Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications

Author(s): Alaa A.A. Aljabali* and Mohammad A. Obeid

Volume 10, Issue 6, 2020

Page: [748 - 765] Pages: 18

DOI: 10.2174/2210681209666190807145229

Price: $65

Abstract

Background: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity.

Objective: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors.

Methods: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out.

Results: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications.

Conclusion: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.

Keywords: Nanoengineering, drug delivery, viruses, tumor targeting, imaging, pharmaceutical nanotechnology.

Graphical Abstract
[1]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4)E46
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[2]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[3]
Srinivasan, M.; Rajabi, M.; Mousa, S.A. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials (Basel), 2015, 5(4), 1690-1703.
[http://dx.doi.org/10.3390/nano5041690] [PMID: 28347089]
[4]
Sao, R.; Vaish, R.; Sinha, N. Multifunctional drug delivery systems using inorganic nanomaterials: A review. J. Nanosci. Nanotechnol., 2015, 15(3), 1960-1972.
[http://dx.doi.org/10.1166/jnn.2015.9761] [PMID: 26413609]
[5]
Du, J.Z.; Mao, C.Q.; Yuan, Y.Y.; Yang, X.Z.; Wang, J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv., 2014, 32(4), 789-803.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.002] [PMID: 23933109]
[6]
Pérez-Medina, C.; Abdel-Atti, D.; Tang, J.; Zhao, Y.; Fayad, Z.A.; Lewis, J.S.; Mulder, W.J.M.; Reiner, T. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat. Commun., 2016, 7, 11838.
[http://dx.doi.org/10.1038/ncomms11838] [PMID: 27319780]
[7]
Rohovie, M.J.; Nagasawa, M.; Swartz, J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med., 2017, 2(1), 43-57.
[http://dx.doi.org/10.1002/btm2.10049] [PMID: 29313023]
[8]
Vabbilisetty, P.; Sun, X.L. Liposome surface functionalization based on different anchoring lipids via Staudinger ligation. Org. Biomol. Chem., 2014, 12(8), 1237-1244.
[http://dx.doi.org/10.1039/c3ob41721b] [PMID: 24413731]
[9]
Zdanowicz, M.; Chroboczek, J. Virus-like particles as drug delivery vectors. Acta Biochim. Pol., 2016, 63(3), 469-473.
[http://dx.doi.org/10.18388/abp.2016_1275] [PMID: 27474402]
[10]
Balique, F.; Lecoq, H.; Raoult, D.; Colson, P. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses, 2015, 7(4), 2074-2098.
[http://dx.doi.org/10.3390/v7042074] [PMID: 25903834]
[11]
Kaneda, Y.; Iwai, K.; Uchida, T. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science, 1989, 243(4889), 375-378.
[http://dx.doi.org/10.1126/science.2911748] [PMID: 2911748]
[12]
van Kan-Davelaar, H.E.; van Hest, J.C.; Cornelissen, J.J.; Koay, M.S. Using viruses as nanomedicines. Br. J. Pharmacol., 2014, 171(17), 4001-4009.
[http://dx.doi.org/10.1111/bph.12662] [PMID: 24571489]
[13]
Savithri, H.S.; Suryanarayana, S.; Murthy, M.R. Structure-function relationships of icosahedral plant viruses. Arch. Virol., 1989, 109(3-4), 153-172.
[http://dx.doi.org/10.1007/BF01311078] [PMID: 2692536]
[14]
Aljabali, A.A.; Barclay, J.E.; Butt, J.N.; Lomonossoff, G.P.; Evans, D.J. Redox-active ferrocene-modified Cowpea mosaic virus nanoparticles. Dalton Trans., 2010, 39(32), 7569-7574.
[http://dx.doi.org/10.1039/c0dt00495b] [PMID: 20623052]
[15]
Aljabali, A.A.; Barclay, J.E.; Lomonossoff, G.P.; Evans, D.J. Virus templated metallic nanoparticles. Nanoscale, 2010, 2(12), 2596-2600.
[http://dx.doi.org/10.1039/c0nr00525h] [PMID: 20877898]
[16]
Aljabali, A.A.; Barclay, J.E.; Steinmetz, N.F.; Lomonossoff, G.P.; Evans, D.J. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid. Nanoscale, 2012, 4(18), 5640-5645.
[http://dx.doi.org/10.1039/c2nr31485a] [PMID: 22865109]
[17]
Aljabali, A.A.; Sainsbury, F.; Lomonossoff, G.P.; Evans, D.J. Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small, 2010, 6(7), 818-821.
[http://dx.doi.org/10.1002/smll.200902135] [PMID: 20213652]
[18]
Aljabali, A.A.; Shah, S.N.; Evans-Gowing, R.; Lomonossoff, G.P.; Evans, D.J. Chemically-coupled-peptide-promoted virus nanoparticle templated mineralization. Integr. Biol. Quantitat. Biosci. Nano Macro, 2011, 3(2), 119-125.
[http://dx.doi.org/10.1039/C0IB00056F]
[19]
Mayo, M.A.; Pringle, C.R. Virus taxonomy--1997. J. Gen. Virol., 1998, 79(Pt 4), 649-657.
[http://dx.doi.org/10.1099/0022-1317-79-4-649] [PMID: 9568957]
[20]
Ahlquist, P. Allison, R.; Dejong, W.; Janda, M.; Kroner, P.; Pacha, R.; Traynor, P; Molecular Biology of Bromovirus Replication and Host Specificity. Springer New York: NY, 1990, pp. 144-155.
[21]
Lucas, R.W.; Kuznetsov, Y.G.; Larson, S.B.; McPherson, A. Crystallization of brome mosaic virus and T = 1 Brome mosaic virus particles following a structural transition. Virology, 2001, 286(2), 290-303.
[http://dx.doi.org/10.1006/viro.2000.0897] [PMID: 11485397]
[22]
Yildiz, I.; Tsvetkova, I.; Wen, A.M.; Shukla, S.; Masarapu, M.H.; Dragnea, B.; Steinmetz, N.F. Engineering of Brome mosaic virus for biomedical applications. RSC Advances, 2012, 2(9), 3670-3677.
[http://dx.doi.org/10.1039/c2ra01376b] [PMID: 28018580]
[23]
Kao, C.C.; Sivakumaran, K. Brome mosaic virus, good for an RNA virologist’s basic needs. Mol. Plant Pathol., 2000, 1(2), 91-97.
[http://dx.doi.org/10.1046/j.1364-3703.2000.00017.x] [PMID: 20572956]
[24]
Rao, A.L. Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus. Virology, 1997, 232(2), 385-395.
[http://dx.doi.org/10.1006/viro.1997.8579] [PMID: 9191853]
[25]
Sun, J.; DuFort, C.; Daniel, M.C.; Murali, A.; Chen, C.; Gopinath, K.; Stein, B.; De, M.; Rotello, V.M.; Holzenburg, A.; Kao, C.C.; Dragnea, B. Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA, 2007, 104(4), 1354-1359.
[http://dx.doi.org/10.1073/pnas.0610542104] [PMID: 17227841]
[26]
Hema, M.; Murali, A.; Ni, P.; Vaughan, R.C.; Fujisaki, K.; Tsvetkova, I.; Dragnea, B.; Kao, C.C. Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. Mol. Plant Microbe Interact., 2010, 23(11), 1433-1447.
[http://dx.doi.org/10.1094/MPMI-05-10-0118] [PMID: 20923351]
[27]
Huang, X.; Bronstein, L.M.; Retrum, J.; Dufort, C.; Tsvetkova, I.; Aniagyei, S.; Stein, B.; Stucky, G.; McKenna, B.; Remmes, N.; Baxter, D.; Kao, C.C.; Dragnea, B. Self-assembled virus-like particles with magnetic cores. Nano Lett., 2007, 7(8), 2407-2416.
[http://dx.doi.org/10.1021/nl071083l] [PMID: 17630812]
[28]
Dixit, S.K.; Goicochea, N.L.; Daniel, M.C.; Murali, A.; Bronstein, L.; De, M.; Stein, B.; Rotello, V.M.; Kao, C.C.; Dragnea, B. Quantum dot encapsulation in viral capsids. Nano Lett., 2006, 6(9), 1993-1999.
[http://dx.doi.org/10.1021/nl061165u] [PMID: 16968014]
[29]
Carrillo-Tripp, M.; Shepherd, C.M.; Borelli, I.A.; Venkataraman, S.; Lander, G.; Natarajan, P.; Johnson, J.E.; Brooks, C.L., III; Reddy, V.S. VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res., 2009, 37(Database issue), D436-D442.
[http://dx.doi.org/10.1093/nar/gkn840] [PMID: 18981051]
[30]
Bruckman, M.A.; Steinmetz, N.F. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV). Methods Mol. Biol., 2014, 1108, 173-185.
[http://dx.doi.org/10.1007/978-1-62703-751-8_13] [PMID: 24243249]
[31]
Wen, A.M.; Lee, K.L.; Yildiz, I.; Bruckman, M.A.; Shukla, S.; Steinmetz, N.F. Viral nanoparticles for in vivo tumor imaging. J. Vis. Exp., 2012, (69)e4352
[http://dx.doi.org/10.3791/4352] [PMID: 23183850]
[32]
Running, W.E.; Ni, P.; Kao, C.C.; Reilly, J.P. Chemical reactivity of brome mosaic virus capsid protein. J. Mol. Biol., 2012, 423(1), 79-95.
[http://dx.doi.org/10.1016/j.jmb.2012.06.031] [PMID: 22750573]
[33]
Basnayake, V.R.; Sit, T.L.; Lommel, S.A. The genomic RNA packaging scheme of Red clover necrotic mosaic virus. Virology, 2006, 345(2), 532-539.
[http://dx.doi.org/10.1016/j.virol.2005.10.017] [PMID: 16297955]
[34]
Sherman, M.B.; Guenther, R.H.; Tama, F.; Sit, T.L.; Brooks, C.L.; Mikhailov, A.M.; Orlova, E.V.; Baker, T.S.; Lommel, S.A. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol., 2006, 80(21), 10395-10406.
[http://dx.doi.org/10.1128/JVI.01137-06] [PMID: 16920821]
[35]
Loo, L.; Guenther, R.H.; Lommel, S.A.; Franzen, S. Infusion of dye molecules into Red clover necrotic mosaic virus. Chem. Commun. (Camb.), 2008, (1), 88-90.
[http://dx.doi.org/10.1039/B714748A] [PMID: 18401897]
[36]
Cao, J.; Guenther, R.H.; Sit, T.L.; Opperman, C.H.; Lommel, S.A.; Willoughby, J.A. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small, 2014, 10(24), 5126-5136.
[http://dx.doi.org/10.1002/smll.201400558] [PMID: 25098668]
[37]
Lee, R.J.; Wang, S.; Turk, M.J.; Low, P.S. The effects of pH and intraliposomal buffer strength on the rate of liposome content release and intracellular drug delivery. Biosci. Rep., 1998, 18(2), 69-78.
[http://dx.doi.org/10.1023/A:1020132226113] [PMID: 9743475]
[38]
Lockney, D.M.; Guenther, R.N.; Loo, L.; Overton, W.; Antonelli, R.; Clark, J.; Hu, M.; Luft, C.; Lommel, S.A.; Franzen, S. The Red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle. Bioconjug. Chem., 2011, 22(1), 67-73.
[http://dx.doi.org/10.1021/bc100361z] [PMID: 21126069]
[39]
Madden, A.J.; Oberhardt, B.; Lockney, D.; Santos, C.; Vennam, P.; Arney, D.; Franzen, S.; Lommel, S.A.; Miller, C.R.; Gehrig, P.; Zamboni, W.C. Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine (Lond.), 2017, 12(20), 2519-2532.
[http://dx.doi.org/10.2217/nnm-2016-0421] [PMID: 28952882]
[40]
Ahlquist, P. Bromovirus RNA replication and transcription. Curr. Opin. Genet. Dev., 1992, 2(1), 71-76.
[http://dx.doi.org/10.1016/S0959-437X(05)80325-9] [PMID: 1378769]
[41]
Hassani-Mehraban, A.; Creutzburg, S.; van Heereveld, L.; Kormelink, R. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations. BMC Biotechnol., 2015, 15, 80.
[http://dx.doi.org/10.1186/s12896-015-0180-6] [PMID: 26311254]
[42]
Caspar, D.L.; Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol., 1962, 27, 1-24.
[http://dx.doi.org/10.1101/SQB.1962.027.001.005] [PMID: 14019094]
[43]
Speir, J.A.; Munshi, S.; Wang, G.; Baker, T.S.; Johnson, J.E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure, 1995, 3(1), 63-78.
[http://dx.doi.org/10.1016/S0969-2126(01)00135-6] [PMID: 7743132]
[44]
Azizgolshani, O.; Garmann, R.F.; Cadena-Nava, R.; Knobler, C.M.; Gelbart, W.M. Reconstituted plant viral capsids can release genes to mammalian cells. Virology, 2013, 441(1), 12-17.
[http://dx.doi.org/10.1016/j.virol.2013.03.001] [PMID: 23608360]
[45]
Mikkilä, J.; Eskelinen, A.P.; Niemelä, E.H.; Linko, V.; Frilander, M.J.; Törmä, P.; Kostiainen, M.A. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett., 2014, 14(4), 2196-2200.
[http://dx.doi.org/10.1021/nl500677j] [PMID: 24627955]
[46]
Rurup, W.F.; Verbij, F.; Koay, M.S.; Blum, C.; Subramaniam, V.; Cornelissen, J.J. Predicting the loading of virus-like particles with fluorescent proteins. Biomacromolecules, 2014, 15(2), 558-563.
[http://dx.doi.org/10.1021/bm4015792] [PMID: 24359088]
[47]
Allen, M.; Bulte, J.W.; Liepold, L.; Basu, G.; Zywicke, H.A.; Frank, J.A.; Young, M.; Douglas, T. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn. Reson. Med., 2005, 54(4), 807-812.
[http://dx.doi.org/10.1002/mrm.20614] [PMID: 16155869]
[48]
Lin, T.; Johnson, J.E. Structures of picorna-like plant viruses: implications and applications. Adv. Virus Res., 2003, 62, 167-239.
[http://dx.doi.org/10.1016/S0065-3527(03)62004-X] [PMID: 14719366]
[49]
Lin, T.; Chen, Z.; Usha, R.; Stauffacher, C.V.; Dai, J.B.; Schmidt, T.; Johnson, J.E. The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. Virology, 1999, 265(1), 20-34.
[http://dx.doi.org/10.1006/viro.1999.0038] [PMID: 10603314]
[50]
Liu, L.; Lomonossoff, G. Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs. J. Virol. Methods, 2002, 105(2), 343-348.
[http://dx.doi.org/10.1016/S0166-0934(02)00121-0] [PMID: 12270666]
[51]
Lomonossoff, G.P.; Johnson, J.E. The synthesis and structure of comovirus capsids. Prog. Biophys. Mol. Biol., 1991, 55(2), 107-137.
[http://dx.doi.org/10.1016/0079-6107(91)90003-B] [PMID: 1871315]
[52]
Steinmetz, N.F.; Lomonossoff, G.P.; Evans, D.J. Cowpea mosaic virus for material fabrication: Addressable carboxylate groups on a programmable nanoscaffold. Langmuir, 2006, 22(8), 3488-3490.
[http://dx.doi.org/10.1021/la060078e] [PMID: 16584217]
[53]
Wen, A.M.; Shukla, S.; Saxena, P.; Aljabali, A.A.; Yildiz, I.; Dey, S.; Mealy, J.E.; Yang, A.C.; Evans, D.J.; Lomonossoff, G.P.; Steinmetz, N.F. Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules, 2012, 13(12), 3990-4001.
[http://dx.doi.org/10.1021/bm301278f] [PMID: 23121655]
[54]
Meunier, S.; Strable, E.; Finn, M.G. Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol., 2004, 11(3), 319-326.
[http://dx.doi.org/10.1016/j.chembiol.2004.02.019] [PMID: 15123261]
[55]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[56]
Palukaitis, P.; Roossinck, M.J.; Dietzgen, R.G.; Francki, R.I. Cucumber mosaic virus. Adv. Virus Res., 1992, 41, 281-348.
[http://dx.doi.org/10.1016/S0065-3527(08)60039-1] [PMID: 1575085]
[57]
Wikoff, W.R.; Tsai, C.J.; Wang, G.; Baker, T.S.; Johnson, J.E. The structure of cucumber mosaic virus: Cryoelectron microscopy, X-ray crystallography, and sequence analysis. Virology, 1997, 232(1), 91-97.
[http://dx.doi.org/10.1006/viro.1997.8543] [PMID: 9185592]
[58]
Smith, T.J.; Chase, E.; Schmidt, T.; Perry, K.L. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J. Virol., 2000, 74(16), 7578-7586.
[http://dx.doi.org/10.1128/JVI.74.16.7578-7586.2000] [PMID: 10906212]
[59]
Nuzzaci, M.; Bochicchio, I.; De Stradis, A.; Vitti, A.; Natilla, A.; Piazzolla, P.; Tamburro, A.M. Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J. Virol. Methods, 2009, 155(2), 118-121.
[http://dx.doi.org/10.1016/j.jviromet.2008.10.005] [PMID: 18992770]
[60]
Lu, X.; Thompson, J.R.; Perry, K.L. Encapsidation of DNA, a protein and a fluorophore into virus-like particles by the capsid protein of cucumber mosaic virus. J. Gen. Virol., 2012, 93(Pt 5), 1120-1126.
[http://dx.doi.org/10.1099/vir.0.040170-0] [PMID: 22278829]
[61]
Zeng, Q.; Wen, H.; Wen, Q.; Chen, X.; Wang, Y.; Xuan, W.; Liang, J.; Wan, S. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials, 2013, 34(19), 4632-4642.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.017] [PMID: 23528229]
[62]
Lee, K.C.; Lim, D.; Wong, S.M.; Dokland, T. Purification, crystallization and X-ray analysis of Hibiscus chlorotic ringspot virus. Acta Crystallogr. D Biol. Crystallogr., 2003, 59(Pt 8), 1481-1483.
[http://dx.doi.org/10.1107/S0907444903011648] [PMID: 12876359]
[63]
Huang, M.; Koh, D.C.; Weng, L.J.; Chang, M.L.; Yap, Y.K.; Zhang, L.; Wong, S.M. Complete nucleotide sequence and genome organization of hibiscus chlorotic ringspot virus, a new member of the genus Carmovirus: Evidence for the presence and expression of two novel open reading frames. J. Virol., 2000, 74(7), 3149-3155.
[http://dx.doi.org/10.1128/JVI.74.7.3149-3155.2000] [PMID: 10708431]
[64]
Ren, Y.; Wong, S.M.; Lim, L.Y. Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin. Bioconjug. Chem., 2007, 18(3), 836-843.
[http://dx.doi.org/10.1021/bc060361p] [PMID: 17407258]
[65]
Narayanan, K.B.; Han, S.S. Genetic modifications of icosahedral plant virus-based nanoparticles for vaccine and immunotherapy applications. Curr. Protein Pept. Sci., 2017, 18(11), 1141-1151.
[http://dx.doi.org/10.2174/1389203718666170424153109] [PMID: 28440187]
[66]
Leung, R.L.C.; Robinson, M.D.M.; Ajabali, A.A.A.; Karunanithy, G.; Lyons, B.; Raj, R.; Raoufmoghaddam, S.; Mohammed, S.; Claridge, T.D.W.; Baldwin, A.J.; Davis, B.G. Monitoring the disassembly of virus-like particles by 19F-NMR. J. Am. Chem. Soc., 2017, 139(15), 5277-5280.
[http://dx.doi.org/10.1021/jacs.6b11040] [PMID: 28350443]
[67]
Rhee, J.K.; Baksh, M.; Nycholat, C.; Paulson, J.C.; Kitagishi, H.; Finn, M.G. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules, 2012, 13(8), 2333-2338.
[http://dx.doi.org/10.1021/bm300578p] [PMID: 22827531]
[68]
Namba, K.; Pattanayek, R.; Stubbs, G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J. Mol. Biol., 1989, 208(2), 307-325.
[http://dx.doi.org/10.1016/0022-2836(89)90391-4] [PMID: 2769760]
[69]
Tian, Y.; Gao, S.; Wu, M.; Liu, X.; Qiao, J.; Zhou, Q.; Jiang, S.; Niu, Z. Tobacco mosaic virus-based 1D nanorod-drug carrier via the integrin-mediated endocytosis pathway. ACS Appl. Mater. Interfaces, 2016, 8(17), 10800-10807.
[http://dx.doi.org/10.1021/acsami.6b02801] [PMID: 27062971]
[70]
Kernan, D.L.; Wen, A.M.; Pitek, A.S.; Steinmetz, N.F. Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Exp. Biol. Med. (Maywood), 2017, 242(14), 1405-1411.
[http://dx.doi.org/10.1177/1535370217719222] [PMID: 28675044]
[71]
Kendall, A.; Bian, W.; Maris, A.; Azzo, C.; Groom, J.; Williams, D.; Shi, J.; Stewart, P.L.; Wall, J.S.; Stubbs, G. A common structure for the potexviruses. Virology, 2013, 436(1), 173-178.
[http://dx.doi.org/10.1016/j.virol.2012.11.008] [PMID: 23245732]
[72]
Le, D.H.; Lee, K.L.; Shukla, S.; Commandeur, U.; Steinmetz, N.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9(6), 2348-2357.
[http://dx.doi.org/10.1039/C6NR09099K] [PMID: 28144662]
[73]
Shukla, S.; Wen, A.M.; Ayat, N.R.; Commandeur, U.; Gopalkrishnan, R.; Broome, A.M.; Lozada, K.W.; Keri, R.A.; Steinmetz, N.F. Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine (Lond.), 2014, 9(2), 221-235.
[http://dx.doi.org/10.2217/nnm.13.75] [PMID: 23834501]
[74]
Shukla, S.; Myers, J.T.; Woods, S.E.; Gong, X.; Czapar, A.E.; Commandeur, U.; Huang, A.Y.; Levine, A.D.; Steinmetz, N.F. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials, 2017, 121, 15-27.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.030] [PMID: 28063980]
[75]
Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016, 105(3), 113-132.
[http://dx.doi.org/10.1002/bip.22759] [PMID: 26509554]
[76]
Malboeuf, C.M.; Simon, D.A.; Lee, Y.E.; Lankes, H.A.; Dewhurst, S.; Frelinger, J.G.; Rose, R.C. Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine, 2007, 25(17), 3270-3276.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.067] [PMID: 17293010]
[77]
Kleid, D.G.; Yansura, D.; Small, B.; Dowbenko, D.; Moore, D.M.; Grubman, M.J.; McKercher, P.D.; Morgan, D.O.; Robertson, B.H.; Bachrach, H.L. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science, 1981, 214(4525), 1125-1129.
[http://dx.doi.org/10.1126/science.6272395] [PMID: 6272395]
[78]
Roldão, A.; Mellado, M.C.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines, 2010, 9(10), 1149-1176.
[http://dx.doi.org/10.1586/erv.10.115] [PMID: 20923267]
[79]
Masavuli, M.G.; Wijesundara, D.K.; Torresi, J.; Gowans, E.J.; Grubor-Bauk, B. Preclinical development and production of virus-like particles as vaccine candidates for hepatitis C. Front. Microbiol., 2017, 8, 2413.
[http://dx.doi.org/10.3389/fmicb.2017.02413] [PMID: 29259601]
[80]
Ong, H.K.; Tan, W.S.; Ho, K.L. Virus like particles as a platform for cancer vaccine development. PeerJ, 2017, 5e4053
[http://dx.doi.org/10.7717/peerj.4053] [PMID: 29158984]
[81]
Marsian, J.; Fox, H.; Bahar, M.W.; Kotecha, A.; Fry, E.E.; Stuart, D.I.; Macadam, A.J.; Rowlands, D.J.; Lomonossoff, G.P. Plant-made polio type 3 stabilized VLPs-a candidate synthetic polio vaccine. Nat. Commun., 2017, 8(1), 245.
[http://dx.doi.org/10.1038/s41467-017-00090-w] [PMID: 28811473]
[82]
Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2003, 125(11), 3192-3193.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[83]
Soto, C.M.; Blum, A.S.; Vora, G.J.; Lebedev, N.; Meador, C.E.; Won, A.P.; Chatterji, A.; Johnson, J.E.; Ratna, B.R. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J. Am. Chem. Soc., 2006, 128(15), 5184-5189.
[http://dx.doi.org/10.1021/ja058574x] [PMID: 16608355]
[84]
Aljabali, A.A.; Shukla, S.; Lomonossoff, G.P.; Steinmetz, N.F.; Evans, D.J. CPMV-DOX delivers. Mol. Pharm., 2013, 10(1), 3-10.
[http://dx.doi.org/10.1021/mp3002057] [PMID: 22827473]
[85]
Mateu, M.G. Virus engineering: functionalization and stabilization. Protein Eng. Des. Sel., 2011, 24(1-2), 53-63.
[http://dx.doi.org/10.1093/protein/gzq069] [PMID: 20923881]
[86]
Wang, Q.; Lin, T.; Tang, L.; Johnson, J.E.; Finn, M.G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. Engl., 2002, 41(3), 459-462.
[http://dx.doi.org/10.1002/1521-3773(20020201)41:3<459:AID-ANIE459>3.0.CO;2-O] [PMID: 12491378]
[87]
Hooker, J.M.; Kovacs, E.W.; Francis, M.B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc., 2004, 126(12), 3718-3719.
[http://dx.doi.org/10.1021/ja031790q] [PMID: 15038717]
[88]
Goff, S.P.; Berg, P. Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells. Cell, 1976, 9(4 PT 2), 695-705.
[http://dx.doi.org/10.1016/0092-8674(76)90133-1] [PMID: 189942]
[89]
Kaufmann, J.K.; Nettelbeck, D.M. Virus chimeras for gene therapy, vaccination, and oncolysis: Adenoviruses and beyond. Trends Mol. Med., 2012, 18(7), 365-376.
[http://dx.doi.org/10.1016/j.molmed.2012.04.008] [PMID: 22633438]
[90]
Ranki, T.; Hemminki, A. Serotype chimeric human adenoviruses for cancer gene therapy. Viruses, 2010, 2(10), 2196-2212.
[http://dx.doi.org/10.3390/v2102196] [PMID: 21994616]
[91]
Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M.; Young, M. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater., 2002, 14(6), 415-418.
[http://dx.doi.org/10.1002/1521-4095(20020318)14:6<415:AID-ADMA415>3.0.CO;2-W]
[92]
Liepold, L.; Anderson, S.; Willits, D.; Oltrogge, L.; Frank, J.A.; Douglas, T.; Young, M. Viral capsids as MRI contrast agents. Magn. Reson. Med., 2007, 58(5), 871-879.
[http://dx.doi.org/10.1002/mrm.21307] [PMID: 17969126]
[93]
Ren, Y.; Wong, S.M.; Lim, L.Y. In vitro-reassembled plant virus-like particles for loading of polyacids. J. Gen. Virol., 2006, 87(Pt 9), 2749-2754.
[http://dx.doi.org/10.1099/vir.0.81944-0] [PMID: 16894216]
[94]
Kriplani, U.; Kay, B.K. Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr. Opin. Biotechnol., 2005, 16(4), 470-475.
[http://dx.doi.org/10.1016/j.copbio.2005.07.001] [PMID: 16019201]
[95]
Biabanikhankahdani, R.; Bayat, S.; Ho, K.L.; Alitheen, N.B.M.; Tan, W.S. A simple add-and-display method for immobilisation of cancer drug on His-tagged virus-like nanoparticles for controlled drug delivery. Sci. Rep., 2017, 7(1), 5303.
[http://dx.doi.org/10.1038/s41598-017-05525-4] [PMID: 28706267]
[96]
Steinmetz, N.F.; Shah, S.N.; Barclay, J.E.; Rallapalli, G.; Lomonossoff, G.P.; Evans, D.J. Virus-templated silica nanoparticles. Small, 2009, 5(7), 813-816.
[http://dx.doi.org/10.1002/smll.200801348] [PMID: 19197969]
[97]
Shah, S.N.; Steinmetz, N.F.; Aljabali, A.A.; Lomonossoff, G.P.; Evans, D.J. Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles. Dalton Trans., 2009, (40), 8479-8480.
[http://dx.doi.org/10.1039/b906847c] [PMID: 19809720]
[98]
Blum, A.S.; Soto, C.M.; Wilson, C.D.; Cole, J.D.; Kim, M.; Gnade, B.; Chatterji, A.; Ochoa, W.F.; Lin, T.; Johnson, J.E.; Ratna, B.R. Cowpea Mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett., 2004, 4(5), 867-870.
[http://dx.doi.org/10.1021/nl0497474]
[99]
Blum, A.S.; Soto, C.M.; Wilson, C.D.; Brower, T.L.; Pollack, S.K.; Schull, T.L.; Chatterji, A.; Lin, T.; Johnson, J.E.; Amsinck, C.; Franzon, P.; Shashidhar, R.; Ratna, B.R. An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small, 2005, 1(7), 702-706.
[http://dx.doi.org/10.1002/smll.200500021] [PMID: 17193509]
[100]
Park, J.S.; Cho, M.K.; Lee, E.J.; Ahn, K.Y.; Lee, K.E.; Jung, J.H.; Cho, Y.; Han, S.S.; Kim, Y.K.; Lee, J. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat. Nanotechnol., 2009, 4(4), 259-264.
[http://dx.doi.org/10.1038/nnano.2009.38] [PMID: 19350038]
[101]
Casadevall, A.; Pirofski, L. Host-pathogen interactions: The attributes of virulence. J. Infect. Dis., 2001, 184(3), 337-344.
[http://dx.doi.org/10.1086/322044] [PMID: 11443560]
[102]
Alemzadeh, E.; Dehshahri, A.; Izadpanah, K.; Ahmadi, F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf. B Biointerfaces, 2018, 167, 20-27.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.026] [PMID: 29625419]
[103]
Alemzadeh, E.; Izadpanah, K.; Ahmadi, F. Generation of recombinant protein shells of Johnson grass chlorotic stripe mosaic virus in tobacco plants and their use as drug carrier. J. Virol. Methods, 2017, 248, 148-153.
[http://dx.doi.org/10.1016/j.jviromet.2017.07.003] [PMID: 28709614]
[104]
Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol., 2010, 109(2), 388-397.
[PMID: 20102425]
[105]
Suci, P.A.; Klem, M.T.; Douglas, T.; Young, M. Influence of electrostatic interactions on the surface adsorption of a viral protein cage. Langmuir, 2005, 21(19), 8686-8693.
[http://dx.doi.org/10.1021/la050217c] [PMID: 16142949]
[106]
Aljabali, A.A.; Evans, D.J. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles. Methods Mol. Biol., 2014, 1108, 97-103.
[http://dx.doi.org/10.1007/978-1-62703-751-8_7] [PMID: 24243243]
[107]
Aljabali, A.A.; Evans, D.J. Templated mineralization by charge-modified cowpea mosaic virus. Methods Mol. Biol., 2014, 1108, 89-95.
[http://dx.doi.org/10.1007/978-1-62703-751-8_6] [PMID: 24243242]
[108]
Jaafar, M.; Aljabali, A.A.; Berlanga, I.; Mas-Ballesté, R.; Saxena, P.; Warren, S.; Lomonossoff, G.P.; Evans, D.J.; de Pablo, P.J. Structural insights into magnetic clusters grown inside virus capsids. ACS Appl. Mater. Interfaces, 2014, 6(23), 20936-20942.
[http://dx.doi.org/10.1021/am505682x] [PMID: 25405995]
[109]
Sainsbury, F.; Saunders, K.; Aljabali, A.A.; Evans, D.J.; Lomonossoff, G.P. Peptide-controlled access to the interior surface of empty virus nanoparticles. ChemBioChem, 2011, 12(16), 2435-2440.
[http://dx.doi.org/10.1002/cbic.201100482] [PMID: 21953809]
[110]
Wang, Q.; Kaltgrad, E.; Lin, T.; Johnson, J.E.; Finn, M.G. Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chem. Biol., 2002, 9(7), 805-811.
[http://dx.doi.org/10.1016/S1074-5521(02)00165-5] [PMID: 12144924]
[111]
Strable, E.; Finn, M.G. Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol., 2009, 327, 1-21.
[http://dx.doi.org/10.1007/978-3-540-69379-6_1] [PMID: 19198568]
[112]
Koudelka, K.J.; Manchester, M. Chemically modified viruses: Principles and applications. Curr. Opin. Chem. Biol., 2010, 14(6), 810-817.
[http://dx.doi.org/10.1016/j.cbpa.2010.10.005] [PMID: 21036656]
[113]
Schulz, A.; Wang, H.; van Rijn, P.; Böker, A. Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. J. Mater. Chem., 2011, 21(47), 18903-18918.
[http://dx.doi.org/10.1039/c1jm12490k]
[114]
van Bommel, K.J.; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. Engl., 2003, 42(9), 980-999.
[http://dx.doi.org/10.1002/anie.200390284] [PMID: 12616548]
[115]
Douglas, T.; Young, M. Viruses: Making friends with old foes. Science, 2006, 312(5775), 873-875.
[http://dx.doi.org/10.1126/science.1123223] [PMID: 16690856]
[116]
Pacardo, D.B.; Sethi, M.; Jones, S.E.; Naik, R.R.; Knecht, M.R. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction. ACS Nano, 2009, 3(5), 1288-1296.
[http://dx.doi.org/10.1021/nn9002709] [PMID: 19422199]
[117]
Slocik, J.M.; Stone, M.O.; Naik, R.R. Synthesis of gold nanoparticles using multifunctional peptides. Small, 2005, 1(11), 1048-1052.
[http://dx.doi.org/10.1002/smll.200500172] [PMID: 17193392]
[118]
Toraya-Brown, S.; Fiering, S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int. J. Hyperthermia, 2014, 30(8), 531-539.
[http://dx.doi.org/10.3109/02656736.2014.968640]
[119]
van der Zee, J. Heating the patient: A promising approach? Ann. Oncol., 2002, 13(8), 1173-1184.
[http://dx.doi.org/10.1093/annonc/mdf280] [PMID: 12181239]
[120]
Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrott, J.C.; Taylor, C.B. Selective inductive heating of lymph nodes. Ann. Surg., 1957, 146(4), 596-606.
[http://dx.doi.org/10.1097/00000658-195710000-00007] [PMID: 13470751]
[121]
Dickmeis, C.; Altintoprak, K.; van Rijn, P.; Wege, C.; Commandeur, U. Bioinspired silica mineralization on viral templates. Methods Mol. Biol., 2018, 1776, 337-362.
[http://dx.doi.org/10.1007/978-1-4939-7808-3_23] [PMID: 29869253]
[122]
Aljabali, A.A.; Lomonossoff, G.P.; Evans, D.J. CPMV-polyelectrolyte-templated gold nanoparticles. Biomacromolecules, 2011, 12(7), 2723-2728.
[http://dx.doi.org/10.1021/bm200499v] [PMID: 21657200]
[123]
Aljabali, A.A.A.; Evans, D.J. Internal deposition of cobalt metal and Iron Oxide within CPMV eVLPs. Methods Mol. Biol., 2018, 1776, 189-201.
[http://dx.doi.org/10.1007/978-1-4939-7808-3_12] [PMID: 29869242]
[124]
Tomaselli, S.; Giovanella, U.; Pagano, K.; Leone, G.; Zanzoni, S.; Assfalg, M.; Meinardi, F.; Molinari, H.; Botta, C.; Ragona, L. Encapsulation of a rhodamine dye within a bile acid binding protein: Toward water processable functional bio host-guest materials. Biomacromolecules, 2013, 14(10), 3549-3556.
[http://dx.doi.org/10.1021/bm400904s] [PMID: 24032431]
[125]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[http://dx.doi.org/10.3390/ph6111361] [PMID: 24287462]
[126]
Lee, J-M.; Yoon, T-J.; Cho, Y-S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res. Int., 2013, 2013782041
[http://dx.doi.org/10.1155/2013/782041]
[127]
Draz, M.S.; Fang, B.A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K.C.; Gray, J.W.; Chen, F.F. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 2014, 4(9), 872-892.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[128]
Zhang, J.; Li, X.; Huang, L. Non-viral nanocarriers for siRNA delivery in breast cancer. J. Control. Release, 2014, 190, 440-450.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.037] [PMID: 24874288]
[129]
Buyens, K.; De Smedt, S.C.; Braeckmans, K.; Demeester, J.; Peeters, L.; van Grunsven, L.A.; de Mollerat du Jeu, X.; Sawant, R.; Torchilin, V.; Farkasova, K.; Ogris, M.; Sanders, N.N. Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. J. Control. Release, 2012, 158(3), 362-370.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.009] [PMID: 22023849]
[130]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[131]
Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: state of the art. J. Colloid Sci. Biotechnol., 2012, 1(2), 147-168.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[132]
Zhou, Y.; Zhang, C.; Liang, W. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics. J. Control. Release, 2014, 193, 270-281.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.044] [PMID: 24816071]
[133]
Obeid, M.A.; Tate, R.J.; Mullen, A.B.; Ferro, V.A. Lipid-based nanoparticles for cancer treatment. In: Lipid Nanocarriers for Drug Targeting; Elsevier, 2018, pp. 313-359.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00008-6]
[134]
Allen, T.M. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs, 1998, 56(5), 747-756.
[http://dx.doi.org/10.2165/00003495-199856050-00001] [PMID: 9829150]
[135]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[136]
Wang, H-X.; Zuo, Z-Q.; Du, J-Z.; Wang, Y-C.; Sun, R.; Cao, Z-T.; Ye, X-D.; Wang, J-L.; Leong, K.W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11(2), 133-144.
[http://dx.doi.org/10.1016/j.nantod.2016.04.008]
[137]
Forssen, E.A.; Tökés, Z.A. Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes. Cancer Res., 1983, 43(2), 546-550.
[PMID: 6848178]
[138]
Morrissey, D.V.; Lockridge, J.A.; Shaw, L.; Blanchard, K.; Jensen, K.; Breen, W.; Hartsough, K.; Machemer, L.; Radka, S.; Jadhav, V.; Vaish, N.; Zinnen, S.; Vargeese, C.; Bowman, K.; Shaffer, C.S.; Jeffs, L.B.; Judge, A.; MacLachlan, I.; Polisky, B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol., 2005, 23(8), 1002-1007.
[http://dx.doi.org/10.1038/nbt1122] [PMID: 16041363]
[139]
Mamot, C.; Drummond, D.C.; Hong, K.; Kirpotin, D.B.; Park, J.W. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Updat., 2003, 6(5), 271-279.
[http://dx.doi.org/10.1016/S1368-7646(03)00082-7] [PMID: 14643297]
[140]
Obeid, M.A.; Gebril, A.M.; Tate, R.J.; Mullen, A.B.; Ferro, V.A. Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. Int. J. Pharm., 2017, 521(1-2), 54-60.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.007] [PMID: 28163227]
[141]
Paecharoenchai, O.; Niyomtham, N.; Leksantikul, L.; Ngawhirunpat, T.; Rojanarata, T.; Yingyongnarongkul, B.E.; Opanasopit, P. Nonionic surfactant vesicles composed of novel spermine-derivative cationic lipids as an effective gene carrier in vitro. AAPS PharmSciTech, 2014, 15(3), 722-730.
[http://dx.doi.org/10.1208/s12249-014-0095-x] [PMID: 24623349]
[142]
Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B, 2011, 1(4), 208-219.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[143]
Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: the state of the art. Adv. Colloid Interface Sci., 2014, 205, 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[144]
Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm., 2017, 516(1-2), 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.015] [PMID: 27836752]
[145]
Pawar, S.; Vavia, P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J. Drug Target., 2016, 24(1), 68-79.
[http://dx.doi.org/10.3109/1061186X.2015.1055572] [PMID: 26152812]
[146]
Obeid, M.A.; Elburi, A.; Young, L.C.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. Formulation of non-ionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm., 2017, 14(7), 2450-2458.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00352] [PMID: 28570823]
[147]
Zidan, A.S.; Rahman, Z.; Khan, M.A. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur. J. Pharm. Sci., 2011, 44(1-2), 93-102.
[http://dx.doi.org/10.1016/j.ejps.2011.06.012] [PMID: 21726640]
[148]
Gebril, A.M.; Lamprou, D.A.; Alsaadi, M.M.; Stimson, W.H.; Mullen, A.B.; Ferro, V.A. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomedicine (Lond.), 2014, 10(5), 971-979.
[http://dx.doi.org/10.1016/j.nano.2013.12.005] [PMID: 24374362]
[149]
Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Science of fullerenes and carbon nanotubes: Their properties and applications; Elsevier, 1996.
[150]
Ma, P-C.; Siddiqui, N.A.; Marom, G.; Kim, J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos., Part A Appl. Sci. Manuf., 2010, 41(10), 1345-1367.
[http://dx.doi.org/10.1016/j.compositesa.2010.07.003]
[151]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxi-city assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 544-568.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[152]
Gupta, A.K.; Gupta, M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26(13), 1565-1573.
[http://dx.doi.org/10.1016/j.biomaterials.2004.05.022] [PMID: 15522758]
[153]
Prijic, S.; Scancar, J.; Romih, R.; Cemazar, M.; Bregar, V.B.; Znidarsic, A.; Sersa, G. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol., 2010, 236(1), 167-179.
[http://dx.doi.org/10.1007/s00232-010-9271-4] [PMID: 20602230]
[154]
Lee, S.H.; Bae, K.H.; Kim, S.H.; Lee, K.R.; Park, T.G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.027] [PMID: 18723087]
[155]
Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev., 2008, 60(11), 1226-1240.
[http://dx.doi.org/10.1016/j.addr.2008.03.015] [PMID: 18495291]
[156]
Yong, K-T.; Law, W-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M.T.; Prasad, P.N. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem. Soc. Rev., 2013, 42(3), 1236-1250.
[http://dx.doi.org/10.1039/C2CS35392J] [PMID: 23175134]
[157]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[158]
He, Q.; Shi, J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21(16), 5845-5855.
[http://dx.doi.org/10.1039/c0jm03851b]
[159]
Wan, C.; Allen, T.M.; Cullis, P.R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res., 2014, 4(1), 74-83.
[http://dx.doi.org/10.1007/s13346-013-0161-z] [PMID: 25786618]
[160]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[161]
Mäe, M.; Langel, U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol., 2006, 6(5), 509-514.
[http://dx.doi.org/10.1016/j.coph.2006.04.004] [PMID: 16860608]
[162]
Gupta, B.; Levchenko, T.S.; Torchilin, V.P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev., 2005, 57(4), 637-651.
[http://dx.doi.org/10.1016/j.addr.2004.10.007] [PMID: 15722168]
[163]
Sarko, D.; Beijer, B.; Garcia Boy, R.; Nothelfer, E-M.; Leotta, K.; Eisenhut, M.; Altmann, A.; Haberkorn, U.; Mier, W. The pharmacokinetics of cell-penetrating peptides. Mol. Pharm., 2010, 7(6), 2224-2231.
[http://dx.doi.org/10.1021/mp100223d] [PMID: 20845937]
[164]
Yildiz, I.; Shukla, S.; Steinmetz, N.F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol., 2011, 22(6), 901-908.
[http://dx.doi.org/10.1016/j.copbio.2011.04.020] [PMID: 21592772]
[165]
Gillitzer, E.; Willits, D.; Young, M.; Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. (Camb.), 2002, 20, 2390-2391.
[http://dx.doi.org/10.1039/b207853h] [PMID: 12430455]
[166]
Zhao, Q.; Chen, W.; Chen, Y.; Zhang, L.; Zhang, J.; Zhang, Z. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. Bioconjug. Chem., 2011, 22(3), 346-352.
[http://dx.doi.org/10.1021/bc1002532] [PMID: 21338097]
[167]
Carey, D.J. Syndecans: Multifunctional cell-surface co-receptors. Biochem. J., 1997, 327(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3270001] [PMID: 9355727]
[168]
Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224.
[http://dx.doi.org/10.1186/gb-2008-9-5-224] [PMID: 18505598]
[169]
Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol., 2011, 3(7)a004952
[http://dx.doi.org/10.1101/cshperspect.a004952] [PMID: 21690215]
[170]
Hilgard, P.; Stockert, R. Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology, 2000, 32(5), 1069-1077.
[http://dx.doi.org/10.1053/jhep.2000.18713] [PMID: 11050058]
[171]
de Witte, L.; Bobardt, M.; Chatterji, U.; Degeest, G.; David, G.; Geijtenbeek, T.B.; Gallay, P. Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19464-19469.
[http://dx.doi.org/10.1073/pnas.0703747104] [PMID: 18040049]
[172]
Shukla, D.; Spear, P.G. Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. J. Clin. Invest., 2001, 108(4), 503-510.
[http://dx.doi.org/10.1172/JCI200113799] [PMID: 11518721]
[173]
Lear, J.D.; DeGrado, W.F. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J. Biol. Chem., 1987, 262(14), 6500-6505.
[PMID: 3571268]
[174]
Weis, W.; Brown, J.H.; Cusack, S.; Paulson, J.C.; Skehel, J.J.; Wiley, D.C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 1988, 333(6172), 426-431.
[http://dx.doi.org/10.1038/333426a0] [PMID: 3374584]
[175]
Arnberg, N.; Edlund, K.; Kidd, A.H.; Wadell, G. Adenovirus type 37 uses sialic acid as a cellular receptor. J. Virol., 2000, 74(1), 42-48.
[http://dx.doi.org/10.1128/JVI.74.1.42-48.2000] [PMID: 10590089]
[176]
Schwegmann-Wessels, C.; Herrler, G. Sialic acids as receptor determinants for coronaviruses. Glycoconj. J., 2006, 23(1-2), 51-58.
[http://dx.doi.org/10.1007/s10719-006-5437-9] [PMID: 16575522]
[177]
Ploss, A.; Evans, M.J.; Gaysinskaya, V.A.; Panis, M.; You, H.; de Jong, Y.P.; Rice, C.M. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature, 2009, 457(7231), 882-886.
[http://dx.doi.org/10.1038/nature07684] [PMID: 19182773]
[178]
Sainz, B., Jr; Barretto, N.; Martin, D.N.; Hiraga, N.; Imamura, M.; Hussain, S.; Marsh, K.A.; Yu, X.; Chayama, K.; Alrefai, W.A.; Uprichard, S.L. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat. Med., 2012, 18(2), 281-285.
[http://dx.doi.org/10.1038/nm.2581] [PMID: 22231557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy