Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Antibacterial and Bioactive Composite Bone Cements

Author(s): Enrica Verné*, Filippo Foroni, Giovanni Lucchetta and Marta Miola*

Volume 12, Issue 2, 2019

Page: [144 - 153] Pages: 10

DOI: 10.2174/1874464812666190819143740

Abstract

Background: Peri-prosthetic infections are characterized by high resistance to systemic antibiotic therapy. In this work, commercial PMMA-based bone cement has been loaded with a bioactive glass doped with silver ions, with the purpose to prepare composite bone cement containing a single inorganic phase with both bioactive and antibacterial properties, able to prevent bacterial contamination.

Methods: The glass distribution in the polymeric matrix, the composites radio-opacity, the bending strength and modulus, the morphology of the fracture surfaces, the bioactivity in Simulated Body Fluid (SBF) and the antibacterial effect were evaluated. The glass particles dispersion in the polymeric matrix and their exposition on the polymer surface have been assessed by morphological and compositional characterizations via Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS).

Results: The introduction of the silver-doped bioactive glass allowed imparting an intrinsic radio-opacity to the cement. The bending strength and modulus were influenced by the glass preparation, amount and grain-size. The polymeric matrix did not affect the composite ability to induce hydroxyapatite precipitation on its surface (bioactivity). Moreover, antibacterial test (inhibition halo evaluation) revealed a significant antibacterial effect toward S. aureus, Bacillus, E. coli and C. albicans strains.

Conclusion: The obtained results motivate further investigations and future in vivo tests.

Keywords: Bone cement, PMMA, bioactive glasses, antibacterial, silver, radio-opacity.

[1]
The Burden of Health Care-Associated Infection Worldwide: A Summary. Available at: . http://www.who.int
[2]
Diefenbeck M. MA1/4ckley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury 2006; 37(Suppl. 2): S95-S104.
[http://dx.doi.org/10.1016/j.injury.2006.04.015] [PMID: 16651078]
[3]
UAkay I. Hoffmeyer P, Lew D, Pittet D. Prevention of surgical site infections in orthopaedic surgery and bone trauma: State-of-the-art update. J Hosp Infect 2013; 84(1): 5-12.
[http://dx.doi.org/10.1016/j.jhin.2012.12.014] [PMID: 23414705]
[4]
Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 2007; 89(3)(Suppl. 3): 144-51.
[PMID: 17908880]
[5]
Phillips JE, Crane TP, Noy M, Elliott TS, Grimer RJ. The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey. J Bone Joint Surg Br 2006; 88(7): 943-8.
[http://dx.doi.org/10.1302/0301-620X.88B7.17150] [PMID: 16799001]
[6]
Anagnostou F, Debet A, Pavon-Djavid G, Goudaby Z. HA(c)lary G, Migonney V. Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials 2006; 27(21): 3912-9.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.004] [PMID: 16564569]
[7]
Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 2017; 12:: 8211-25.
[http://dx.doi.org/10.2147/IJN.S132163] [PMID: 29184409]
[8]
Breusch SJ, Aldinger PR, Thomsen M, Ewerbeck V, Lukoschek M. [Anchoring principles in hip endoprostheses. I: Prosthesis stem]. Unfallchirurg 2000; 103(11): 918-31.
[http://dx.doi.org/10.1007/s001130050647] [PMID: 11142879]
[9]
Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S, et al. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 2000; 21(21): 2137-46.
[http://dx.doi.org/10.1016/S0142-9612(00)00097-1] [PMID: 10985486]
[10]
Squire MW, Ludwig BJ, Thompson JR, Jagodzinski J, Hall D, Andes D. Premixed antibiotic bone cement: an in vitro comparison of antimicrobial efficacy. J Arthroplasty 2008; 23(6)(Suppl. 1): 110-4.
[http://dx.doi.org/10.1016/j.arth.2008.03.014] [PMID: 18617361]
[11]
Bistolfi A, Massazza G, Verne E, Massè A. Antibiotic-loaded cement in orthopedic surgery: A review. ISRN Orthop 2011; 2011290851
[http://dx.doi.org/10.5402/2011/290851] [PMID: 24977058]
[12]
Bertazzoni Minelli E, Della Bora T, Benini A. Different microbial biofilm formation on polymethylmethacrylate (PMMA) bone cement loaded with gentamicin and vancomycin. Anaerobe 2011; 17(6): 380-3.
[http://dx.doi.org/10.1016/j.anaerobe.2011.03.013] [PMID: 21515396]
[13]
Hennig W, Blencke BA. BroKmer H, Deutscher KK, Gross A, Ege W. Investigations with bioactivated polymethylmethacrylate. J Biomed Mater Res 1979; 13: 89-99.
[http://dx.doi.org/10.1002/jbm.820130110] [PMID: 429387]
[14]
Heikkil AJT, Aho AJ, Kangasniemi I, Yli-Urpo A. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials 1996; 17(18): 1755-60.
[http://dx.doi.org/10.1016/0142-9612(95)00326-6] [PMID: 8879512]
[15]
Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Test 2004; 23: 145-55.
[http://dx.doi.org/10.1016/S0142-9418(03)00073-4]
[16]
Alt V, Bechert T, Steinr P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004; 25(18): 4383-91.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.078] [PMID: 15046929]
[17]
Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomedicine 2013; 8: 2227-37.
[http://dx.doi.org/10.2147/IJN.S42822] [PMID: 23818779]
[18]
Arcos D, Ragel CV. Vallet-RegA- M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 2001; 22(7): 701-8.
[http://dx.doi.org/10.1016/S0142-9612(00)00233-7] [PMID: 11246964]
[19]
Cavalu S, Simon V, Goller G, Akin I. Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bonecement collagen coated. Dig J Nanomater Biostruct 2011; 6(2): 779-90.
[20]
Moojen DJ, Vogely HC, Fleer A, Verbout AJ, Castelein RM, Dhert WJ. No efficacy of silver bone cement in the prevention of methicillin-sensitive Staphylococcal infections in a rabbit contaminated implant bed model. J Orthop Res 2009; 27(8): 1002-7.
[http://dx.doi.org/10.1002/jor.20854] [PMID: 19165770]
[21]
Enrica V, Marta M, Sara F. Alessandro, M., Alessandro, B., Maurizio, C., Giovanni, MComposite bone cements with a PMMA matrix, containing bioactive antibacterial glasses or glassceramics. EP2451493A2 (2010).
[22]
Miola M, Bruno M, Maina G, Fucale G, Lucchetta G, Vern A. E. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater Sci Eng C 2014; 43: 65-75.
[http://dx.doi.org/10.1016/j.msec.2014.06.026] [PMID: 25175189]
[23]
Miola M, Fucale G, Maina G, Vernè E. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomed Mater 2015; 10(5)055014
[http://dx.doi.org/10.1088/1748-6041/10/5/055014] [PMID: 26481324]
[24]
Miola M, Fucale G, Maina G, Vernè E. Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. J Mater Sci 2017; 52: 5133.
[http://dx.doi.org/10.1007/s10853-017-0750-1]
[25]
Sim W, Barnard RT, Blaskovich MAT, Ziora ZM. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007-2017). Antibiotics (Basel) 2018; 7(4): 93.
[http://dx.doi.org/10.3390/antibiotics7040093] [PMID: 30373130]
[26]
Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond) 2007; 3(1): 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[27]
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34(2): 103-10.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.01.017] [PMID: 19339161]
[28]
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol Lett 2012; 208(3): 286-92.
[http://dx.doi.org/10.1016/j.toxlet.2011.11.002] [PMID: 22101214]
[29]
Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 2008; 42(12): 3066-74.
[http://dx.doi.org/10.1016/j.watres.2008.02.021] [PMID: 18359055]
[30]
Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27(32): 5512-7.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.003] [PMID: 16872671]
[31]
Hench LL. Bioceramics. J Am Ceram Soc 1993; 81: 705-28.
[32]
Cao W, Hench LL. Bioactive materials. Ceram Int 1996; 22: 493-507.
[http://dx.doi.org/10.1016/0272-8842(95)00126-3]
[33]
Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel) 2010; 3(7): 3867-910.
[http://dx.doi.org/10.3390/ma3073867] [PMID: 28883315]
[34]
Catauro M, Raucci MG, De Gaetano F, Marotta A. Antibacterial and bioactive silver-containing Na2O x CaO x 2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med 2004; 15(7): 831-7.
[http://dx.doi.org/10.1023/B:JMSM.0000032825.51052.00] [PMID: 15387420]
[35]
Vernè E, Miola M, Vitale Brovarone C, Cannas M, Gatti S, Fucale G, et al. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: Massive glass. J Mater Sci Mater Med 2009; 20(3): 733-40.
[http://dx.doi.org/10.1007/s10856-008-3617-9] [PMID: 18987954]
[36]
Miola M, Ferraris S, Di Nunzio S, Robotti PF, Bianchi G, Fucale G, et al. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings. J Mater Sci Mater Med 2009; 20(3): 741-9.
[http://dx.doi.org/10.1007/s10856-008-3618-8] [PMID: 18987953]
[37]
International Standard ISO. Implants for surgery Acrylic resin cements. ISO: Switzerland 2002.
[38]
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27(15): 2907-15.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.017] [PMID: 16448693]
[39]
Clinical and Laboratory Standard Institute. Performance standards for antimicrobial disk susceptibility tests, approved standard M2-A9. 9th ed. Villanova, PA, USA: NCCLS 2003.
[40]
Kundie F, Azhari CH, Muchtar A, Ahmad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J Physiol Sci 2018; 29(1): 141-65.
[http://dx.doi.org/10.21315/jps2018.29.1.10]
[41]
Ginebra MP, Aparicio C, Albuixech L, Fernández-Barragán E, Gil FJ, Planell JA. Improvement of the mechanical properties of acrylic bone cements by substitution of the radio-opaque agent. J Mater Sci Mater Med 1999; 10(12): 733-7.
[http://dx.doi.org/10.1023/A:1008979207968] [PMID: 15347942]
[42]
Baleani M. V Medical Microbiology iceconti M. The effect of adding 10% of barium sulphate radiopacifier on the mechanical behaviour of acrylic bone cement. Blackwell Publishing Ltd. Fatigue Fract Eng Mater Struct 2010; 34: 374-82.
[http://dx.doi.org/10.1111/j.1460-2695.2010.01535.x]
[43]
Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg Br 1997; 79(1): 129-34.
[http://dx.doi.org/10.1302/0301-620X.79B1.6966] [PMID: 9020461]
[44]
Bruno M, Miola M, Bretcanu O, Vitale-Brovarone C. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic. Part I: Morphological, mechanical and calorimetric characterization. J Biomater Appl 2014; 29(2): 254-67.
[http://dx.doi.org/10.1177/0885328214521847] [PMID: 24505077]
[45]
Vallo CI, Montemartini PE, Fanovich MA. Porto LA3pez JM, Cuadrado TR. Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J Biomed Mater Res 1999; 48(2): 150-8.
[http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:2150:AID-JBM93.0.CO;2-D] [PMID: 10331908]
[46]
Salton MRJ, Kim KS. Structures.In Baron S, Ed. . Medical Microbiology. 4th ed. USA: University of Texas Medical Branch at Galveston 1996.https://www.ncbi.nlm.nih.gov/books/NBK8477/

© 2024 Bentham Science Publishers | Privacy Policy