Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Mini-Review Article

Nosocomial Pneumonia: An Update on Early Diagnosis and Prevention

Author(s): Artem Kuzovlev*, Aslan Shabanov and Andrey Grechko

Volume 15, Issue 4, 2019

Page: [251 - 259] Pages: 9

DOI: 10.2174/1573398X15666190808111757

Abstract

Nosocomial pneumonia and nosocomial tracheobronchitis present a significant problem of anesthesiology and critical care medicine. This review presents the results of our own research on the usefulness of new molecular biomarkers in the early diagnosis of nosocomial pneumonia, as well as modern principles for its prevention. A promising direction for the early diagnosis of nosocomial pneumonia and its complications is the study of new molecular biomarkers, in particular, Club cell protein and surfactant proteins. Effective prevention of nosocomial pneumonia should be based on a complex of modern evidence-based methods.

Keywords: Biomarkes, diagnosis, nosocomial pneumonia, prophylaxis, sepsis, fever.

Graphical Abstract
[1]
Gelfand BR. Nosocomial pneumonia in adults Russian National guidelines. Moscow: MIA 2016.
[2]
Bekaert M, Timsit JF, Vansteelandt S, et al. Outcomerea Study Group. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med 2011; 184(10): 1133-9.
[http://dx.doi.org/10.1164/rccm.201105-0867OC] [PMID: 21852541]
[3]
Núñez-Núñez M, Navarro MD, Palomo V, et al. EPI-Net, Combacte-Magnet and EUCIC Group for SUSPIRE. The methodology of surveillance for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): A systematic review of publicly available information. Clin Microbiol Infect 2018; 24(2): 105-9.
[http://dx.doi.org/10.1016/j.cmi.2017.07.014] [PMID: 28750921]
[4]
Kuzovlev AN, Shabanov AK, Tyurin IA. Dynamics of inhaled tobramycin concentration in blood and bronchoalveolar lavage fluid during nosocomial pneumonia (Preliminary Report). General Reanimatology 2018; 14(5): 32-7.
[http://dx.doi.org/10.15360/1813-9779-2018-5-32-37]
[5]
Chuchalin AG Respiratory medicine Manual. Moscow: GEOTAR-Media 2007; p. 757.
[6]
Valencia M, Torres A. Ventilator-associated pneumonia. Curr Opin Crit Care 2009; 15(1): 30-5.
[http://dx.doi.org/10.1097/MCC.0b013e3283220e78] [PMID: 19186407]
[7]
Makris D, Luna C, Nseir S. Ten ineffective interventions to prevent ventilator-associated pneumonia. Intensive Care Med 2018; 44(1): 83-6.
[http://dx.doi.org/10.1007/s00134-017-4811-3] [PMID: 28470348]
[8]
Kuzovlev AN, Grechko AV. Inhaled antibiotics in reanimatology: problem state and development prospects [review]. Obshchaya Reanimatologiya 2017; 13(5): 69-85.
[http://dx.doi.org/10.15360/1813-9779-2017-5-69-84]
[9]
Yakovlev SV, Suvorova MP, Beloborodov VB, Basin EE, Eliseeva EV, Kovelenov SV. Antibiot Chemother 2016; 61(5-6): 32-42.
[10]
Klompas M, Kleinman K, Murphy MV. Descriptive epidemiology and attributable morbidity of ventilator-associated events. Infect Control Hosp Epidemiol 2014; 35(5): 502-10.
[http://dx.doi.org/10.1086/675834] [PMID: 24709718]
[11]
Josefson P, Strålin K, Ohlin A, et al. Evaluation of a commercial multiplex PCR test (SeptiFast) in the etiological diagnosis of community-onset bloodstream infections. Eur J Clin Microbiol Infect Dis 2011; 30(9): 1127-34.
[http://dx.doi.org/10.1007/s10096-011-1201-6] [PMID: 21373774]
[12]
Vanspauwen M, Bruggeman C, Jacobs J, Drent M, Bergmans D, van Mook W. Clara cell protein in bronchoalveolar lavage fluid: A predictor of ventilator-associated pneumonia? Crit Care 2011; 15.
[http://dx.doi.org/10.1186/cc9418]
[13]
Snyder JC, Reynolds SD, Hollingsworth JW, Li Z, Kaminski N, Stripp BR. Clara cells attenuate the inflammatory response through regulation of macrophage behavior. Am J Respir Cell Mol Biol 2010; 42(2): 161-71.
[http://dx.doi.org/10.1165/rcmb.2008-0353OC] [PMID: 19423773]
[14]
Kalil AC, Metersky ML, Klompas M, et al. Executive summary: management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63(5): 575-82.
[http://dx.doi.org/10.1093/cid/ciw504] [PMID: 27521441]
[15]
Winkelmann A, Noack T. The Clara cell: A “Third Reich eponym”? Eur Respir J 2010; 36(4): 722-7.
[http://dx.doi.org/10.1183/09031936.00146609] [PMID: 20223917]
[16]
Clara M. Zur Histobiologie des Bronchalepithels.[On the histobiology of the bronchial epithelium.] Z Mikrosk Anat Forsch 1937; 41: 321-34.
[17]
Policard A, Collet A, Giltaire-Ralyte L. Observations microélectroniques sur l’infrastructure des cellules bronchiolaires. [Electron microscopic observations on the ultrastructure of bronchiolar cells.] Bronches 1955; 5: 187-96.
[18]
Singh G, Katyal SL. An immunologic study of the secretory products of rat Clara cells. J Histochem Cytochem 1984; 32(1): 49-54.
[http://dx.doi.org/10.1177/32.1.6418790] [PMID: 6418790]
[19]
Woywodt A, Lefrak S, Matteson E. Tainted eponyms in medicine: the “Clara” cell joins the list. Eur Respir J 2010; 36(4): 706-8.
[http://dx.doi.org/10.1183/09031936.00046110] [PMID: 20889455]
[20]
Kurowski M, Jurczyk J, Jarzębska M, et al. Association of serum Clara cell protein CC16 with respiratory infections and immune response to respiratory pathogens in elite athletes. Respir Res 2014; 15(1): 45.
[http://dx.doi.org/10.1186/1465-9921-15-45] [PMID: 24735334]
[21]
Determann RM, Millo JL, Waddy S, Lutter R, Garrard CS, Schultz MJ. Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study. BMC Pulm Med 2009; 9: 49.
[http://dx.doi.org/10.1186/1471-2466-9-49] [PMID: 19958527]
[22]
Moroz VV, Golubev AM, Kuzovlev AN, Pisarev VM. New diagnostic candidate molecular biomarkers of acute respiratory distress syndrome. General Reanimatology 2014; 10(4): 6-10.
[http://dx.doi.org/10.15360/1813-9779-2014-4-6-10]
[23]
Determann RM, Wolthuis EK, Choi G, et al. Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 294(2): L344-50.
[http://dx.doi.org/10.1152/ajplung.00268.2007] [PMID: 18083770]
[24]
Hin A, Kannengiesser C, Roussel A, et al. COLT Consortium Donor Club Cell Secretory Protein G38A Polymorphism is Associated with a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation (COLT). Transplantation 2018; 102(8): 1382-90.
[http://dx.doi.org/10.1097/TP.0000000000002143]
[25]
Lesur O, Langevin S, Berthiaume Y, et al. Critical Care Research Group of the Québec Respiratory Health Network. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med 2006; 32(8): 1167-74.
[http://dx.doi.org/10.1007/s00134-006-0235-1] [PMID: 16794838]
[26]
Lin J, Zhang W, Wang L, Tian F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J Clin Lab Anal 2018; 32(2)
[http://dx.doi.org/10.1002/jcla.22262] [PMID: 28548310]
[27]
Negrin LL, Halat G, Kettner S, et al. Club cell protein 16 and cytokeratin fragment 21-1 as early predictors of pulmonary complications in polytraumatized patients with severe chest trauma. PLoS One 2017; 12(4)e0175303
[http://dx.doi.org/10.1371/journal.pone.0175303] [PMID: 28380043]
[28]
Lu Q, Eggimann P, Luyt C, et al. Pseudomonas aeruginosa serotypes in nosocomial pneumonia: prevalence and clinical outcomes Crit Care 2014; 8(1) С. R17
[http://dx.doi.org/10.1186/cc13697]
[29]
Harrod KS, Mounday AD, Whitsett JA. Adenoviral E3-14.7K protein in LPS-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2000; 278(4): L631-9.
[http://dx.doi.org/10.1152/ajplung.2000.278.4.L631] [PMID: 10749739]
[30]
Hayashida S, Harrod KS, Whitsett JA. Regulation and function of CCSP during pulmonary Pseudomonas aeruginosa infection in vivo. Am J Physiol Lung Cell Mol Physiol 2000; 279(3): L452-9.
[http://dx.doi.org/10.1152/ajplung.2000.279.3.L452] [PMID: 10956619]
[31]
Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respir Res 2014; 15: 147.
[http://dx.doi.org/10.1186/s12931-014-0147-5] [PMID: 25425298]
[32]
Moroz VV, Golubev AM, Kuzovlev AN, Pisarev VM, Shabanov AK, Golubev MA. Surfactant protein D is a biomarker of acute respiratory distress syndrome. General Reanimatology 2013; 9(4): 11.
[http://dx.doi.org/10.15360/1813-9779-2013-4-11]
[33]
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5: 18.
[http://dx.doi.org/10.3389/fmed.2018.00018] [PMID: 29473039]
[34]
Tekerek NU, Akyildiz BN, Ercal BD, Muhtaroglu S. New biomarkers to diagnose ventilator associated pneumonia: pentraxin 3 and surfactant protein D. Indian J Pediatr 2018; 85(6): 426-32.
[http://dx.doi.org/10.1007/s12098-018-2607-2] [PMID: 29396775]
[35]
Park J, Pabon M, Choi AMK, et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm Med 2017; 17(1): 204.
[http://dx.doi.org/10.1186/s12890-017-0532-1] [PMID: 29246207]
[36]
Timsit JF, Esaied W, Neuville M, Bouadma L, Mourvllier B. Update on ventilator-associated pneumonia. F1000 Res 2017; 6: 2061.
[http://dx.doi.org/10.12688/f1000research.12222.1] [PMID: 29225790]
[37]
Reignier J, Darmon M, Sonneville R, et al. OutcomeRea Network. Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: A post hoc marginal structural model study. Intensive Care Med 2015; 41(5): 875-86.
[http://dx.doi.org/10.1007/s00134-015-3730-4] [PMID: 25792207]
[38]
Fitch ZW, Whitman GJ. Incidence, risk, and prevention of ventilator-associated pneumonia in adult cardiac surgical patients: a systematic review. J Card Surg 2014; 29(2): 196-203.
[http://dx.doi.org/10.1111/jocs.12260] [PMID: 24304223]
[39]
Schwebel C, Clec’h C, Magne S, et al. OUTCOMEREA Study Group. Safety of intrahospital transport in ventilated critically ill patients: a multicenter cohort study. Crit Care Med 2013; 41(8): 1919-28.
[http://dx.doi.org/10.1097/CCM.0b013e31828a3bbd] [PMID: 23863225]
[40]
Bornstain C, Azoulay E, De Lassence A, et al. Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia. Clin Infect Dis 5;38(10): 1401-8.
[http://dx.doi.org/10.1086/386321]
[41]
Rello J, Lode H, Cornaglia G, Masterton R. VAP Care Bundle Contributors. A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med 2010; 36(5): 773-80.
[http://dx.doi.org/10.1007/s00134-010-1841-5] [PMID: 20237759]
[42]
Bouadma L, Deslandes E, Lolom I, et al. Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis 2010; 51(10): 1115-22.
[http://dx.doi.org/10.1086/656737] [PMID: 20936973]
[43]
Muscedere J, Sinuff T, Heyland DK, et al. Canadian Critical Care Trials Group. The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated. Chest 2013; 144(5): 1453-60.
[http://dx.doi.org/10.1378/chest.13-0853] [PMID: 24030318]
[44]
Morris AC, Hay AW, Swann DG, et al. Reducing ventilator-associated pneumonia in intensive care: impact of implementing a care bundle. Crit Care Med 2011; 39(10): 2218-24.
[http://dx.doi.org/10.1097/CCM.0b013e3182227d52] [PMID: 21666444]
[45]
Speck K, Rawat N, Weiner NC, Tujuba HG, Farley D, Berenholtz S. A systematic approach for developing a ventilator-associated pneumonia prevention bundle. Am J Infect Control 2016; 44(6): 652-6.
[http://dx.doi.org/10.1016/j.ajic.2015.12.020] [PMID: 26874407]
[46]
Oostdijk EAN, Kesecioglu J, Schultz MJ, et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA 2014; 312(14): 1429-37.
[http://dx.doi.org/10.1001/jama.2014.7247] [PMID: 25271544]
[47]
Rabello F, Araújo VE, Magalhães S. Effectiveness of oral chlorhexidine for the prevention of nosocomial pneumonia and ventilator-associated pneumonia in intensive care units: Overview of systematic reviews. Int J Dent Hyg 2018; 16(4): 441-9.
[http://dx.doi.org/10.1111/idh.12336] [PMID: 29473687]
[48]
DeRiso AJ II, Ladowski JS, Dillon TA, Justice JW, Peterson AC. Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest 1996;109(06):1556-1561.Gjermo P. Chlorhexidine in dental practice. J Clin Periodontol 1974; 1(03): 143-52.
[49]
Gjermo P. Chlorhexidine in dental practice. J Clin Periodontol 1974; 1(03): 143-52.
[50]
Briner WW, Grossman E, Buckner RY. Effect of chlorhexidine gluconate mouthrinse on plaque bacteria. J Periodontal Res 1986; 21(Suppl. 16): 44-52.
[http://dx.doi.org/10.1111/j.1600-0765.1986.tb01514.x]
[51]
Chan EY, Ruest A, Meade MO, Cook DJ. Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 2007; 334(7599): 889.
[http://dx.doi.org/10.1136/bmj.39136.528160.BE] [PMID: 17387118]
[52]
Labeau SO, Van de Vyver K, Brusselaers N, Vogelaers D, Blot SI. Prevention of ventilator-associated pneumonia with oral antiseptics: A systematic review and meta-analysis. Lancet Infect Dis 2011; 11(11): 845-54.
[http://dx.doi.org/10.1016/S1473-3099(11)70127-X] [PMID: 21798809]
[53]
Hua F, Xie H, Worthington HV, Furness S, Zhang Q, Li C. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev 2016; 10CD008367
[http://dx.doi.org/10.1002/14651858.CD008367.pub3] [PMID: 27778318]
[54]
Coffin SE, Klompas M, Classen D, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals. Infect Control Hosp Epidemiol 2008; 29(Suppl. 1): S31-40.
[http://dx.doi.org/10.1086/591062] [PMID: 18840087]
[55]
Muscedere J, Dodek P, Keenan S, et al. VAP Guidelines Committee and the Canadian Critical Care Trials Group. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: Diagnosis and treatment. J Crit Care 2008; 23(1): 138-47.
[http://dx.doi.org/10.1016/j.jcrc.2007.12.008] [PMID: 18359431]
[56]
Klompas M. Oropharyngeal decontamination with antiseptics to prevent ventilator-associated pneumonia: Rethinking the Benefits of Chlorhexidine. Semin Respir Crit Care Med 2017; 38(3): 381-90.
[http://dx.doi.org/10.1055/s-0037-1602584] [PMID: 28578560]
[57]
Klompas M, Speck K, Howell MD, Greene LR, Berenholtz SM. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: systematic review and meta-analysis. JAMA Intern Med 2014; 174(5): 751-61.
[http://dx.doi.org/10.1001/jamainternmed.2014.359] [PMID: 24663255]
[58]
Price R, MacLennan G, Glen J. SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ 2014; 348: g2197.
[http://dx.doi.org/10.1136/bmj.g2197] [PMID: 24687313]
[59]
Klompas M, Li L, Kleinman K, Szumita PM, Massaro AF. Associations between ventilator bundle components and outcomes. JAMA Intern Med 2016; 176(9): 1277-83.
[http://dx.doi.org/10.1001/jamainternmed.2016.2427] [PMID: 27428482]
[60]
Hirata K, Kurokawa A. Chlorhexidine gluconate ingestion resulting in fatal respiratory distress syndrome. Vet Hum Toxicol 2002; 44(2): 89-91.
[PMID: 11931511]
[61]
Kempen PM. A tale of silent aspiration: are guidelines good for every patient? Anesth Analg 2015; 121(3): 829-31.
[http://dx.doi.org/10.1213/ANE.0000000000000852] [PMID: 26287304]
[62]
Orito K, Hashida M, Hirata K, Kurokawa A, Shirai M, Akahori F. Effects of single intratracheal exposure to chlorhexidine gluconate on the rat lung. Drug Chem Toxicol 2006; 29(1): 1-9.
[http://dx.doi.org/10.1080/01480540500408416] [PMID: 16455586]
[63]
Xue Y, Zhang S, Yang Y, et al. Acute pulmonary toxic effects of chlorhexidine (CHX) following an intratracheal instillation in rats. Hum Exp oxicol 2011; 30(11): 1795-803.
[64]
Massano G, Ciocatto E, Rosabianca C, Vercelli D, Actis GC, Verme G. Striking aminotransferase rise after chlorhexidine self-poisoning. Lancet 1982; 1(8266): 289.
[http://dx.doi.org/10.1016/S0140-6736(82)91018-2] [PMID: 6120309]
[65]
Plantinga NL, Wittekamp BHJ, Leleu K, et al. Oral mucosal adverse events with chlorhexidine 2% mouthwash in ICU. Intensive Care Med 2016; 42(4): 620-1.
[http://dx.doi.org/10.1007/s00134-016-4217-7] [PMID: 26850333]
[66]
Deschepper M, Waegeman W, Eeckloo K, Vogelaers D, Blot S. Effects of chlorhexidine gluconate oral care on hospital mortality: a hospital-wide, observational cohort study. Intensive Care Med 2018; 44(7): 1017-26.
[http://dx.doi.org/10.1007/s00134-018-5171-3] [PMID: 29744564]
[67]
Klompas M. What is new in the prevention of nosocomial pneumonia in the ICU? Curr Opin Crit Care 2017; 23(5): 378-84.
[http://dx.doi.org/10.1097/MCC.0000000000000443] [PMID: 28759469]
[68]
Wang L, Li X, Yang Z, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev 2016; (1): CD009946
[http://dx.doi.org/10.1002/14651858.CD009946.pub2] [PMID: 26743945]
[69]
Li Bassi G, Panigada M, Ranzani OT, et al. Multicenter randomized clinical trial of lateral-trendelenburg vs. semi recumbent position for the prevention of ventilator-associated pneumonia - the GRAVITY-VAP Trial. Intensive Care Med 2017; 43(11): 1572-84.
[http://dx.doi.org/10.1007/s00134-017-4858-1] [PMID: 29149418]
[70]
Esteban A, Frutos F, Tobin MJ, et al. Spanish Lung Failure Collaborative Group. A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 1995; 332(6): 345-50.
[http://dx.doi.org/10.1056/NEJM199502093320601] [PMID: 7823995]
[71]
Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335(25): 1864-9.
[http://dx.doi.org/10.1056/NEJM199612193352502] [PMID: 8948561]
[72]
Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 2000; 342(20): 1471-7.
[http://dx.doi.org/10.1056/NEJM200005183422002] [PMID: 10816184]
[73]
Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 2008; 371(9607): 126-34.
[http://dx.doi.org/10.1016/S0140-6736(08)60105-1] [PMID: 18191684]
[74]
Caroff DA, Li L, Muscedere J, Klompas M. Subglottic secretion drainage and objective outcomes: A systematic review and meta-analysis. Crit Care Med 2016; 44(4): 830-40.
[PMID: 26646454]
[75]
Bo L, Li J, Tao T, et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev 2014; (10): CD009066
[PMID: 25344083]
[76]
Zeng J, Wang CT, Zhang FS, et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intensive Care Med 2016; 42(6): 1018-28.
[http://dx.doi.org/10.1007/s00134-016-4303-x] [PMID: 27043237]
[77]
Cook DJ, Johnstone J, Marshall JC, et al. PROSPECT Investigators and the Canadian Critical Care Trials Group. Probiotics: Prevention of severe pneumonia and endotracheal colonization trial-PROSPECT: a pilot trial. Trials 2016; 17: 377.
[http://dx.doi.org/10.1186/s13063-016-1495-x] [PMID: 27480757]
[78]
Weng H, Li JG, Mao Z, et al. Probiotics for preventing ventilator-associated pneumonia in mechanically ventilated patients: A Meta-Analysis with Trial Sequential Analysis. Front Pharmacol 2017; 8: 717.
[http://dx.doi.org/10.3389/fphar.2017.00717] [PMID: 29062279]
[79]
Bos LD, Stips C, Schouten LR, et al. Selective decontamination of the digestive tract halves the prevalence of ventilator-associated pneumonia compared to selective oral decontamination. Intensive Care Med 2017; 43(10): 1535-7.
[http://dx.doi.org/10.1007/s00134-017-4838-5] [PMID: 28497272]
[80]
Daneman N, Sarwar S, Fowler RA, Cuthbertson BH. SuDDICU Canadian Study Group. Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13(4): 328-41.
[http://dx.doi.org/10.1016/S1473-3099(12)70322-5] [PMID: 23352693]
[81]
Russell CJ, Shiroishi MS, Siantz E, et al. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: A systematic review. BMC Pulm Med 2016; 8: 16-40.
[http://dx.doi.org/10.1186/s12890-016-0202-8]
[82]
Póvoa FCC, Cardinal-Fernandez P, Maia IS, Reboredo MM, Pinheiro BV. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care 2018; 43: 240-5.
[http://dx.doi.org/10.1016/j.jcrc.2017.09.019] [PMID: 28942198]
[83]
Badve MS, Zhou Z, Anderson CS, Hackett ML. Effectiveness and safety of antibiotics for preventing pneumonia and improving outcome after acute stroke: Systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2018; 27(11): 3137-47.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.001] [PMID: 30093207]
[84]
Klompas M, Li L, Menchaca JT, Gruber S. Centers for disease control and prevention epicenters program. ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin Infect Dis 2017; 64(7): 870-6.
[PMID: 28034888]
[85]
Mirtalaei N, Farazi A, Ebrahimi Monfared M, Jokar A. Efficacy of antibiotic prophylaxis against ventilator-associated pneumonia. J Hosp Infect 2019; 101(3): 272-5.
[http://dx.doi.org/10.1016/j.jhin.2018.08.017] [PMID: 30179656]
[86]
Moghissi K, Migliore M, Appendix A. Editorial comment. Eur J Cardioth Surg 2002; 22(1): 27-9.
[87]
López-López L, Torres-Sánchez I, Rodríguez-Torres J, Cabrera-Martos I, Ortiz-Rubio A, Valenza MC. Does adding an integrated physical therapy and neuromuscular electrical stimulation therapy to standard rehabilitation improves functional outcome in elderly pneumonia in patients? A randomized controlled trial. Clin Rehabil 2019. 269215519859930
[http://dx.doi.org/10.1177/0269215519859930] [PMID: 31244327]

© 2024 Bentham Science Publishers | Privacy Policy