Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go?

Author(s): Sijia Xiao, Qianbin Li*, Liqing Hu, Zutao Yu, Jie Yang, Qi Chang, Zhuo Chen, Gaoyun Hu

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 18 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.

Keywords: Soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), NO-sGC-cGMP pathway, sGC stimulators and activators, heart failure, vasorelaxation.

[1]
Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9265-9269.
[http://dx.doi.org/10.1073/pnas.84.24.9265] [PMID: 2827174]
[2]
Stasch, J-P.; Hobbs, A.J. NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb. Exp. Pharmacol., 2009, 199(191), 277-308.
[http://dx.doi.org/10.1007/978-3-540-68964-5_13] [PMID: 19089334]
[3]
Stasch, J-P.; Schmidt, P.; Alonso-Alija, C.; Apeler, H.; Dembowsky, K.; Haerter, M.; Heil, M.; Minuth, T.; Perzborn, E.; Pleiss, U.; Schramm, M.; Schroeder, W.; Schröder, H.; Stahl, E.; Steinke, W.; Wunder, F. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br. J. Pharmacol., 2002, 136(5), 773-783.
[http://dx.doi.org/10.1038/sj.bjp.0704778] [PMID: 12086987]
[4]
Wang-Rosenke, Y.; Neumayer, H.H.; Peters, H. NO signaling through cGMP in renal tissue fibrosis and beyond: Key pathway and novel therapeutic target. Curr. Med. Chem., 2008, 15(14), 1396-1406.
[http://dx.doi.org/10.2174/092986708784567725] [PMID: 18537617]
[5]
Follmann, M.; Griebenow, N.; Hahn, G.M.; Hartung, I.; Mais, F-Z.; Mittendorf, J.; Schafer, M.; Schirok, H.; Stasch, J-P.; Stoll, F.; Straub, A. The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew. Chem. Int. Ed., 2013, 52, 9442-9462.
[http://dx.doi.org/10.1002/anie.201302588]
[6]
Sandner, P.; Stasch, J-P. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir. Med., 2017, 122(Suppl. 1), S1-S9.
[http://dx.doi.org/10.1016/j.rmed.2016.08.022] [PMID: 28341058]
[7]
Hu, L.; Wang, Z.; Yi, R.; Yi, H.; Xiao, S.; Chen, Z.; Hu, G.; Li, Q. Soluble guanylate cyclase: A new therapeutic target for fibrotic diseases. Curr. Med. Chem., 2017, 24(29), 3203-3215.
[http://dx.doi.org/10.2174/0929867324666170509115433] [PMID: 28486921]
[8]
Ko, F.N.; Wu, C.C.; Kuo, S.C.; Lee, F.Y.; Teng, C.M. YC-1, a novel activator of platelet guanylate cyclase. Blood, 1994, 84(12), 4226-4233.
[PMID: 7527671]
[9]
Galle, J.; Zabel, U.; Hübner, U.; Hatzelmann, A.; Wagner, B.; Wanner, C.; Schmidt, H.H.H.W. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity. Br. J. Pharmacol., 1999, 127(1), 195-203.
[http://dx.doi.org/10.1038/sj.bjp.0702495] [PMID: 10369473]
[10]
Tsou, C-Y.; Chen, C-Y.; Zhao, J-F.; Su, K-H.; Lee, H-T.; Lin, S-J.; Shyue, S-K.; Hsiao, S-H.; Lee, T-S. Activation of soluble guanylyl cyclase prevents foam cell formation and atherosclerosis. Acta Physiol. (Oxf.), 2014, 210(4), 799-810.
[http://dx.doi.org/10.1111/apha.12210] [PMID: 24299003]
[11]
Komsuoglu Celikyurt, I.; Utkan, T.; Ozer, C.; Gacar, N.; Aricioglu, F. Effects of YC-1 on learning and memory functions of aged rats. Med. Sci. Monit. Basic Res., 2014, 20, 130-137.
[http://dx.doi.org/10.12659/MSMBR.891064] [PMID: 25144469]
[12]
Wang, J-W.; Yeh, C-B.; Chou, S.J.; Lu, K-C.; Chu, T-H.; Chen, W-Y.; Chien, J-L.; Yen, M-H.; Chen, T-H.; Shyu, J-F. YC-1 alleviates bone loss in ovariectomized rats by inhibiting bone resorption and inducing extrinsic apoptosis in osteoclasts. J. Bone Miner. Metab., 2018, 36(5), 508-518.
[http://dx.doi.org/10.1007/s00774-017-0866-z] [PMID: 28983668]
[13]
DeNiro, M.; Al-Mohanna, F.A. Nuclear factor kappa-B signaling is integral to ocular neovascularization in ischemia-independent microenvironment. PLoS One, 2014, 9(7)e101602
[http://dx.doi.org/10.1371/journal.pone.0101602] [PMID: 25050547]
[14]
Kong, J.; Kong, F.; Gao, J.; Zhang, Q.; Dong, S.; Gu, F.; Ke, S.; Pan, B.; Shen, Q.; Sun, H.; Zheng, L.; Sun, W. YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma. Mol. Cancer, 2014, 13, 7.
[http://dx.doi.org/10.1186/1476-4598-13-7] [PMID: 24418169]
[15]
Chang, L-C.; Lin, H-Y.; Tsai, M-T.; Chou, R-H.; Lee, F-Y.; Teng, C-M.; Hsieh, M-T.; Hung, H-Y.; Huang, L-J.; Yu, Y-L.; Kuo, S-C. YC-1 inhibits proliferation of breast cancer cells by down-regulating EZH2 expression via activation of c-Cbl and ERK. Br. J. Pharmacol., 2014, 171(17), 4010-4025.
[http://dx.doi.org/10.1111/bph.12708] [PMID: 24697523]
[16]
Tsui, L.; Fong, T-H.; Wang, I.J. The effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) on cell viability under hypoxia. Mol. Vis., 2013, 19, 2260-2273.
[PMID: 24265542]
[17]
Carroll, C.E.; Liang, Y.; Benakanakere, I.; Besch-Williford, C.; Hyder, S.M. The anticancer agent YC-1 suppresses progestin-stimulated VEGF in breast cancer cells and arrests breast tumor development. Int. J. Oncol., 2013, 42(1), 179-187.
[http://dx.doi.org/10.3892/ijo.2012.1675] [PMID: 23123638]
[18]
Kambayashi, S.; Igase, M.; Kobayashi, K.; Kimura, A.; Shimokawa Miyama, T.; Baba, K.; Noguchi, S.; Mizuno, T.; Okuda, M. Hypoxia inducible factor 1α expression and effects of its inhibitors in canine lymphoma. J. Vet. Med. Sci., 2015, 77(11), 1405-1412.
[http://dx.doi.org/10.1292/jvms.15-0258] [PMID: 26050843]
[19]
Li, Y.; Guo, B.; Xie, Q.; Ye, D.; Zhang, D.; Zhu, Y.; Chen, H.; Zhu, B. STIM1 Mediates Hypoxia-Driven Hepatocarcinogenesis via Interaction with HIF-1. Cell Rep., 2015, 12(3), 388-395.
[http://dx.doi.org/10.1016/j.celrep.2015.06.033] [PMID: 26166565]
[20]
Brownfoot, F.C.; Tong, S.; Hannan, N.J.; Hastie, R.; Cannon, P.; Tuohey, L.; Kaitu’u-Lino, T.J. YC-1 reduces placental sFlt-1 and soluble endoglin production and decreases endothelial dysfunction: A possible therapeutic for preeclampsia. Mol. Cell. Endocrinol., 2015, 413, 202-208.
[http://dx.doi.org/10.1016/j.mce.2015.06.033] [PMID: 26159901]
[21]
Wang, X.; Liu, C.; Wu, L.; Zhu, S. Potent ameliorating effect of Hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in Rats. Eur. J. Pharmacol., 2016, 788, 343-350.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.040] [PMID: 27498367]
[22]
Cho, I.R.; Kaowinn, S.; Moon, J.; Soh, J.; Kang, H.Y.; Jung, C.R.; Oh, S.; Song, H.; Koh, S.S.; Chung, Y.H. Oncotropic H-1 parvovirus infection degrades HIF-1α protein in human pancreatic cancer cells independently of VHL and RACK1. Int. J. Oncol., 2015, 46(5), 2076-2082.
[http://dx.doi.org/10.3892/ijo.2015.2922] [PMID: 25760590]
[23]
Ikezawa, Y.; Sakakibara-Konishi, J.; Mizugaki, H.; Oizumi, S.; Nishimura, M. Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. Int. J. Clin. Oncol., 2017, 22(1), 59-69.
[http://dx.doi.org/10.1007/s10147-016-1031-8] [PMID: 27553958]
[24]
Wakiyama, K.; Kitajima, Y.; Tanaka, T.; Kaneki, M.; Yanagihara, K.; Aishima, S.; Nakamura, J.; Noshiro, H. Low-dose YC-1 combined with glucose and insulin selectively induces apoptosis in hypoxic gastric carcinoma cells by inhibiting anaerobic glycolysis. Sci. Rep., 2017, 7(1), 12653.
[http://dx.doi.org/10.1038/s41598-017-12929-9] [PMID: 28978999]
[25]
Sun, Y.; Chen, X.; Zhang, X.; Shen, X.; Wang, M.; Wang, X.; Liu, W-C.; Liu, C-F.; Liu, J.; Liu, W.; Jin, X. β2-Adrenergic Receptor-Mediated HIF-1α upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front. Mol. Neurosci., 2017, 10, 257.
[http://dx.doi.org/10.3389/fnmol.2017.00257] [PMID: 28855859]
[26]
Shen, Y.; Gu, J.; Liu, Z.; Xu, C.; Qian, S.; Zhang, X.; Zhou, B.; Guan, Q.; Sun, Y.; Wang, Y.; Jin, X. Inhibition of HIF-1α reduced blood brain barrier damage by regulating MMP-2 and VEGF during acute cerebral ischemia. Front. Cell. Neurosci., 2018, 12, 288.
[http://dx.doi.org/10.3389/fncel.2018.00288] [PMID: 30233326]
[27]
Sun, H-D.; Liu, Y-J.; Chen, J.; Chen, M-Y.; Ouyang, B.; Guan, X-D. The pivotal role of HIF-1α in lung inflammatory injury induced by septic mesenteric lymph. Biomed. Pharmacother., 2017, 91, 476-484.
[http://dx.doi.org/10.1016/j.biopha.2017.04.103] [PMID: 28478272]
[28]
Lee, M-R.; Lin, C.; Lu, C-C.; Kuo, S-C.; Tsao, J-W.; Juan, Y-N.; Chiu, H-Y.; Lee, F-Y.; Yang, J-S.; Tsai, F-J. YC-1 induces G0/G1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei), 2017, 7(2), 12.
[http://dx.doi.org/10.1051/bmdcn/2017070205] [PMID: 28612710]
[29]
Ding, X.; Kong, J.; Xu, W.; Dong, S.; Du, Y.; Yao, C.; Gao, J.; Ke, S.; Wang, S.; Sun, W. ATPase inhibitory factor 1 inhibition improves the antitumor of YC-1 against hepatocellular carcinoma. Oncol. Lett., 2018, 16(4), 5230-5236.
[http://dx.doi.org/10.3892/ol.2018.9266] [PMID: 30250592]
[30]
Zhao, Z.; Xia, G.; Li, N.; Su, R.; Chen, X.; Zhong, L. Autophagy inhibition promotes bevacizumab-induced apoptosis and proliferation inhibition in colorectal cancer cells. J. Cancer, 2018, 9(18), 3407-3416.
[http://dx.doi.org/10.7150/jca.24201] [PMID: 30271503]
[31]
Tai, S.H.; Lee, W.T.; Lee, A.C.; Lin, Y.W.; Hung, H.Y.; Huang, S.Y.; Wu, T.S.; Lee, E.J. Therapeutic window for YC-1 following glutamate-induced neuronal damage and transient focal cerebral ischemia. Mol. Med. Rep., 2018, 17(5), 6490-6496.
[http://dx.doi.org/10.3892/mmr.2018.8660] [PMID: 29512783]
[32]
Yan, Z.; An, J.; Shang, Q.; Zhou, N.; Ma, J. YC-1 Inhibits VEGF and inflammatory mediators expression on experimental central retinal vein occlusion in rhesus monkey. Curr. Eye Res., 2018, 43(4), 526-533.
[http://dx.doi.org/10.1080/02713683.2018.1426102] [PMID: 29364731]
[33]
Straub, A.; Stasch, J-P.; Alonso-Alija, C.; Benet-Buchholz, J.; Ducke, B.; Feurer, A.; Fürstner, C. NO-independent stimulators of soluble guanylate cyclase. Bioorg. Med. Chem. Lett., 2001, 11(6), 781-784.
[http://dx.doi.org/10.1016/S0960-894X(01)00073-7] [PMID: 11277519]
[34]
Mittendorf, J.; Weigand, S.; Alonso-Alija, C.; Bischoff, E.; Feurer, A.; Gerisch, M.; Kern, A.; Knorr, A.; Lang, D.; Muenter, K.; Radtke, M.; Schirok, H.; Schlemmer, K-H.; Stahl, E.; Straub, A.; Wunder, F.; Stasch, J-P. Discovery of riociguat (BAY 63-2521): A potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. ChemMedChem, 2009, 4(5), 853-865.
[http://dx.doi.org/10.1002/cmdc.200900014] [PMID: 19263460]
[35]
Chan, M.V.; Bubb, K.J.; Noyce, A.; Villar, I.C.; Duchene, J.; Hobbs, A.J.; Scotland, R.S.; Ahluwalia, A. Distinct endothelial pathways underlie sexual dimorphism in vascular auto-regulation. Br. J. Pharmacol., 2012, 167(4), 805-817.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02012.x] [PMID: 22540539]
[36]
Beyer, C.; Reich, N.; Schindler, S.C.; Akhmetshina, A.; Dees, C.; Tomcik, M.; Hirth-Dietrich, C.; von Degenfeld, G.; Sandner, P.; Distler, O.; Schett, G.; Distler, J.H. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum. Dis., 2012, 71(6), 1019-1026.
[http://dx.doi.org/10.1136/annrheumdis-2011-200862] [PMID: 22294631]
[37]
Sandner, P.; Tinel, H.; Affaitati, G.; Costantini, R.; Giamberardino, M.A. Effects of PDE5 Inhibitors and sGC Stimulators in a Rat Model of Artificial Ureteral Calculosis. PLoS One, 2015, 10(10)e0141477
[http://dx.doi.org/10.1371/journal.pone.0141477] [PMID: 26509272]
[38]
Paul, T.; Salazar-Degracia, A.; Peinado, V.I.; Tura-Ceide, O.; Blanco, I.; Barreiro, E.; Barberà, J.A. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental Chronic Obstructive Pulmonary Disease. PLoS One, 2018, 13(1)e0190628
[http://dx.doi.org/10.1371/journal.pone.0190628] [PMID: 29304131]
[39]
Selwood, D.L.; Brummell, D.G.; Budworth, J.; Burtin, G.E.; Campbell, R.O.; Chana, S.S.; Charles, I.G.; Fernandez, P.A.; Glen, R.C.; Goggin, M.C.; Hobbs, A.J.; Kling, M.R.; Liu, Q.; Madge, D.J.; Meillerais, S.; Powell, K.L.; Reynolds, K.; Spacey, G.D.; Stables, J.N.; Tatlock, M.A.; Wheeler, K.A.; Wishart, G.; Woo, C-K. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase. J. Med. Chem., 2001, 44(1), 78-93.
[http://dx.doi.org/10.1021/jm001034k] [PMID: 11141091]
[40]
Kotzki, S.; Roustit, M.; Arnaud, C.; Boutonnat, J.; Blaise, S.; Godin-Ribuot, D.; Cracowski, J-L. Anodal iontophoresis of a soluble guanylate cyclase stimulator induces a sustained increase in skin blood flow in rats. J. Pharmacol. Exp. Ther., 2013, 346(3), 424-431.
[http://dx.doi.org/10.1124/jpet.113.205484] [PMID: 23838678]
[41]
Stasch, J.P.; Alonso-Alija, C.; Apeler, H.; Dembowsky, K.; Feurer, A.; Minuth, T.; Perzborn, E.; Schramm, M.; Straub, A. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br. J. Pharmacol., 2002, 135(2), 333-343.
[http://dx.doi.org/10.1038/sj.bjp.0704484] [PMID: 11815368]
[42]
Stancu, B.; Krämer, S.; Loof, T.; Mika, A.; Amann, K.; Neumayer, H-H.; Peters, H. Soluble guanylate cyclase stimulator BAY 41-8543 and female sex ameliorate uremic aortic remodeling in a rat model of mild uremia. J. Hypertens., 2015, 33(9), 1907-1920.
[http://dx.doi.org/10.1097/HJH.0000000000000648] [PMID: 26176653]
[43]
Schinner, E.; Wetzl, V.; Schramm, A.; Kees, F.; Sandner, P.; Stasch, J-P.; Hofmann, F.; Schlossmann, J. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio, 2017, 7(4), 550-561.
[http://dx.doi.org/10.1002/2211-5463.12202] [PMID: 28396839]
[44]
Miller, L.N.; Nakane, M.; Hsieh, G.C.; Chang, R.; Kolasa, T.; Moreland, R.B.; Brioni, J.D. A-350619: A novel activator of soluble guanylyl cyclase. Life Sci., 2003, 72(9), 1015-1025.
[http://dx.doi.org/10.1016/S0024-3205(02)02361-5] [PMID: 12495780]
[45]
Pablos, P.; Mendiguren, A.; Pineda, J. Contribution of nitric oxide-dependent guanylate cyclase and reactive oxygen species signaling pathways to desensitization of μ-opioid receptors in the rat locus coeruleus. Neuropharmacology, 2015, 99, 422-431.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.004] [PMID: 26254861]
[46]
Amirjanians, M.; Egemnazarov, B.; Sydykov, A.; Kojonazarov, B.; Brandes, R.; Luitel, H.; Pradhan, K.; Stasch, J-P.; Redlich, G.; Weissmann, N.; Grimminger, F.; Seeger, W.; Ghofrani, H.; Schermuly, R. Chronic intratracheal application of the soluble guanylyl cyclase stimulator BAY 41-8543 ameliorates experimental pulmonary hypertension. Oncotarget, 2017, 8(18), 29613-29624.
[http://dx.doi.org/10.18632/oncotarget.16769] [PMID: 28410199]
[47]
Stasch, J.P.; Evgenov, O.V. Soluble guanylate cyclase stimulators in pulmonary hypertension. Handb. Exp. Pharmacol., 2013, 218, 279-313.
[http://dx.doi.org/10.1007/978-3-662-45805-1_12] [PMID: 24092345]
[48]
Ghofrani, H.A.; D’Armini, A.M.; Grimminger, F.; Hoeper, M.M.; Jansa, P.; Kim, N.H.; Mayer, E.; Simonneau, G.; Wilkins, M.R.; Fritsch, A.; Neuser, D.; Weimann, G.; Wang, C. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N. Engl. J. Med., 2013, 369(4), 319-329.
[http://dx.doi.org/10.1056/NEJMoa1209657] [PMID: 23883377]
[49]
Ghofrani, H-A.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z-C.; Keogh, A.M.; Langleben, D.; Kilama, M.O.; Fritsch, A.; Neuser, D.; Rubin, L.J. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med., 2013, 369(4), 330-340.
[http://dx.doi.org/10.1056/NEJMoa1209655] [PMID: 23883378]
[50]
Simonneau, G.; D’Armini, A.M.; Ghofrani, H-A.; Grimminger, F.; Hoeper, M.M.; Jansa, P.; Kim, N.H.; Wang, C.; Wilkins, M.R.; Fritsch, A.; Davie, N.; Colorado, P.; Mayer, E. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur. Respir. J., 2015, 45(5), 1293-1302.
[http://dx.doi.org/10.1183/09031936.00087114] [PMID: 25395036]
[51]
Halank, M.; Hoeper, M.M.; Ghofrani, H-A.; Meyer, F.J.; Stähler, G.; Behr, J.; Ewert, R.; Fletcher, M.; Colorado, P.; Nikkho, S.; Grimminger, F. Riociguat for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Results from a phase II long-term extension study. Respir. Med., 2017, 128, 50-56.
[http://dx.doi.org/10.1016/j.rmed.2017.05.008] [PMID: 28610669]
[52]
Lian, T-Y.; Jiang, X.; Jing, Z-C. Riociguat: A soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension. Drug Des. Devel. Ther., 2017, 11, 1195-1207.
[http://dx.doi.org/10.2147/DDDT.S117277] [PMID: 28458514]
[53]
Humbert, M.; Coghlan, J.G.; Ghofrani, H-A.; Grimminger, F.; He, J-G.; Riemekasten, G.; Vizza, C.D.; Boeckenhoff, A.; Meier, C.; de Oliveira Pena, J.; Denton, C.P. Riociguat for the treatment of pulmonary arterial hypertension associated with connective tissue disease: results from PATENT-1 and PATENT-2. Ann. Rheum. Dis., 2017, 76(2), 422-426.
[http://dx.doi.org/10.1136/annrheumdis-2015-209087] [PMID: 27457511]
[54]
Rosenkranz; S.; Ghofrani, H.-A.; Beghetti, M.; Ivy, D.; Frey, R.; Fritsch, A.; Weimann, G.; Saleh, S.; Apitz, C. Riociguat for pulmonary arterial hypertension associated with congenital heart disease. Heart, 2015, 101, 1792-1799.
[http://dx.doi.org/10.1136/heartjnl-2015-307832]
[55]
Chamorro, V.; Morales-Cano, D.; Milara, J.; Barreira, B.; Moreno, L.; Callejo, M.; Mondejar-Parreño, G.; Esquivel-Ruiz, S.; Cortijo, J.; Cogolludo, Á.; Barberá, J.A.; Perez-Vizcaino, F. Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventilation/perfusion matching. PLoS One, 2018, 13(1)e0191239
[http://dx.doi.org/10.1371/journal.pone.0191239] [PMID: 29364918]
[56]
Sharkovska, Y.; Kalk, P.; Lawrenz, B.; Godes, M.; Hoffmann, L.S.; Wellkisch, K.; Geschka, S.; Relle, K.; Hocher, B.; Stasch, J.P. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J. Hypertens., 2010, 28(8), 1666-1675.
[http://dx.doi.org/10.1097/HJH.0b013e32833b558c] [PMID: 20613628]
[57]
Geschka, S.; Kretschmer, A.; Sharkovska, Y.; Evgenov, O.V.; Lawrenz, B.; Hucke, A.; Hocher, B.; Stasch, J.P. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats. PLoS One, 2011, 6(7)e21853
[http://dx.doi.org/10.1371/journal.pone.0021853] [PMID: 21789188]
[58]
Dees, C.; Beyer, C.; Distler, A.; Soare, A.; Zhang, Y.; Palumbo-Zerr, K.; Distler, O.; Schett, G.; Sandner, P.; Distler, J.H.; Distler, J.H.W. Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Ann. Rheum. Dis., 2015, 74(8), 1621-1625.
[http://dx.doi.org/10.1136/annrheumdis-2014-206809] [PMID: 25817717]
[59]
Schwabl, P.; Brusilovskaya, K.; Supper, P.; Bauer, D.; Königshofer, P.; Riedl, F.; Hayden, H.; Fuchs, C.D.; Stift, J.; Oberhuber, G.; Aschauer, S.; Bonderman, D.; Gnad, T.; Pfeifer, A.; Uschner, F.E.; Trebicka, J.; Rohr-Udilova, N.; Podesser, B.K.; Peck-Radosavljevic, M.; Trauner, M.; Reiberger, T. The soluble guanylate cyclase stimulator riociguat reduces fibrogenesis and portal pressure in cirrhotic rats. Sci. Rep., 2018, 8(1), 9372.
[http://dx.doi.org/10.1038/s41598-018-27656-y] [PMID: 29921982]
[60]
Rai, N.; Veeroju, S.; Schymura, Y.; Janssen, W.; Wietelmann, A.; Kojonazarov, B.; Weissmann, N.; Stasch, J-P.; Ghofrani, W.; Schermuly, R.T.; Novoyatleva, T.; Seeger, W. Effect of riociguat and sildenafil on right heart remodeling and function in pressure overload induced model of pulmonary arterial banding. BioMed Res. Int., 2018, 1-9.
[61]
Costell, M.H.; Ancellin, N.; Bernard, R.E.; Zhao, S.; Upson, J.J.; Morgan, L.A.; Maniscalco, K.; Olzinski, A.R.; Ballard, V.L.T.; Herry, K.; Grondin, P.; Dodic, N.; Mirguet, O.; Bouillot, A.; Gellibert, F.; Coatney, R.W.; Lepore, J.J.; Jucker, B.M.; Jolivette, L.J.; Willette, R.N.; Schnackenberg, C.G.; Behm, D.J. Comparison of soluble guanylate cyclase stimulators and activators in models of cardiovascular disease associated with oxidative stress. Front. Pharmacol., 2012, 3, 128.
[http://dx.doi.org/10.3389/fphar.2012.00128] [PMID: 22783192]
[62]
Stasch, J-P.; Schlossmann, J.; Hocher, B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol., 2015, 21, 95-104.
[http://dx.doi.org/10.1016/j.coph.2014.12.014] [PMID: 25645316]
[63]
Nakai, T.; Perl, N.R.; Barden, T.C.; Carvalho, A.; Fretzen, A.; Germano, P. Im, G.Y.; Jin, H.; Kim, C.; Lee, T.W.; Long, K.; Moore, J.; Rohde, J.M.; Sarno, R.; Segal, C.; Solberg, E.O.; Tobin, J.; Zimmer, D.P.; Currie, M.G. Discovery of IWP-051, a Novel orally bioavailable sGC stimulator with once-daily dosing potential in humans. ACS Med. Chem. Lett., 2016, 7(5), 465-469.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00479] [PMID: 27190594]
[64]
Zimmer, D.P.; Cole, B.K.; Ge, P.; Tang, K.; Miline, G.; Simmers, M.; Feaver, R.; Collado, M.S.; Hoang, S.; Lawson, M.; Macky, A.; Manka, D.; Blackman, B.R.; Ribadeneira, M. Inhibition of fibrotic and hypoxia gene response in a pulmonary vascular surrogate system with a small molecule stimulator of soluble guanylate cyclase. Am. J. Respir. Crit. Care Med., 2016, 193, A3906.
[65]
Ge, P.; Navarro, I.D.; Kessler, M.M.; Bernier, S.G.; Perl, N.R.; Sarno, R.; Masferrer, J.; Hannig, G.; Stamer, W.D. The soluble guanylate cyclase stimulator IWP-953 increases conventional outflow facility in mouse eyes. Invest. Ophthalmol. Vis. Sci., 2016, 57(3), 1317-1326.
[http://dx.doi.org/10.1167/iovs.15-18958] [PMID: 26998718]
[66]
Follmann, M.; Ackerstaff, J.; Redlich, G.; Wunder, F.; Lang, D.; Kern, A.; Fey, P.; Griebenow, N.; Kroh, W.; Becker-Pelster, E-M.; Kretschmer, A.; Geiss, V.; Li, V.; Straub, A.; Mittendorf, J.; Jautelat, R.; Schirok, H.; Schlemmer, K-H.; Lustig, K.; Gerisch, M.; Knorr, A.; Tinel, H.; Mondritzki, T.; Trübel, H.; Sandner, P.; Stasch, J-P. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. J. Med. Chem., 2017, 60(12), 5146-5161.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00449] [PMID: 28557445]
[67]
Pieske, B.; Butler, J.; Filippatos, G.; Lam, C.; Maggioni, A.P.; Ponikowski, P.; Shah, S.; Solomon, S.; Kraigher-Krainer, E.; Samano, E.T.; Scalise, A.V.; Müller, K.; Roessig, L.; Gheorghiade, M. Rationale and design of the soluble guanylate Cyclase stimulatoR in heart failure Studies (SOCRATES). Eur. J. Heart Fail., 2014, 16(9), 1026-1038.
[http://dx.doi.org/10.1002/ejhf.135] [PMID: 25056511]
[68]
Gheorghiade, M.; Greene, S.J.; Butler, J.; Filippatos, G.; Lam, C.S.; Maggioni, A.P.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Kraigher-Krainer, E.; Samano, E.T.; Müller, K.; Roessig, L.; Pieske, B. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: The SOCRATES-REDUCED randomized trial. JAMA, 2015, 314(21), 2251-2262.
[http://dx.doi.org/10.1001/jama.2015.15734] [PMID: 26547357]
[69]
Filippatos, G.; Maggioni, A.P.; Lam, C.S.P.; Pieske-Kraigher, E.; Butler, J.; Spertus, J.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Scalise, A-V.; Mueller, K.; Roessig, L.; Bamber, L.; Gheorghiade, M.; Pieske, B. Patient-reported outcomes in the Soluble guanylate Cyclase stimulator in heart failure patients with preserved ejection fraction (SOCRATES-PRESERVED) study. Eur. J. Heart Fail., 2017, 19(6), 782-791.
[http://dx.doi.org/10.1002/ejhf.800] [PMID: 28586537]
[70]
Armstrong, P.W.; Roessig, L.; Patel, M.J.; Anstrom, K.J.; Butler, J.; Voors, A.A.; Lam, C.S.P.; Ponikowski, P.; Temple, T.; Pieske, B.; Ezekowitz, J.; Hernandez, A.F.; Koglin, J.; O’Connor, C.M.A. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: The VICTORIA Trial. JACC Heart Fail., 2018, 6(2), 96-104.
[http://dx.doi.org/10.1016/j.jchf.2017.08.013] [PMID: 29032136]
[71]
Buys, E.S.; Zimmer, D.P.; Chickering, J.; Graul, R.; Chien, Y.T.; Profy, A.; Hadcock, J.R.; Masferrer, J.L.; Milne, G.T. Discovery and development of next generation sGC stimulators with diverse multidimensional pharmacology and broad therapeutic potential. Nitric Oxide, 2018, 78, 72-80.
[http://dx.doi.org/10.1016/j.niox.2018.05.009] [PMID: 29859918]
[72]
Tobin, J.V.; Zimmer, D.P.; Shea, C.; Germano, P.; Bernier, S.G.; Liu, G.; Long, K.; Miyashiro, J.; Ranganath, S.; Jacobson, S.; Tang, K. Im, G.J.; Sheppeck, J., II; Moore, J.D.; Sykes, K.; Wakefield, J.; Sarno, R.; Banijamali, A.R.; Profy, A.T.; Milne, G.T.; Currie, M.G.; Masferrer, J.L. Pharmacological characterization of Iw-1973, a novel soluble guanylate cyclase stimulator with extensive tissue distribution, anti-hypertensive, anti-inflammatory, and anti-fibrotic effects in preclinical models of disease. J. Pharmacol. Exp. Ther., 2018, 365(3), 664-675.
[http://dx.doi.org/10.1124/jpet.117.247429] [PMID: 29643251]
[73]
Shea, C.; Ranganath, S.; Liu, G.; Wachtel, D.; Germano, P.; Tobin, J.; Zhang, P.; Rivers, S. Im, G.-Y. J.; Sheppeck II, J.; Masferrer, J. IWP-121: a novel sGC stimulator that reduces blood pressure and exhibits anti-fibrotic and anti-inflammatory activities in the Dahl Salt-Sensitive rat model. BMC Pharmacol. Toxicol., 2015, 16(S1), A86.
[http://dx.doi.org/10.1186/2050-6511-16-S1-A86]
[74]
Germano, P.; Tobin, J.; Jefferson, R.; Shea, C.; Smith, A. Im, G.-Y. J.; Sheppeck II, J.; Wakefield, J.; Sykes, K.; Ribadeneira, M.; Rivers, S.; Masferrer, J. Concomitant administration of sGC stimulators with common classes of anti-hypertensive agents results in increased efficacy in spontaneously hypertensive rats. BMC Pharmacol. Toxicol., 2015, 16(S1), A54.
[http://dx.doi.org/10.1186/2050-6511-16-S1-A54]
[75]
Flores-Costa, R.; Alcaraz-Quiles, J.; Titos, E.; López-Vicario, C.; Casulleras, M.; Duran-Güell, M.; Rius, B.; Diaz, A.; Hall, K.; Shea, C.; Sarno, R.; Currie, M.; Masferrer, J.L.; Clària, J. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. Br. J. Pharmacol., 2018, 175(6), 953-967.
[http://dx.doi.org/10.1111/bph.14137] [PMID: 29281143]
[76]
Krishnan, S.M.; Kraehling, J.R.; Eitner, F.; Bénardeau, A.; Sandner, P. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) signaling cascade on kidney health and disease: A preclinical perspective. Int. J. Mol. Sci., 2018, 19(6), 1712.
[http://dx.doi.org/10.3390/ijms19061712] [PMID: 29890734]
[77]
Hervé, D.; Philippi, A.; Belbouab, R.; Zerah, M.; Chabrier, S.; Collardeau-Frachon, S.; Bergametti, F.; Essongue, A.; Berrou, E.; Krivosic, V.; Sainte-Rose, C.; Houdart, E.; Adam, F.; Billiemaz, K.; Lebret, M.; Roman, S.; Passemard, S.; Boulday, G.; Delaforge, A.; Guey, S.; Dray, X.; Chabriat, H.; Brouckaert, P.; Bryckaert, M.; Tournier-Lasserve, E. Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am. J. Hum. Genet., 2014, 94(3), 385-394.
[http://dx.doi.org/10.1016/j.ajhg.2014.01.018] [PMID: 24581742]
[78]
Aschner, J.L.; Gien, J.; Ambalavanan, N.; Kinsella, J.P.; Konduri, G.G.; Lakshminrusimha, S.; Saugstad, O.D.; Steinhorn, R.H. Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J. Perinatol., 2016, 36(Suppl. 2), S32-S36.
[http://dx.doi.org/10.1038/jp.2016.47] [PMID: 27225964]
[79]
Dasgupta, A.; Bowman, L.; D’Arsigny, C.L.; Archer, S.L. Soluble guanylate cyclase: A new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin. Pharmacol. Ther., 2015, 97(1), 88-102.
[http://dx.doi.org/10.1002/cpt.10] [PMID: 25670386]
[80]
Frankenreiter, S.; Bednarczyk, P.; Kniess, A.; Bork, N.I.; Straubinger, J.; Koprowski, P.; Wrzosek, A.; Mohr, E.; Logan, A.; Murphy, M.P.; Gawaz, M.; Krieg, T.; Szewczyk, A.; Nikolaev, V.O.; Ruth, P.; Lukowski, R. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation, 2017, 136(24), 2337-2355.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028723] [PMID: 29051185]
[81]
Erdmann, E.; Semigran, M.J.; Nieminen, M.S.; Gheorghiade, M.; Agrawal, R.; Mitrovic, V.; Mebazaa, A. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur. Heart J., 2013, 34(1), 57-67.
[http://dx.doi.org/10.1093/eurheartj/ehs196] [PMID: 22778174]
[82]
Mátyás, C.; Németh, B.T.; Oláh, A.; Hidi, L.; Birtalan, E.; Kellermayer, D.; Ruppert, M.; Korkmaz-Icöz, S.; Kökény, G.; Horváth, E.M.; Szabó, G.; Merkely, B.; Radovits, T. The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc. Diabetol., 2015, 14, 145.
[http://dx.doi.org/10.1186/s12933-015-0309-x] [PMID: 26520063]
[83]
Glynos, C.; Toumpanakis, D.; Loverdos, K.; Karavana, V.; Zhou, Z.; Magkou, C.; Dettoraki, M.; Perlikos, F.; Pavlidou, A.; Kotsikoris, V.; Topouzis, S.; Theocharis, S.E.; Brouckaert, P.; Giannis, A.; Papapetropoulos, A.; Vassilakopoulos, T. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation. Am. J. Respir. Cell Mol. Biol., 2015, 52(6), 762-771.
[http://dx.doi.org/10.1165/rcmb.2014-0092OC] [PMID: 25353067]
[84]
Glynos, C.; Dupont, L.L.; Vassilakopoulos, T.; Papapetropoulos, A.; Brouckaert, P.; Giannis, A.; Joos, G.F.; Bracke, K.R.; Brusselle, G.G. The role of soluble guanylyl cyclase in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2013, 188(7), 789-799.
[http://dx.doi.org/10.1164/rccm.201210-1884OC] [PMID: 23841447]
[85]
Thoonen, R.; Cauwels, A.; Decaluwe, K.; Geschka, S.; Tainsh, R.E.; Delanghe, J.; Hochepied, T.; De Cauwer, L.; Rogge, E.; Voet, S.; Sips, P.; Karas, R.H.; Bloch, K.D.; Vuylsteke, M.; Stasch, J.P.; Van de Voorde, J.; Buys, E.S.; Brouckaert, P. Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nat. Commun., 2015, 6, 8482.
[http://dx.doi.org/10.1038/ncomms9482] [PMID: 26442659]
[86]
Hoffmann, L.S.; Kretschmer, A.; Lawrenz, B.; Hocher, B.; Stasch, J-P. Chronic activation of heme free guanylate cyclase leads to renal protection in dahl salt-sensitive rats. PLoS One, 2015, 10(12)e0145048
[http://dx.doi.org/10.1371/journal.pone.0145048] [PMID: 26717150]
[87]
Dautzenberg, M.; Kahnert, A.; Stasch, J-P.; Just, A. Role of soluble guanylate cyclase in renal hemodynamics and autoregulation in the rat. Am. J. Physiol. Renal Physiol., 2014, 307(9), F1003-F1012.
[http://dx.doi.org/10.1152/ajprenal.00229.2014] [PMID: 25209860]
[88]
Decaluwé, K.; Pauwels, B.; Boydens, C.; Thoonen, R.; Buys, E.S.; Brouckaert, P.; Van de Voorde, J. Erectile dysfunction in heme-deficient nitric oxide-unresponsive soluble guanylate cyclase knock-in mice. J. Sex. Med., 2017, 14(2), 196-204.
[http://dx.doi.org/10.1016/j.jsxm.2016.12.007] [PMID: 28161078]
[89]
Ni, R.; Zhao, J.; Liu, Q.; Liang, Z.; Muenster, U.; Mao, S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci., 2017, 99, 137-146.
[http://dx.doi.org/10.1016/j.ejps.2016.12.013] [PMID: 27988327]
[90]
Schindler, U.; Strobel, H.; Schönafinger, K.; Linz, W.; Löhn, M.; Martorana, P.A.; Rütten, H.; Schindler, P.W.; Busch, A.E.; Sohn, M.; Töpfer, A.; Pistorius, A.; Jannek, C.; Mülsch, A. Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol. Pharmacol., 2006, 69(4), 1260-1268.
[http://dx.doi.org/10.1124/mol.105.018747] [PMID: 16332991]
[91]
Fraccarollo, D.; Galuppo, P.; Motschenbacher, S.; Ruetten, H.; Schäfer, A.; Bauersachs, J. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res. Cardiol., 2014, 109(4), 421.
[http://dx.doi.org/10.1007/s00395-014-0421-1] [PMID: 24907870]
[92]
Boustany-Kari, C.M.; Harrison, P.C.; Chen, H.; Lincoln, K.A.; Qian, H.S.; Clifford, H.; Wang, H.; Zhang, X.; Gueneva-Boucheva, K.; Bosanac, T.; Wong, D.; Fryer, R.M.; Richman, J.G.; Sarko, C.; Pullen, S.S. A Soluble Guanylate Cyclase Activator Inhibits the Progression of Diabetic Nephropathy in the ZSF1 Rat. J. Pharmacol. Exp. Ther., 2016, 356(3), 712-719.
[http://dx.doi.org/10.1124/jpet.115.230706] [PMID: 26729306]
[93]
Prasanna, G.; Ferrara, L.; Adams, C.; Ehara, T.; Li, B.; Yang, L.; Xiang, C.; Ng, C.T.H.; Kim, S.; Towler, C.; Topley, T.; McAllister, C.; Ghosh, M.; Newton, R.; Stacy, R.; Rice, D.S.; Mogi, M. A Novel selective soluble guanylate cyclase activator, MGV354, lowers intraocular pressure in preclinical models, following topical ocular dosing. Invest. Ophthalmol. Vis. Sci., 2018, 59(5), 1704-1716.
[http://dx.doi.org/10.1167/iovs.18-23772] [PMID: 29610853]
[94]
Ehara, T.; Adams, C.M.; Bevan, D.; Ji, N.; Meredith, E.L.; Belanger, D.B.; Powers, J.; Kato, M.; Solovay, C.; Liu, D.; Capparelli, M.; Bolduc, P.; Grob, J.E.; Daniels, M.H.; Ferrara, L.; Yang, L.; Li, B.; Towler, C.S.; Stacy, R.C.; Prasanna, G.; Mogi, M. The Discovery of (S)-1-(6-(3-((4-(1-(Cyclopropanecarbonyl)piperidin-4-yl)-2-methylphenyl)amino)-2,3-dihydro-1 H-inden-4-yl)pyridin-2-yl)-5-methyl-1 H-pyrazole-4-carboxylic acid, a soluble guanylate cyclase activator specifically designed for topical ocular delivery as a therapy for glaucoma. J. Med. Chem., 2018, 61(6), 2552-2570.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00007] [PMID: 29498522]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 18
Year: 2019
Published on: 29 November, 2019
Page: [1544 - 1557]
Pages: 14
DOI: 10.2174/1389557519666190730110600
Price: $65

Article Metrics

PDF: 102
HTML: 16
PRC: 1