Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Review Article

Transient Analysis of Poly (3,4-Ethylenedioxythiophene) Poly (Styrenesulphonate) (PEDOT: PSS)- Polyfluorene Organic Polymer Layer Light Emitting Diode

Author(s): Neha Jain*, Om P. Sinha, Sujata Pandey and Rajiv K. Singh

Volume 12, Issue 3, 2020

Page: [226 - 231] Pages: 6

DOI: 10.2174/1876402911666190820093414

Abstract

In this paper, we have simulated a bi-organic polymer multilayered Light Emitting Diode (LED). It presents the transient analysis of the OLED device. Poly (9, 9-dioctylfluorene) (PFO) is used as an interlayer between Hole Transport Layer (HTL) and Lithium fluoride (LiF) which is responsible for enhancing the electron injection in the device. Hence, it is called as Electron Injection Layer (EIL). PFO acts as a photo catalyst, which improves the device performance. Silvaco TCAD is used for the extraction of electro-optical characteristics. It is done using 1 and 2-dimentional simulation process. Solution of differential equations is derived from Langevin recombination model. Transient response analysis and comparison is done for exciton density and anode current for different thickness of PFO layer. It is found that transient response with respect to anode current and exciton density is better when a Poly (9, 9-dioctylfluorene) (PFO) layer is inserted between anode and Hole Injection Layer (HIL). The analysis and comparison is done for 65 nm, 120 nm and 240 nm thick layers and it is observed that transient response is best at 65 nm layer thicknesses for both exciton density and anode current. Also, J-V characteristics has been found for the structure where current density is 1.8 A/ m2 which is remarkably high as compared to the devices discussed in prose. The results agree well with that available in literature. Poly (3,4-ethylenedioxythiophene) poly (styrenesulphonate) (PEDOT:PSS) results in low operating voltage of the device which is 4V here.

Keywords: Organic LED, PEDOT:PSS, PFO, LiF, ITO, HIL.

Erratum In:
Transient Analysis of Poly (3,4-Ethylenedioxythiophene) Poly (Styrenesulphonate) (PEDOT: PSS)- Polyfluorene Organic Polymer Layer Light Emitting Diode

Graphical Abstract
[1]
Hameed, S.; Predeep, P.; Baiju, R. Polymer light emitting diodes - A review on materials and techniques. Rev. Adv. Mater. Sci., 2010, 26, 30-42.
[2]
Vyavahare, O. Fabrication and Characterization of Organic Light Emitting Diodes for Display Applications.. PhD Thesis, Rochester Institute of Technology: Rochester, NY, 2009.
[3]
Silvaco T.C.A.D. Available from: www.silvaco.com 2016.
[4]
Lysenko, I.A.; Patrashanu, L.A.; Zyko, D.D. Organic light emitting diode simulation using Silvaco TCAD tools. International Siberian Conference on Control and Communications SIBCON, 2016, pp. 1-5.
[5]
Jain, N.; Sinha, O.; Pandey, S. Simulation of bi-layer organic polymer light emitting diode using LiF/Al cathode. International Conference on Innovations in Control, Communication and Information Systems ICICCI, 2017, pp. 1-4.
[6]
Gill, D. Drift mobilities in amorphous charge-transfer com-plexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys., 1972, 43(12), 5033-5040.
[http://dx.doi.org/10.1063/1.1661065]
[7]
Tang, W. Organic electroluminescent diodes. Appl. Phys. Lett., 1987, 51, 913.
[http://dx.doi.org/10.1063/1.98799]
[8]
Lu, W.; Chan, J.; Ching, A.M.; Djurišić, B.; Rakić, D. Organic photonic materials and devices. Proc. SPIE, 2007.
[9]
Cook, H.; Al-Attar, A.; Monkman, P. Effect of PEDOT–PSS resistivity and work function on PLED performance. Org. Electron., 2014, 15, 245-250.
[http://dx.doi.org/10.1016/j.orgel.2013.11.029]
[10]
Al-Sa’di, M.; Jaiser, F.; Bagnich, S.; Unger, T.; Blakesley, J.; Wilke, A.; Neher, D. Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency. J. Polym. Sci., B, Polym. Phys., 2012, 50(22), 1567-1576.
[http://dx.doi.org/10.1002/polb.23158]
[11]
Alasdair, C.; Donal, B.; Homer, A.; Mike, I.; Weishi, W.; Ed, W. Transient and steady-state space-charge-limited currents in polyfluorene copolymer diode structures with ohmic hole injecting contacts. Appl. Phys. Lett., 2000, 76(13), 1733-1737.
[12]
Peter, L.; Rui, J.; Xuhua, W.; Lichun, C.; Donal, B.; John, M. High efficiency organic light-emitting diodes with PEDOT-based conducting polymer anodes. J. Mater. Chem., 2008, 18, 4414-4420.
[http://dx.doi.org/10.1039/b805994b]
[13]
Leclerc, M. Polyfluorenes: Twenty years of progress. J. Polym. Sci. A Polym. Chem., 2001, 39, 2867-2873.
[http://dx.doi.org/10.1002/pola.1266]
[14]
Choulis, A.; Choong, E.; Patwardhan, A.; Mathai, K.; So, F. Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater., 2006, 16, 1075-1080.
[http://dx.doi.org/10.1002/adfm.200500443]
[15]
Cho, S.R.; Porte, Y.; Kim, Y.C.; Myoung, J.M. Effect of nonionic surfactant additive in PEDOT:PSS on PFO emission layer in organic-inorganic hybrid light-emitting diode. ACS Appl. Mater. Interfaces, 2018, 10(11), 9612-9619.
[http://dx.doi.org/10.1021/acsami.7b19267 PMID: 29480008]
[16]
Mensfoort, V.; Vulto, E.; Janssen, J.; Coehoorn, R. Hole transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the role of energetic disorder. Phys. Rev., 2008.78085208
[http://dx.doi.org/10.1103/PhysRevB.78.085208]
[17]
Paul, L.; Paul, B.; Gary, K.; Zakya, K.; John, M. Origin of efficient hole injection from conducting polymer anodes in-to organic light-emitting diodes. Physical Chemistry of Interfaces and Nanomaterials VI. International Society for Optics and Photonics, 2007, 6643664307
[18]
Fehse, K.; Meerheim, R.; Walzer, K.; Leo, K.; Lövenich, W.; Elschner, A. Lifetime of organic light emitting diodes on polymer anodes. Appl. Phys. Lett., 2008, 93(8), 312.
[19]
Fiˇserova´ E. Kubala M. Mean fluorescence lifetime and its error. J. Lumin., 2012, 132, 2059-2064.
[http://dx.doi.org/10.1016/j.jlumin.2012.03.038]
[20]
Jun-Tao, H.; Sheng, H.; Kang-li, Y.; Qing-qing, W.; Kai, X.; Xiang-hua, W. Improving operation lifetime of OLED by using thermally activated delayed fluorescence as host. Optoelectron. Lett., 2017, 13(4)
[21]
Fukagawa, H.; Shimizu, T.; Iwasaki, Y.; Yamamoto, T. Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer. Sci. Rep., 2017, 7(1), 1-8.
[22]
Kwangsik, K.; Taeyoung, W. Exciton dynamics in organic light-emitting diodes. J. Korean Phys. Soc., 2012, 61(9), 1523-1527.
[http://dx.doi.org/10.3938/jkps.61.1523]

© 2024 Bentham Science Publishers | Privacy Policy