurochem. Res., 2017, 42(12), 3474-3489.
[http://dx.doi.org/10.1007/s11064-017-2395-5 ] [PMID: 28861754]
[40]
Hirokawa, S.; Nose, M.; Amagaya, S.; Oyama, T.; Ogihara, Y. Protective effect of hachimi-jio-gan, an oriental herbal medicinal mixture, against cerebral anoxia. J. Ethnopharmacol., 1993, 40(3), 201-206.
[http://dx.doi.org/10.1016/0378-8741(93)90069-H ] [PMID: 8145576]
[41]
Nishizawa, K.; Inoue, O.; Saito, Y.; Suzuki, A. Protective effects of kamikihi-to, a traditional Chinese medicine, against cerebral ischemia, hypoxia and anoxia in mice and gerbils. Jpn. J. Pharmacol., 1994, 64(3), 171-177.
[http://dx.doi.org/10.1254/jjp.64.171 ] [PMID: 8022119]
[42]
Zhang, Y.W.; Morita, I.; Shao, G.; Yao, X.S.; Murota, S. Screening of anti-hypoxia/reoxygenation agents by an in vitro model. Part 1: Natural inhibitors for protein tyrosine kinase activated by hypoxia/reoxygenation in cultured human umbilical vein endothelial cells. Planta Med., 2000, 66(2), 114-118.
[http://dx.doi.org/10.1055/s-2000-11128 ] [PMID: 10763582]
[43]
Lin, Z.; Yan, Y.; Zhu, D.; Yu, B.; Wang, Q. Protective effects of FBD--An experimental Chinese traditional medicinal formula on memory dysfunction in mice induced by cerebral ischemiareperfusion. J. Ethnopharmacol., 2005, 97(3), 477-483.
[http://dx.doi.org/10.1016/j.jep.2004.12.001 ] [PMID: 15740883]
[44]
Zhao, L.G.; Wu, X.Z.; Wu, X.X. Beneficial effect of HHI-I on cerebral microcirculation, blood-brain barrier in rats and antihypoxic activity in mice. Chin. J. Integr. Med., 2009, 15(2), 128-132.
[http://dx.doi.org/10.1007/s11655-009-0128-6 ] [PMID: 19407951]
[45]
Lee, J.J.; Hsu, W.H.; Yen, T.L.; Chang, N.C.; Luo, Y.J.; Hsiao, G.; Sheu, J.R. Traditional Chinese medicine, Xue-Fu-Zhu-Yu decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. J. Ethnopharmacol., 2011, 134(3), 824-830.
[http://dx.doi.org/10.1016/j.jep.2011.01.033 ] [PMID: 21315142]
[46]
Moha Ou Maati, H.; Borsotto, M.; Chatelain, F.; Widmann, C.; Lazdunski, M.; Heurteaux, C. Activation of ATP-sensitive potassium channels as an element of the neuroprotective effects of the traditional chinese medicine MLC901 against oxygen glucose deprivation. Neuropharmacology, 2012, 63(4), 692-700.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.035 ] [PMID: 22659084]
[47]
Ye, Y.; Huang, C.; Jiang, L.; Shen, X.; Zhu, S.; Rao, Y.; Wang, J.; Zhang, Q. Huanglian-Jie-Du-Tang extract protects against chronic brain injury after focal cerebral ischemia via hypoxia-inducible factor-1α-regulated vascular endothelial growth factor signaling in mice. Biol. Pharm. Bull., 2012, 35(3), 355-361.
[http://dx.doi.org/10.1248/bpb.35.355 ] [PMID: 22382321]
[48]
Zhang, Q.; Bian, H.; Li, Y.; Guo, L.; Tang, Y.; Zhu, H. Preconditioning with the traditional Chinese medicine Huang-Lian-Jie-Du-Tang initiates HIF-1α-dependent neuroprotection against cerebral ischemia in rats. J. Ethnopharmacol., 2014, 154(2), 443-452.
[http://dx.doi.org/10.1016/j.jep.2014.04.022 ] [PMID: 24751364]
[49]
Ko, C.N.; Park, I.S.; Park, S.U.; Jung, W.S.; Moon, S.K.; Park, J.M.; Kang, C.; Cho, K.H. Neuroprotective effect of Chunghyuldan (Qing Xue Dan) on hypoxia-reoxygenation induced damage of neuroblastoma 2a cell lines. Chin. J. Integr. Med., 2013, 19(12), 940-944.
[http://dx.doi.org/10.1007/s11655-013-1657-6 ] [PMID: 24307315]
[50]
Liu, D.S.; Zhou, Y.H.; Liang, E.S.; Li, W.; Lin, W.W.; Chen, F.F.; Gao, W. Neuroprotective effects of the Chinese Yi-Qi-Bu-Shen recipe extract on injury of rat hippocampal neurons induced by hypoxia/reoxygenation. J. Ethnopharmacol., 2013, 145(1), 168-174.
[http://dx.doi.org/10.1016/j.jep.2012.10.046 ] [PMID: 23127652]
[51]
Liu, X.; Zhu, W.; Guan, S.; Feng, R.; Zhang, H.; Liu, Q.; Sun, P.; Lin, D.; Zhang, N.; Shen, J. Metabolomic analysis of anti-hypoxia and anti-anxiety effects of Fu Fang Jin Jing Oral Liquid. PLoS One, 2013, 8(10), e78281.
[http://dx.doi.org/10.1371/journal.pone.0078281 ] [PMID: 24205180]
[52]
Qin, Y.; Luo, Y.; Gu, W.; Yang, L.; Shen, X.; Gu, Z.; Zhang, H.; Gao, X. Evidence for a therapeutic effect of Braintone on ischemic brain damage. Neural Regen. Res., 2013, 8(19), 1743-1755.
[PMID: 25206471]
[53]
Liu, X.; Min, Y.; Gu, W.; Wang, Y.; Tian, Y. Buyanghuanwu Tang therapy for neonatal rats with hypoxic ischemic encephalopathy. Int. J. Clin. Exp. Med., 2015, 8(10), 18448-18454.
[PMID: 26770451]
[54]
Kim, H.N.; Pak, M.E.; Shin, M.J.; Kim, S.Y.; Shin, Y.B.; Yun, Y.J.; Shin, H.K.; Choi, B.T. Beneficial effects of Jiawei Shenqiwan and treadmill training on deficits associated with neonatal hypoxic-ischemia in rats. Exp. Ther. Med., 2017, 13(5), 2134-2142.
[http://dx.doi.org/10.3892/etm.2017.4286 ] [PMID: 28565820]
[55]
Shilova, I.V.; Suslov, N.I.; Korotkova, E.I.; Samylina, I.A.; Petrova, E.V.; Mazin, E.V. Antioxidant properties of herbal mixtures improving cognitive-mnestic functions. Pharm. Chem. J., 2017, 51(8), 678-682.
[http://dx.doi.org/10.1007/s11094-017-1673-5]
[56]
Xu, Y.; Wang, Y.; Wang, G.; Ye, X.; Zhang, J.; Cao, G.; Zhao, Y.; Gao, Z.; Zhang, Y.; Yu, B.; Kou, J. YiQiFuMai powder injection protects against ischemic stroke via inhibiting neuronal apoptosis and PKCδ/Drp1-mediated excessive mitochondrial fission. Oxid. Med. Cell. Longev., 2017.
[57]
Yano, Y.; Yano, H.; Takahashi, H.; Yoshimoto, K.; Tsuda, S.; Fujiyama, K.; Izumo-Shimizu, Y.; Motoie, R.; Ito, M.; Tanaka, J.; Ishii, E.; Fukuda, M. Goreisan inhibits upregulation of aquaporin 4 and formation of cerebral edema in the rat model of juvenile Hypoxic-Ischemic encephalopathy. Evid. Based Complement. Alternat. Med., 2017.20173209219
[http://dx.doi.org/10.1155/2017/3209219 ] [PMID: 29234383]
[58]
Chen, Y.; Sun, Y.; Li, W.; Wei, H.; Long, T.; Li, H.; Xu, Q.; Liu, W. Systems pharmacology dissection of the anti-stroke mechanism for the Chinese traditional medicine Xing-Nao-Jing. J. Pharmacol. Sci., 2018, 136(1), 16-25.
[http://dx.doi.org/10.1016/j.jphs.2017.11.005 ] [PMID: 29336875]
[59]
Liu, B.; Luo, C.; Zheng, Z.; Xia, Z.; Zhang, Q.; Ke, C.; Liu, R.; Zhao, Y. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke. Phytomedicine, 2018, 44, 20-31.
[http://dx.doi.org/10.1016/j.phymed.2018.04.025 ] [PMID: 29895489]
[60]
Ikeya, Y.; Takeda, S.; Tunakawa, M.; Karakida, H.; Toda, K.; Yamaguchi, T.; Aburada, M. Cognitive improving and cerebral protective effects of acylated oligosaccharides in Polygala tenuifolia. Biol. Pharm. Bull., 2004, 27(7), 1081-1085.
[http://dx.doi.org/10.1248/bpb.27.1081 ] [PMID: 15256744]
[61]
Krasteva, I.; Nikolova, I.; Danchev, N.; Nikolov, S. Phytochemical analysis of ethyl acetate extract from Astragalus corniculatus Bieb. and brain antihypoxic activity. Acta Pharm., 2004, 54(2), 151-156.
[PMID: 15274758]
[62]
Xia, W.J.; Yang, M.; Fok, T.F.; Li, K.; Chan, W.Y.; Ng, P.C.; Ng, H.K.; Chik, K.W.; Wang, C.C.; Gu, G.J.; Woo, K.S.; Fung, K.P. Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia-ischemia brain damage. Pediatr. Res., 2005, 58(4), 784-790.
[http://dx.doi.org/10.1203/01.PDR.0000180550.99162.BC ] [PMID: 16189210]
[63]
Zeng, X.; Zhang, S.; Zhang, L.; Zhang, K.; Zheng, X. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med., 2006, 72(15), 1359-1365.
[http://dx.doi.org/10.1055/s-2006-951709 ] [PMID: 17089323]
[64]
Xu, X.; Lu, Y.; Bie, X. Protective effects of gastrodin on hypoxiainduced toxicity in primary cultures of rat cortical neurons. Planta Med., 2007, 73(7), 650-654.
[http://dx.doi.org/10.1055/s-2007-981523 ] [PMID: 17583824]
[65]
Chen, Z.G.; Lu, Y.; Wang, Z.T.; Tao, X.Y.; Wei, D.Z. Protective effects of salidroside on hypoxia/reoxygenation injury by sodium hydrosulfite in PC12 cells. Pharm. Biol., 2007, 45(8), 604-612.
[http://dx.doi.org/10.1080/13880200701538666]
[66]
Choi, S.Y.; Kim, S.; Son, D.; Lee, P.; Lee, J.; Lee, S.; Kim, D.S.; Park, Y.; Kim, S.Y. Protective effect of (4-methoxybenzylidene)-(3-methoxynophenyl)amine against neuronal cell death induced by oxygen and glucose deprivation in rat organotypic hippocampal slice culture. Biol. Pharm. Bull., 2007, 30(1), 189-192.
[http://dx.doi.org/10.1248/bpb.30.189 ] [PMID: 17202685]
[67]
Huang, N.K.; Chern, Y.; Fang, J.M.; Lin, C.I.; Chen, W.P.; Lin, Y.L. Neuroprotective principles from Gastrodia elata. J. Nat. Prod., 2007, 70(4), 571-574.
[http://dx.doi.org/10.1021/np0605182 ] [PMID: 17381154]
[68]
Wang, Z.; An, L.J.; Duan, Y.L.; Li, Y.C.; Jiang, B. Catalpol protects rat pheochromocytoma cells against oxygen and glucose deprivation-induced injury. Neurol. Res., 2008, 30(1), 106-112.
[http://dx.doi.org/10.1179/016164107X229894 ] [PMID: 17716390]
[69]
Zhou, X.Q.; Zeng, X.N.; Kong, H.; Sun, X.L. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci. Lett., 2008, 447(1), 31-36.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064 ] [PMID: 18838103]
[70]
Zhang, Q.; Qian, Z.; Pan, L.; Li, H.; Zhu, H. Hypoxia-inducible factor 1 mediates the anti-apoptosis of berberine in neurons during hypoxia/ischemia. Acta Physiol. Hung., 2012, 99(3), 311-323.
[http://dx.doi.org/10.1556/APhysiol.99.2012.3.8 ] [PMID: 22982719]
[71]
Nadjafi, S.; Ebrahimi, S.A.; Rahbar-Roshandel, N. Protective effects of Berberine on Oxygen-Glucose deprivation/reperfusion on oligodendrocyte cell line (OLN-93). Int. J. Prev. Med., 2014, 5(9), 1153-1160.
[PMID: 25317299]
[72]
Simões Pires, E.N.; Frozza, R.L.; Hoppe, J.B. Menezes, Bde.M.; Salbego, C.G. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res., 2014, 1557, 26-33.
[http://dx.doi.org/10.1016/j.brainres.2014.02.021 ] [PMID: 24560603]
[73]
Benaissa, F.; Mohseni-Rad, H.; Rahimi-Moghaddam, P.; Mahmoudian, M. Berberine reduces the hypoxic-ischemic insult in rat pup brain. Acta Physiol. Hung., 2009, 96(2), 213-220.
[http://dx.doi.org/10.1556/APhysiol.96.2009.2.6 ] [PMID: 19457765]
[74]
Bei, W.; Zang, L.; Guo, J.; Peng, W.; Xu, A.; Good, D.A.; Hu, Y.; Wu, W.; Hu, D.; Zhu, X.; Wei, M.; Li, C. Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves. J. Ethnopharmacol., 2009, 126(1), 134-142.
[http://dx.doi.org/10.1016/j.jep.2009.07.034 ] [PMID: 19665536]
[75]
Chang, Y.; Hsieh, C.Y.; Peng, Z.A.; Yen, T.L.; Hsiao, G.; Chou, D.S.; Chen, C.M.; Sheu, J.R. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J. Biomed. Sci., 2009, 16, 9.
[http://dx.doi.org/10.1186/1423-0127-16-9 ] [PMID: 19272172]
[76]
Schreihofer, D.A.; Redmond, L. Soy phytoestrogens are neuroprotective against stroke-like injury in vitro. Neuroscience, 2009, 158(2), 602-609.
[http://dx.doi.org/10.1016/j.neuroscience.2008.10.003 ] [PMID: 18976694]
[77]
Morán, J.; Perez-Basterrechea, M.; Garrido, P.; Díaz, E.; Alonso, A.; Otero, J.; Colado, E.; González, C. Effects of Estrogen and Phytoestrogen treatment on an in vitro model of recurrent stroke on HT22 neuronal cell line. Cell. Mol. Neurobiol., 2017, 37(3), 405-416.
[http://dx.doi.org/10.1007/s10571-016-0372-1 ] [PMID: 27059741]
[78]
Wang, Y.X.; Tian, K.; He, C.C.; Ma, X.L.; Zhang, F.; Wang, H.G.; An, D.; Heng, B.; Jiang, Y.G.; Liu, Y.Q. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells. Environ. Toxicol. Pharmacol., 2017, 50, 227-233.
[http://dx.doi.org/10.1016/j.etap.2017.01.022 ] [PMID: 28192752]
[79]
Guo, H.; Hu, L.M.; Wang, S.X.; Wang, Y.L.; Shi, F.; Li, H.; Liu, Y.; Kang, L.Y.; Gao, X.M. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. Chin. J. Physiol., 2011, 54(6), 399-405.
[PMID: 22229507]
[80]
Wang, W.W.; Han, J.H.; Wang, L.; Bao, T.H. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. Iran. J. Basic Med. Sci., 2017, 20(3), 272-279.
[PMID: 28392899]
[81]
Chai, L.; Guo, H.; Li, H.; Wang, S.; Wang, Y.L.; Shi, F.; Hu, L.M.; Liu, Y.; Adah, D. Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. J. Ethnopharmacol., 2013, 150(1), 100-107.
[http://dx.doi.org/10.1016/j.jep.2013.08.011 ] [PMID: 24012966]
[82]
Hei, M.; Luo, Y.; Zhang, X.; Liu, F. Tanshinone IIa alleviates the biochemical changes associated with hypoxic ischemic brain damage in a rat model. Phytother. Res., 2011, 25(12), 1865-1869.
[http://dx.doi.org/10.1002/ptr.3500 ] [PMID: 21538624]
[83]
Yang, L.; Zhang, B.; Yin, L.; Cai, B.; Shan, H.; Zhang, L.; Lu, Y.; Bi, Z. Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell. Physiol. Biochem., 2011, 27(1), 23-30.
[http://dx.doi.org/10.1159/000325202 ] [PMID: 21325818]
[84]
Huang, X.; Li, Y.; Li, J.; Feng, Y.; Xu, X. Tanshinone IIA dampens the cell proliferation induced by ischemic insult in rat astrocytes via blocking the activation of HIF-1α/SDF-1 signaling. Life Sci., 2014, 112(1-2), 59-67.
[http://dx.doi.org/10.1016/j.lfs.2014.07.020 ] [PMID: 25064828]
[85]
Chen, J.F.; Fan, J.; Tian, X.W.; Tang, T.S. Protective effects of two constituents of Chinese herbs on spinal motor neurons from embryonic rats with hypoxia injury. Afr. J. Tradit. Complement. Altern. Med., 2011, 9(2), 234-241.
[PMID: 23983340]
[86]
Kim, J.Y.; Lee, H.K.; Hwang, B.Y.; Kim, S.; Yoo, J.K.; Seong, Y.H. Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons. Arch. Pharm. Res., 2012, 35(6), 1115-1122.
[http://dx.doi.org/10.1007/s12272-012-0620-y ] [PMID: 22870822]
[87]
Li, X.J.; Hou, J.C.; Sun, P.; Li, P.T.; He, R.Q.; Liu, Y.; Zhao, L.Y.; Hua, Q. Neuroprotective effects of tongluojiunao in neurons exposed to oxygen and glucose deprivation. J. Ethnopharmacol., 2012, 141(3), 927-933.
[http://dx.doi.org/10.1016/j.jep.2012.03.042 ] [PMID: 22472112]
[88]
Yan, W.; Liu, J. Effects of Chinese herbal monomers on oxidative phosphorylation and membrane potential in cerebral mitochondria isolated from hypoxia-exposed rats in vitro. Neural Regen. Res., 2012, 7(27), 2099-2106.
[PMID: 25558222]
[89]
Zhu, H.; Wang, Z.; Xing, Y.; Gao, Y.; Ma, T.; Lou, L.; Lou, J.; Gao, Y.; Wang, S.; Wang, Y. Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells. J. Ethnopharmacol., 2012, 141(2), 714-720.
[http://dx.doi.org/10.1016/j.jep.2011.08.063 ] [PMID: 21920425]
[90]
Biradar, S.M.; Joshi, H.; Tarak, K.C. Cerebroprotective effect of isolated harmine alkaloids extracts of seeds of Peganum harmala L. on sodium nitrite-induced hypoxia and ethanol-induced neurodegeneration in young mice. Pak. J. Biol. Sci., 2013, 16(23), 1687-1697.
[http://dx.doi.org/10.3923/pjbs.2013.1687.1697 ] [PMID: 24506035]
[91]
Ding, Y.; Hou, X.; Chen, L.; Li, H.; Tang, Y.; Zhou, H.; Zhao, S.; Zheng, Y. Protective action of tetramethylpyrazine on the medulla oblongata in rats with chronic hypoxia. Auton. Neurosci., 2013, 173(1-2), 45-52.
[http://dx.doi.org/10.1016/j.autneu.2012.11.004 ] [PMID: 23218834]
[92]
Zhong, M.; Ma, W.; Zhang, X.; Wang, Y.; Gao, X. Tetramethyl pyrazine protects hippocampal neurons against anoxia/reoxygenation injury through inhibiting apoptosis mediated by JNK/MARK signal pathway. Med. Sci. Monit., 2016, 22, 5082-5090.
[http://dx.doi.org/10.12659/MSM.898921 ] [PMID: 28009855]
[93]
Bao, G.; Li, C.; Qi, L.; Wang, N.; He, B. Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes. Biomed. Pharmacother., 2016, 84, 925-930.
[http://dx.doi.org/10.1016/j.biopha.2016.10.007 ] [PMID: 27764754]
[94]
Yang, L.J.; Wang, J.; Tian, Z.F.; Yuan, Y.F. Shenfu injection attenuates neonatal hypoxic-ischemic brain damage in rat. Neurol. Sci., 2013, 34(9), 1571-1574.
[http://dx.doi.org/10.1007/s10072-013-1288-x ] [PMID: 23344742]
[95]
Dong, H.J.; Shang, C.Z.; Peng, D.W.; Xu, J.; Xu, P.X.; Zhan, L.; Wang, P. Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol. Sci., 2014, 35(9), 1387-1392.
[http://dx.doi.org/10.1007/s10072-014-1718-4 ] [PMID: 24651933]
[96]
Bonfanti, R.; Musumeci, T.; Russo, C.; Pellitteri, R. The protective effect of curcumin in olfactory ensheathing cells exposed to hypoxia. Eur. J. Pharmacol., 2017, 796, 62-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.038 ] [PMID: 27889433]
[97]
Sun, J.; Qu, Y.; He, H.; Fan, X.; Qin, Y.; Mao, W.; Xu, L. Protective effect of polydatin on learning and memory impairments in neonatal rats with hypoxici-schemic brain injury by up-regulating brain-derived neurotrophic factor. Mol. Med. Rep., 2014, 10(6), 3047-3051.
[http://dx.doi.org/10.3892/mmr.2014.2577 ] [PMID: 25241777]
[98]
Yang, Z.B.; Tan, B.; Li, T.B.; Lou, Z.; Jiang, J.L.; Zhou, Y.J.; Yang, J.; Luo, X.J.; Peng, J. Protective effect of vitexin compound B-1 against hypoxia/reoxygenation-induced injury in differentiated PC12 cells via NADPH oxidase inhibition. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(9), 861-871.
[http://dx.doi.org/10.1007/s00210-014-1006-0 ] [PMID: 24947869]
[99]
Min, J.W.; Hu, J.J.; He, M.; Sanchez, R.M.; Huang, W.X.; Liu, Y.Q.; Bsoul, N.B.; Han, S.; Yin, J.; Liu, W.H.; He, X.H.; Peng, B.W. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology, 2015, 99, 38-50.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.007 ] [PMID: 26187393]
[100]
Yu, S.; Wang, C.; Cheng, Q.; Xu, H.; Zhang, S.; Li, L.; Zhang, Q.; Gu, X.; Ding, F. An active component of Achyranthes bidentata polypeptides provides neuroprotection through inhibition of mitochondrial-dependent apoptotic pathway in cultured neurons and in animal models of cerebral ischemia. PLoS One, 2014, 9(10)e109923
[http://dx.doi.org/10.1371/journal.pone.0109923 ] [PMID: 25334016]
[101]
Li, X.; Zhao, Y.; Liu, P.; Zhu, X.; Chen, M.; Wang, H.; Lu, D.; Qi, R. Senegenin inhibits hypoxia/reoxygenation-induced neuronal apoptosis by upregulating rhoGDIα. Mol. Neurobiol., 2015, 52(3), 1561-1571.
[http://dx.doi.org/10.1007/s12035-014-8948-6 ] [PMID: 25367882]
[102]
Yang, Z.B.; Luo, X.J.; Ren, K.D.; Peng, J.J.; Tan, B.; Liu, B.; Lou, Z.; Xiong, X.M.; Zhang, X.J.; Ren, X.; Peng, J. Beneficial effect of magnesium lithospermate B on cerebral ischemia-reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur. J. Pharmacol., 2015, 766, 91-98.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.042 ] [PMID: 26420356]
[103]
Yin, X.; Zhang, X.; Lv, C.; Li, C.; Yu, Y.; Wang, X.; Han, F. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci. Rep., 2015, 5, 14507.
[http://dx.doi.org/10.1038/srep14507 ] [PMID: 26419512]
[104]
Zhao, P.; Zhou, R.; Li, H.N.; Yao, W.X.; Qiao, H.Q.; Wang, S.J.; Niu, Y.; Sun, T.; Li, Y.X.; Yu, J.Q. Oxymatrine attenuated hypoxic-ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death. Neurochem. Int., 2015, 89, 17-27.
[http://dx.doi.org/10.1016/j.neuint.2015.06.008 ] [PMID: 26120022]
[105]
Ding, Y.; Hou, X.; Chen, L.; Zhou, H.; Gong, Y.; Dai, L.; Zheng, Y. Heme oxygenase-1 dependant pathway contributes to protection by tetramethylpyrazine against chronic hypoxic injury on medulla oblongata in rats. J. Neurol. Sci., 2016, 361, 101-111.
[http://dx.doi.org/10.1016/j.jns.2015.12.026 ] [PMID: 26810525]
[106]
Yang, G.; Qian, C.; Wang, N.; Lin, C.; Wang, Y.; Wang, G.; Piao, X. Tetramethylpyrazine protects against oxygen-glucose deprivation-induced brain microvascular endothelial cells injury via Rho/Rho-kinase signaling pathway. Cell. Mol. Neurobiol., 2017, 37(4), 619-633.
[http://dx.doi.org/10.1007/s10571-016-0398-4 ] [PMID: 27380043]
[107]
Hu, Y.; Lv, X.; Zhang, J.; Meng, X. Comparative study on the protective effects of salidroside and hypoxic preconditioning for attenuating anoxia-induced apoptosis in Pheochromocytoma (PC12) cells. Med. Sci. Monit., 2016, 22, 4082-4091.
[http://dx.doi.org/10.12659/MSM.897640 ] [PMID: 27794583]
[108]
Shi, X.; Yu, W.; Yang, T.; Liu, W.; Zhao, Y.; Sun, Y.; Chai, L.; Gao, Y.; Dong, B.; Zhu, L. Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. J. Ethnopharmacol., 2016, 190, 301-312.
[http://dx.doi.org/10.1016/j.jep.2016.06.017 ] [PMID: 27288754]
[109]
Shi, Z.; Wu, D.; Yao, J.P.; Yao, X.; Huang, Z.; Li, P.; Wan, J.B.; He, C.; Su, H. Protection against oxygen-glucose deprivation/reperfusion injury in cortical neurons by combining omega-3 polyunsaturated acid with Lyciumbarbarum polysaccharide. Nutrients, 2016, 8(1), E41.
[http://dx.doi.org/10.3390/nu8010041 ] [PMID: 26771636]
[110]
Wang, Y.; Tu, L.; Li, Y.; Chen, D.; Wang, S. Notoginsenoside R1 protects against neonatal cerebral hypoxic-ischemic injury through estrogen receptor-dependent activation of endoplasmic reticulum stress pathways. J. Pharmacol. Exp. Ther., 2016, 357(3), 591-605.
[http://dx.doi.org/10.1124/jpet.115.230359 ] [PMID: 26892460]
[111]
Tu, L.; Wang, Y.; Chen, D.; Xiang, P.; Shen, J.; Li, Y.; Wang, S. Protective effects of Notoginsenoside R1 via regulation of the PI3K-Akt-mTOR/JNK pathway in neonatal cerebral hypoxic ischemic brain injury. Neurochem. Res., 2018, 43(6), 1210-1226.
[http://dx.doi.org/10.1007/s11064-018-2538-3 ] [PMID: 29696512]
[112]
Mori, M.A.; Meyer, E.; Soares, L.M.; Milani, H.; Guimarães, F.S.; de Oliveira, R.M.W. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 75, 94-105.
[http://dx.doi.org/10.1016/j.pnpbp.2016.11.005 ] [PMID: 27889412]
[113]
Sadeghnia, H.R.; Arjmand, F.; Ghorbani, A. Neuroprotective effect of Boswellia serrata and its active constituent acetyl 11-Keto-β-boswellic acid against oxygen-glucose-serum deprivation-induced cell injury. Acta Pol. Pharm., 2017, 74(3), 911-920.
[PMID: 29513961]
[114]
Yu, D.S.; Wang, Y.S.; Bi, Y.L.; Guo, Z.P.; Yuan, Y.J.; Tong, S.M.; Su, R.C.; Ge, L.H.; Wang, J.; Pan, Y.L.; Guan, T.T.; Cao, Y. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway. Brain Res., 2017, 1657, 279-287.
[http://dx.doi.org/10.1016/j.brainres.2016.12.007 ] [PMID: 28011395]
[115]
Solati, K.; Asadi-Samani, M.; Heidari-Soureshjani, S. Medicinal plants effective on Serotonin level: A systematic review. Br. J. Pharm. Res., 2017, 19(4)
[116]
Solati, K.; Asadi-Samani, M.; Heidari-Soureshjani, S.; Pocock, L. Effects and mechanisms of medicinal plants on dopamine reward system to reduce complications of substance abuse: A systematic review. World Fam Med, 2017, 15(10), 202-207.
[http://dx.doi.org/10.5742/MEWFM.2017.93162]
[117]
Garbarino, V.R.; Orr, M.E.; Rodriguez, K.A.; Buffenstein, R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch. Biochem. Biophys., 2015, 576, 8-16.
[http://dx.doi.org/10.1016/j.abb.2015.01.029 ] [PMID: 25841340]
[118]
Brady, S.; Siegel, G.; Albers, R.W.; Price, D., Eds.; Basic Neurochemistry: Molecular, Cellular and Medical Aspects, (6th ed); Elsevier: Amsterdam, Netherlands, 2005.
[119]
Iadecola, C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci., 1997, 20(3), 132-139.
[http://dx.doi.org/10.1016/S0166-2236(96)10074-6 ] [PMID: 9061868]
[120]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006 ] [PMID: 17237348]
[121]
Ghatreh-Samani, M.; Esmaeili, N.; Soleimani, M.; Asadi-Samani, M.; Ghatreh-Samani, K.; Shirzad, H. Oxidative stress and agerelated changes in T cells: Is thalassemia a model of accelerated immune system aging? Cent. Eur. J. Immunol., 2016, 41(1), 116-124.
[http://dx.doi.org/10.5114/ceji.2015.56973 ] [PMID: 27095931]
[122]
Baharara, J.; Ramezani, T.; Mousavi, M.; Asadi-Samani, M. Antioxidant and anti-inflammatory activity of green synthe-sized silver nanoparticles using Salvia officinalis extract. Ann. Trop. Med. Public Health, 2017, 10(5), 1265-1270.
[http://dx.doi.org/10.4103/ATMPH.ATMPH_174_17]
[123]
Asadi-Samani, M.; Bagheri, N.; Rafieian-Kopaei, M.; Shirzad, H. Inhibition of Th1 and Th17 cells by medicinal plants and their derivatives: A systematic review. Phytother. Res., 2017, 31(8), 1128-1139.
[http://dx.doi.org/10.1002/ptr.5837 ] [PMID: 28568565]
[124]
Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shir-zad, H. A screening to determine total phenol and flavonoid content of some Iran’s medicinal plants grown in chaharmahal va Bakhtyari province. Indian J. Nat. Prod. Resour., 2018, 9(4), 296-302.
[125]
Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. A screening of anti-breast cancer effects and antioxidant activity of twenty medicinal plants gathered from Chaharmahal va Bakhtyari province, Iran. J. Pharm. Pharmacogn. Res., 2019, 7(3), 213-222.
[126]
Asghari, G.; Akbari, M.; Asadi-Samani, M. Phytochemical analysis of some plants from Lamiaceae family frequently used in folk medicine in Aligudarz region of Lorestan Province, Lorestan ilinin Aligudarz bölgesinde halk ilaci olarak sikça kullanilan Lamiaceae familyasindan bazi bitkilerin fitokimyasal analizi. Marmara Pharm. J., 2017, 21(3), 506-514.
[http://dx.doi.org/10.12991/marupj.311815]
[127]
Khaledi, M.; Khaledi, F.; Asadi-Samani, M.; Gholipour, A.; Kouhi, A.M. Phytochemical evaluation and antibacterial effects of Medicago sativa, Onosma sericeum, Parietaria judaica L., Phlomis persica and Echinophora platyloba DC. on Enterococcus faecalis. Biomed. Res. Ther., 2018, 5(1), 1941-1951.
[http://dx.doi.org/10.15419/bmrat.v5i1.408]
[128]
Parsaei, P.; Bahmani, M.; Naghdi, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. A review of therapeutic and pharmacological effects of thymol. Der Pharmacia Lettre, 2016, 8(2), 150-154.
[129]
Attari, F.; Zahmatkesh, M.; Aligholi, H.; Mehr, S.E.; Sharifzadeh, M.; Gorji, A.; Mokhtari, T.; Khaksarian, M.; Hassanzadeh, G. Curcumin as a double-edged sword for stem cells: Dose, time and cell type-specific responses to curcumin. Daru, 2015, 23(1), 33.
[http://dx.doi.org/10.1186/s40199-015-0115-8 ] [PMID: 26063234]
[130]
Bahmani, M.; Taherikalani, M.; Khaksarian, M.; Rafieian-Kopaei, M.; Ashrafi, B.; Nazer, M.; Soroush, S.; Abbasi, N.; Rashidipour, M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. OA, 2019, 5(3), FSO371.
[http://dx.doi.org/10.4155/fsoa-2018-0096 ] [PMID: 30906567]
[131]
Weber, J.T. Altered calcium signaling following traumatic brain injury. Front. Pharmacol., 2012, 3, 60.
[http://dx.doi.org/10.3389/fphar.2012.00060 ] [PMID: 22518104]
[132]
Mukandala, G.; Tynan, R.; Lanigan, S.; O’Connor, J.J. The effects of hypoxia and inflammation on synaptic signaling in the CNS. Brain Sci., 2016, 6(1), 6.
[http://dx.doi.org/10.3390/brainsci6010006 ] [PMID: 26901230]
[133]
Wang, X.; Ma, J.; Fu, Q.; Zhu, L.; Zhang, Z.; Zhang, F.; Lu, N.; Chen, A. Role of hypoxiainducible factor1α in autophagic cell death in microglial cells induced by hypoxia. Mol. Med. Rep., 2017, 15(4), 2097-2105.
[http://dx.doi.org/10.3892/mmr.2017.6277 ] [PMID: 28259912]
[134]
Matute, C.; Alberdi, E.; Domercq, M.; Pérez-Cerdá, F.; Pérez-Samartín, A.; Sánchez-Gómez, M.V. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci., 2001, 24(4), 224-230.
[http://dx.doi.org/10.1016/S0166-2236(00)01746-X ] [PMID: 11250007]
[135]
Li, H.; Xiao, J.; Li, X.; Chen, H.; Kang, D.; Shao, Y.; Shen, B.; Zhu, Z.; Yin, X.; Xie, L.; Wang, G.; Liang, Y. Low cerebral exposure cannot hinder the neuroprotective effects of panax notoginsenosides. Drug Metab. Dispos., 2018, 46(1), 53-65.
[http://dx.doi.org/10.1124/dmd.117.078436 ] [PMID: 29061584]
[136]
Manchishi, S.M. Recent advances in antiepileptic herbal medicine. Curr. Neuropharmacol., 2018, 16(1), 79-83.
[PMID: 28521703 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy