Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Terahertz Radiators Based on Si~3C-SiC MQW IMPATT Diodes

Author(s): Monisha Ghosh, Arindam Biswas and Aritra Acharyya*

Volume 10, Issue 4, 2020

Page: [501 - 506] Pages: 6

DOI: 10.2174/2210681209666190807154014

Price: $65

Abstract

Aims: The potentiality of Multiple Quantum Well (MQW) Impacts Avalanche Transit Time (IMPATT) diodes based on Si~3C-SiC heterostructures as possible terahertz radiators have been explored in this paper.

Objective: The static, high frequency and noise performance of MQW devices operating at 94, 140, and 220 GHz atmospheric window frequencies, as well as 0.30 and 0.50 THz frequency bands, have been studied in this paper.

Methods: The simulation methods based on a Self-Consistent Quantum Drift-Diffusion (SCQDD) model developed by the authors have been used for the above-mentioned studies.

Results: Thus the noise performance of MQW DDRs will be obviously better as compared to the flat Si DDRs operating at different mm-wave and THz frequencies.

Conclusion: Simulation results show that Si~3C-SiC MQW IMPATT sources are capable of providing considerably higher RF power output with the significantly lower noise level at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands as compared to conventional flat Si IMPATT sources.

Keywords: Avalanche noise, high frequency, multiple quantum well, self-consistent quantum drift-diffusion model, terahertz.

Graphical Abstract
[1]
Ghosh, M.; Ghosh, S.; Acharyya, A. Self-consistent quantum drift diffusion model for multiple quantum well IMPATT diodes. J. Comput. Electron., 2017, 15(4), 1370-1387.
[http://dx.doi.org/10.1007/s10825-016-0894-2]
[2]
Ghosh, M.; Ghosh, S.; Bandyopadhyay, P.K.; Biswas, A.; Bhattacharjee, A.K.; Acharyya, A. Noise performance of 94 GHz multiple quantum well double-drift region IMPATT sources. J. Active Passive Electron. Dev., 2018, 13(2/3), 195-207.
[3]
Luy, J.F.; Casel, A.; Behr, W.; Kasper, E.A. 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Dev., 1987, 34, 1084-1089.
[http://dx.doi.org/10.1109/T-ED.1987.23049]
[4]
Wollitzer, M.; Buchler, J.; Schafflr, F.; Luy, J.F. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett., 1996, 32, 122-123.
[http://dx.doi.org/10.1049/el:19960088]
[5]
Dalle, C.; Rolland, P.; Lieti, G. Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans. Electron Dev., 1990, 37, 227-236.
[http://dx.doi.org/10.1109/16.43820]
[6]
Luschas, M.; Judaschke, R.; Luy, J.F. Measurement results of packaged millimeter-wave silicon IMPATT diodes. Proceedings of the 27th International Conference on Infrared and Millimeter Waves, Conference Digest, San Diego, CA, USASeptember 26;2002 , pp. 135-136.
[http://dx.doi.org/10.1109/ICIMW.2002.1076121]
[7]
Luschas, M.; Judaschke, R.; Luy, J.F. Simulation and measurement results of 150 GHz integrated silicon IMPATT diodes. IEEE MTTSMTTS Int. Microwave Sympos. Digest, Seattle, WA, USA, , June 2-7;2002
[http://dx.doi.org/10.1109/MWSYM.2002.1011894]
[8]
Huang, H.C. A modified GaAs IMPATT structure for high efficiency operation. IEEE Trans. Electron Dev., 1973, 20(5), 482-486.
[http://dx.doi.org/10.1109/T-ED.1973.17678]
[9]
Goldwasser, R.E.; Rosztoczy, F.E. High efficiency GaAs low-hig low IMPATTs. Appl. Phys. Lett., 1974, 25, 92.
[http://dx.doi.org/10.1063/1.1655294]
[10]
Bozler, C.O.; Donelly, J.P.; Murphy, R.A.; Laton, R.W.; Sudhury, R.N.; Lindley, W.T. High efficiency ion implanted Lo-hi-lo GaAs IMPATT diodes. Appl. Phys. Lett., 1976, 29, 123.
[http://dx.doi.org/10.1063/1.88965]
[11]
Eisele, H. Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid-State Electron., 1989, 32(3), 253-257.
[http://dx.doi.org/10.1016/0038-1101(89)90100-7]
[12]
Eisele, H. GaAs W-band IMPATT diode for very low noise oscillations. Electron. Lett., 1990, 26(2), 109-110.
[http://dx.doi.org/10.1049/el:19900075]
[13]
Eisele, H.; Hadded, G.I. GaAs single-drift flat profile IMPATT diodes for CW operation at D band. Electron. Lett., 1992, 28(23), 2176-2177.
[http://dx.doi.org/10.1049/el:19921396]
[14]
Kearney, M.J.; Couch, N.R.; Stephens, J.S.; Smith, R.S. Low noise, high efficiency GaAs IMPATT diodes at 30GHz. Electron. Lett., 1992, 28(8), 706-708.
[http://dx.doi.org/10.1049/el:19920447]
[15]
Curow, M. Proposed GaAs IMPATT device structure for D-band applications. Electron. Lett., 1994, 30(19), 1629-1631.
[http://dx.doi.org/10.1049/el:19941097]
[16]
Tschernitz, M.; Freyer, J.; Grothe, H. GaAs Read-type IMPATT diodes for D-band. Electron. Lett., 1994, 30(13), 1070-1071.
[http://dx.doi.org/10.1049/el:19940713]
[17]
Tschernitz, M.; Freyer, J. 140 GHz GaAs double-Read IMPATT diodes. Electron. Lett., 1995, 31(7), 582-583.
[http://dx.doi.org/10.1049/el:19950390]
[18]
Berenz, J.J.; Fank, F.B.; Hierl, T.L. Ion-implanted p-n junction Indium-Phosphide IMPATT diodes. Electron. Lett., 1978, 14(21), 683-684.
[http://dx.doi.org/10.1049/el:19780461]
[19]
Banerjee, J.P.; Pati, S.P.; Roy, S.K. High frequency characterisation of double drift region InP and GaAs diode. Appl. Phys., A Mater. Sci. Process., 1984, 48, 437-443.
[http://dx.doi.org/10.1007/BF00619715]
[20]
Eisele, H.; Chen, C.C.; Munns, G.O.; Haddad, G.I. The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S Int. Microw. Symp. Dig., 1996, 2, 529-532.
[http://dx.doi.org/10.1109/MWSYM.1996.510989]
[21]
Acharyya, A.; Banerjee, J.P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci., 2014, 4, 1-14.
[http://dx.doi.org/10.1007/s13204-012-0172-y]
[22]
Acharyya, A.; Banerjee, S.; Banerjee, J.P. Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond., 2014, 35(3), 034005-1-034005-11.
[http://dx.doi.org/10.1088/1674-4926/35/3/034005]
[23]
Mukherjee, M.; Mazumder, N.; Roy, S.K. Prospects of 4H-SiC Double Drift Region IMPATT Device as a photo-sensitive high-power source at 0.7 Terahertz frequency regime. Active Passive Electron. Components, 2009, 2009, 1-9.
[24]
Panda, A.K.; Parida, R.K.; Agarwala, N.C.; Dash, G.N. A comparative study on the high band gap materials(GaN and SiC)-based IMPATTs Poceedings of the Asia-Pacific Microwave ConferenceBangkok, ThailandDecember 11-14;2007
[http://dx.doi.org/10.1109/APMC.2007.4555043]
[25]
Panda, A.K.; Pavlidis, D.; Alekseev, E. DC and high-frequency characteristics of GaN-based IMPATTs. IEEE Trans. Electron Dev., 2001, 48, 820-823.
[http://dx.doi.org/10.1109/16.915735]
[26]
Banerjee, S.; Mukherjee, M.; Banerjee, J.P. Bias current optimization of Wurtzite-GaN DDR IMPATT diode for high power operation at THz frequencies. Int. J. Adv. Sci. Technol., 2010, 16, 12-20.
[27]
Yuan, L.; James, A.; Cooper, J.A.; Melloch, M.R.; Webb, K.J. Experimental demonstration of a Silicon Carbide IMPATT oscillator. IEEE Electron Device Lett., 2001, 22, 266-268.
[http://dx.doi.org/10.1109/55.924837]
[28]
Vassilevski, K.V.; Zorenko, A.V.; Zekentes, K.; Tsagaraki, K.; Bano, E.; Banc, C.; Lebedev, A. 4H-SiC impatt diode fabrication and testing. Mater. Sci. Forum, 2002, 389-393, 1353-1358.
[29]
Trew, R.J.; Yan, J.B.; Mock, P.M. The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE, 1991, 79(5), 598-620.
[http://dx.doi.org/10.1109/5.90128]
[30]
Mock, P.M.; Trew, R.J. RF performance characteristics of doubledrift MM-wave diamond IMPATT diodes. Proceedings of IEEE/Cornell Conference Advanced Concepts in High-Speed Semiconductor Devices and Circuits Ithaca, NY, USAAugust 2-4;1989
[31]
Biswas, A.; Sinha, S.; Acharyya, A.; Banerjee, A.; Pal, S.; Satoh, H.; Inokawa, H. 1.0 THz GaN IMPATT source: Effect of parasitic series resistance. J. Infrared Millim. Terahertz Waves, 2018, 39(10), 954-974.
[http://dx.doi.org/10.1007/s10762-018-0509-z]
[32]
Acharyya, A.; Banerjee, J.P. Studies on anisotype Si/Si1−xGex heterojunction DDR IMPATTs: Efficient millimeter-wave sources at 94 GHz window. J. Inst. Electron. Telecommun. Eng., 2013, 59(4), 424-432.
[http://dx.doi.org/10.4103/0377-2063.118057]
[33]
Banerjee, S.; Acharyya, A.; Banerjee, J.P. Noise performance of heterojunction DDR MITATT devices based on Si- Si1−xGex at W-band. Active Passive Electron. Components, 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/720191]
[34]
Banerjee, S.; Acharyya, A.; Mitra, M.; Banerjee, J.P. Large-signal properties of 3C-SiC/Si heterojunction DDR IMPATT devices at terahertz frequencies The 34th PIERS in Stockholmden, SwedenAugust 12-15;2013
[35]
Lippens, D.; Vanbesien, O.; Lambert, B. Multiquantum well GaA/AlGaAs structures applied to avalanche transit time devices. J. Phys. (Paris), 1987, C5, 487-490.
[36]
Meng, C.; Fetterman, H.R. A theoretical analysis of millimeter-wave GaAs/A1GaAsmultiquantum well transit time devices by the lucky drift model. Solid-State Electron., 1993, 36(3), 435-442.
[http://dx.doi.org/10.1016/0038-1101(93)90099-C]
[37]
Yih, P.H.; Li, J.P.; Steck, I.A.J. SiC/Si heterojunction diodes by self selective and by blanket rapid thermal chemical vapor deposition. IEEE Trans. Electron Dev., 1994, 41(3), 281-287.
[http://dx.doi.org/10.1109/16.275210]
[38]
Electronic Archive: New Semiconductor Materials, Characteristics and Properties. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/index.html(Accessed on: December 2018).
[39]
Zeghbroeck, B.V. Principles of Semiconductor Devices; Colorado Press: USA, 2011.
[40]
Grant, W.N. Electron and hole ionization rates in epitaxial Silicon. Solid-State Electron., 1973, 16, 1189-1203.
[http://dx.doi.org/10.1016/0038-1101(73)90147-0]
[41]
Canali, C.; Ottaviani, G.; Quaranta, A.A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids, 1971, 32, 1707-1720.
[http://dx.doi.org/10.1016/S0022-3697(71)80137-3]
[42]
Bellotti, E.; Nilsson, H.E.; Brennan, K.F.; Ruden, P.P. Ensemble Monte Carlo calculation of hole transport in bulk 3C-SiC. J. Appl. Phys., 1999, 85(6), 3211-3217.
[http://dx.doi.org/10.1063/1.369689]
[43]
Mickevicius, R.; Zhao, J.H. Monte Carlo study of electron transport in SiC. J. Appl. Phys., 1998, 83(6), 3161-3167.
[http://dx.doi.org/10.1063/1.367073]
[44]
Scharfetter, L.; Gummel, H.K. Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev., 1969, 6, 64-77.
[http://dx.doi.org/10.1109/T-ED.1969.16566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy