Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Stopping the Unstoppable: Unconventional Methods to Prevent the Biofilm Growth

Author(s): Neha Jain* and Abdulkhalik Mansuri

Volume 17, Issue 4, 2020

Page: [515 - 522] Pages: 8

DOI: 10.2174/1570163816666190726153441

Price: $65

Abstract

Biofilms are consortia of microorganisms encased in extracellular matrix that protect cells from adverse conditions. A biofilm matrix is typically composed of extracellular DNA, cellulose and proteinaceous amyloid fibers. The matrix aids in adhesion to abiotic and biotic surface including medical devices and host tissues. The presence of biofilm makes bacteria more resilient and non-responsive to most current treatment regimes at disposal. Therefore, biofilm-associated infections are serious threat in hospital settings and pose a huge burden on economy. Inhibition of matrix components (cellulose and/or amyloid formation) has emerged as a lucrative alternative strategy to cure biofilm-related infections and combat antibiotic resistance. Here we review the current and emerging therapeutic interventions to mitigate persistent infections due to biofilms. The successful implementation of these interventions will have a huge impact on alleviating the current financial burden on healthcare services.

Keywords: biofilm, antibiotic resistance, amyloids, bacterial-infections, extracellular-matrix, pathogenic bacteria.

Graphical Abstract
[1]
Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[2]
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2(2): 95-108.
[http://dx.doi.org/10.1038/nrmicro821] [PMID: 15040259]
[3]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318-22.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[4]
Donlan RM. Microbial Biofilms. Second Edition. Emerg Infect Dis 2016; 22(6): 1142.
[http://dx.doi.org/10.3201/eid2206.160282]
[5]
Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 2005; 102(31): 11076-81.
[http://dx.doi.org/10.1073/pnas.0504266102] [PMID: 16043697]
[6]
Sabir N, Ikram A, Zaman G, et al. Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. Am J Infect Control 2017; 45(10): 1101-5.
[http://dx.doi.org/10.1016/j.ajic.2017.05.009] [PMID: 28629757]
[7]
Kuramitsu HK, Wang B-Y. The whole is greater than the sum of its parts: dental plaque bacterial interactions can affect the virulence properties of cariogenic Streptococcus mutans. Am J Dent 2011; 24(3): 153-4.
[PMID: 21874934]
[8]
Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther 2018; 16(1): 51-65.
[http://dx.doi.org/10.1080/14787210.2018.1417036] [PMID: 29235402]
[9]
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73(2): 310-47.
[http://dx.doi.org/10.1128/MMBR.00041-08] [PMID: 19487730]
[10]
Huang Z, Wang Y-H, Zhu H-Z, et al. Cross Talk between chemosensory pathways that modulate chemotaxis and bio-film formation. MBio 2019; 10(1): e02876-18.
[http://dx.doi.org/10.1128/mBio.02876-18] [PMID: 30808696]
[11]
Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 2005; 70(2): 267-74.
[http://dx.doi.org/10.1007/s10541-005-0111-6] [PMID: 15807669]
[12]
Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307(8): 481-9.
[http://dx.doi.org/10.1016/j.ijmm.2017.09.016] [PMID: 28950999]
[13]
Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol 2015; 10(11): 1743-50.
[http://dx.doi.org/10.2217/fmb.15.69] [PMID: 26517598]
[14]
Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41(3): 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[15]
Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 2006; 74(8): 4849-55.
[http://dx.doi.org/10.1128/IAI.00230-06] [PMID: 16861673]
[16]
Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ. Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2008; 74(14): 4463-71.
[http://dx.doi.org/10.1128/AEM.00710-08] [PMID: 18487401]
[17]
Lebeaux D, Ghigo J-M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2014; 78(3): 510-43.
[http://dx.doi.org/10.1128/MMBR.00013-14] [PMID: 25184564]
[18]
Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol 2019; 45(2): 201-22.
[http://dx.doi.org/10.1080/1040841X.2019.1573802] [PMID: 30786799]
[19]
Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Mi-crobial biofilms and chronic wounds. Microorganisms 2017; 5(1): 9.
[http://dx.doi.org/10.3390/microorganisms5010009] [PMID: 28272369]
[20]
Fey PD. Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 2010; 13(5): 610-5.
[http://dx.doi.org/10.1016/j.mib.2010.09.007] [PMID: 20884280]
[21]
Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013; 3(4)a010306
[http://dx.doi.org/10.1101/cshperspect.a010306] [PMID: 23545571]
[22]
Ali Saleemi M, Kumari Palanisamy N, Hwa Wong E. Alterna-tive approaches to combat medicinally important biofilm-forming pathogens. Antimicrobials. IntechOpen 2018.
[23]
Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 2017; 83(3): e02508-16.
[http://dx.doi.org/10.1128/AEM.02508-16] [PMID: 27864170]
[24]
Høiby N. A short history of microbial biofilms and biofilm infections. APMIS 2017; 125(4): 272-5.
[http://dx.doi.org/10.1111/apm.12686] [PMID: 28407426]
[25]
Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[26]
O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54: 49-79.
[http://dx.doi.org/10.1146/annurev.micro.54.1.49] [PMID: 11018124]
[27]
Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 2014; 22(2): 84-91.
[http://dx.doi.org/10.1016/j.tim.2013.12.004] [PMID: 24440178]
[28]
Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 2018; 16(7): 397-409.
[http://dx.doi.org/10.1038/s41579-018-0019-y] [PMID: 29720707]
[29]
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2016; 80(1): 7-12.
[http://dx.doi.org/10.1080/09168451.2015.1058701] [PMID: 26103134]
[30]
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 2007; 34(9): 577-88.
[http://dx.doi.org/10.1007/s10295-007-0234-4] [PMID: 17619090]
[31]
Monds RD, O’Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17(2): 73-87.
[http://dx.doi.org/10.1016/j.tim.2008.11.001] [PMID: 19162483]
[32]
Schuster JJ, Markx GH. Biofilm architecture. Adv Biochem Eng Biotechnol 2014; 146: 77-96.
[http://dx.doi.org/10.1007/10_2013_248] [PMID: 24008919]
[33]
Van Houdt R, Michiels CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 2005; 156(5-6): 626-33.
[http://dx.doi.org/10.1016/j.resmic.2005.02.005] [PMID: 15950122]
[34]
Domka J, Lee J, Bansal T, Wood TK. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 2007; 9(2): 332-46.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01143.x] [PMID: 17222132]
[35]
Steinberg N, Kolodkin-Gal I. The matrix reloaded: Probing the extracellular matrix synchronizes bacterial communities. J Bacteriol 2015; 197(13): 2092-103.
[http://dx.doi.org/10.1128/JB.02516-14] [PMID: 25825428]
[36]
Madsen JS, Sørensen SJ, Burmølle M. Bacterial social interactions and the emergence of community-intrinsic properties. Curr Opin Microbiol 2018; 42: 104-9.
[http://dx.doi.org/10.1016/j.mib.2017.11.018] [PMID: 29197823]
[37]
Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 2012; 21(10): 1403-17.
[http://dx.doi.org/10.1002/pro.2132] [PMID: 22825856]
[38]
Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 2014; 18: 96-104.
[http://dx.doi.org/10.1016/j.mib.2014.02.008] [PMID: 24657330]
[39]
Ha D-G, O’Toole GA. c-di-GMP and its effects on biofilm formation and dispersion: A Pseudomonas aeruginosa review. Microbiol Spectr 2015; 3(2): MB-0003-2014.
[http://dx.doi.org/10.1128/microbiolspec.MB-0003-2014] [PMID: 26104694]
[40]
Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5(3)e1000354
[http://dx.doi.org/10.1371/journal.ppat.1000354] [PMID: 19325879]
[41]
Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science 2010; 328(5978): 627-9.
[http://dx.doi.org/10.1126/science.1188628] [PMID: 20431016]
[42]
Wood TK, Hong SH, Ma Q. Engineering biofilm formation and dispersal. Trends Biotechnol 2011; 29(2): 87-94.
[http://dx.doi.org/10.1016/j.tibtech.2010.11.001] [PMID: 21131080]
[43]
Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 2015; 64(Pt 4): 323-34.
[http://dx.doi.org/10.1099/jmm.0.000032] [PMID: 25670813]
[44]
Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis 2001; 7(2): 277-81.
[http://dx.doi.org/10.3201/eid0702.010226] [PMID: 11294723]
[45]
Percival SL, Kite P. Intravascular catheters and biofilm control. J Vasc Access 8(2): 69-80.
[46]
Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 2004; 12(9): 424-30.
[http://dx.doi.org/10.1016/j.tim.2004.07.005] [PMID: 15337164]
[47]
Azevedo AS, Almeida C, Melo LF, Azevedo NF. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit Rev Microbiol 2017; 43(4): 423-39.
[http://dx.doi.org/10.1080/1040841X.2016.1240656] [PMID: 28033847]
[48]
Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 2012; 7(8): 991-1002.
[http://dx.doi.org/10.2217/fmb.12.74] [PMID: 22913357]
[49]
O’Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2017; 364(15)
[http://dx.doi.org/10.1093/femsle/fnx128] [PMID: 28859314]
[50]
Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities npj Biofilms Microbiomes 2017.2: 16022.
[51]
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 2017; 11: 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[52]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6: 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[53]
Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34(5): 877-86.
[http://dx.doi.org/10.1007/s10096-015-2323-z] [PMID: 25630538]
[54]
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15(12): 740-55.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[55]
Jain N, Ådén J, Nagamatsu K, et al. Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin. Proc Natl Acad Sci USA 2017; 114(46): 12184-9.
[http://dx.doi.org/10.1073/pnas.1708805114] [PMID: 29087319]
[56]
Politano AD, Campbell KT, Rosenberger LH, Sawyer RG. Use of silver in the prevention and treatment of infections: silver review. Surg Infect (Larchmt) 2013; 14(1): 8-20.
[http://dx.doi.org/10.1089/sur.2011.097] [PMID: 23448590]
[57]
Ghotaslou R, Bahari Z, Aliloo A, Gholizadeh P, Eshlaghi BS. The in vitro effects of silver nanoparticles on bacterial bio-films. J Microbiol Biotechnol Food Sci 2017; 6: 1077-80.
[http://dx.doi.org/10.15414/jmbfs.2017.6.4.1077-1080]
[58]
Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 2017; 10: 115-21.
[http://dx.doi.org/10.2147/NSA.S133415] [PMID: 28721025]
[59]
Kalishwaralal K. BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm for-mation by Pseudomonas aeruginosa and Staphylococcus epi-dermidis. Colloids Surf B Biointerfaces 2010; 79(2): 340-4.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[60]
Flores CY, Miñán AG, Grillo CA, Salvarezza RC, Vericat C, Schilardi PL. Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces 2013; 5(8): 3149-59.
[http://dx.doi.org/10.1021/am400044e] [PMID: 23534883]
[61]
Gurunathan S, Han JW, Kwon D-N, Kim J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 2014; 9(1): 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[62]
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver Nanopar-ticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534.
[http://dx.doi.org/10.3390/ijms17091534]
[63]
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15(21): 2377-92.
[http://dx.doi.org/10.2174/138161209788682325] [PMID: 19601838]
[64]
Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 2017; 50(4): 405-10.
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[65]
de la Fuente-Núñez C, Korolik V, Bains M, et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 2012; 56(5): 2696-704.
[http://dx.doi.org/10.1128/AAC.00064-12] [PMID: 22354291]
[66]
Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 2017; 17(6): 663-76.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[67]
de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014; 10(5)e1004152
[http://dx.doi.org/10.1371/journal.ppat.1004152] [PMID: 24852171]
[68]
Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock REW. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 2014; 58(9): 5363-71.
[http://dx.doi.org/10.1128/AAC.03163-14] [PMID: 24982074]
[69]
de la Fuente-Núñez C, Mansour SC, Wang Z, et al. Anti-biofilm and immunomodulatory activities of peptides that in-hibit biofilms formed by pathogens isolated from cystic fi-brosis patients. Antibiotics (Basel) 2014; 3(4): 509-26.
[http://dx.doi.org/10.3390/antibiotics3040509] [PMID: 26221537]
[70]
Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep 2016; 68(4): 802-8.
[http://dx.doi.org/10.1016/j.pharep.2016.03.015] [PMID: 27117377]
[71]
Kharidia R, Liang JF. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 2011; 49(4): 663-8.
[http://dx.doi.org/10.1007/s12275-011-1013-5] [PMID: 21887652]
[72]
LoVetri K, Madhyastha S. Antimicrobial and antibiofilm activity of quorum sensing pep-tides and peptide analogues against oral biofilm bacteria 2010.
[73]
Chapman MR, Robinson LS, Pinkner JS, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 2002; 295(5556): 851-5.
[http://dx.doi.org/10.1126/science.1067484] [PMID: 11823641]
[74]
Santos ALS, Sodre CL, Valle RS, et al. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis. Curr Med Chem 2012; 19(17): 2715-37.
[http://dx.doi.org/10.2174/092986712800609788] [PMID: 22455582]
[75]
Sauer K, Steczko J, Ash SR. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. J Antimicrob Chemother 2009; 63(5): 937-45.
[http://dx.doi.org/10.1093/jac/dkp060] [PMID: 19282330]
[76]
Finnegan S, Percival SL. EDTA: An antimicrobial and antibiofilm agent for use in wound care. Adv Wound Care (New Rochelle) 2015; 4(7): 415-21.
[77]
Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M. Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis 2008; 47(1): 83-93.
[http://dx.doi.org/10.1086/588667] [PMID: 18498236]
[78]
Chanishvili N. Phage therapy—History from Twort and d’Herelle through soviet experience to current approaches 2012; 3-40
[79]
Abedon ST, García P, Mullany P, Aminov R. Editorial: Phage Therapy: Past, present and future. Front Microbiol 2017; 8: 981.
[http://dx.doi.org/10.3389/fmicb.2017.00981] [PMID: 28663740]
[80]
Domingo-Calap P, Georgel P, Bahram S. Back to the future: bacteriophages as promising therapeutic tools. HLA 2016; 87(3): 133-40.
[http://dx.doi.org/10.1111/tan.12742] [PMID: 26891965]
[81]
Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 2010; 54(1): 397-404.
[http://dx.doi.org/10.1128/AAC.00669-09] [PMID: 19822702]
[82]
Khalifa L, Brosh Y, Gelman D, et al. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 2015; 81(8): 2696-705.
[http://dx.doi.org/10.1128/AEM.00096-15] [PMID: 25662974]
[83]
Nijland R, Hall MJ, Burgess JG. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 2010; 5(12)e15668
[http://dx.doi.org/10.1371/journal.pone.0015668] [PMID: 21179489]
[84]
Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 2013; 13(5): 699-706.
[http://dx.doi.org/10.1016/j.coph.2013.07.004] [PMID: 23871261]
[85]
Xu X. Plant polysaccharides and their effects on cell adhe-sionPolysaccharides. Springer International Publishing 2014; pp. 1-16.
[86]
Rendueles O, Kaplan JB, Ghigo J-M. Antibiofilm polysaccharides. Environ Microbiol 2013; 15(2): 334-46.
[http://dx.doi.org/10.1111/j.1462-2920.2012.02810.x] [PMID: 22730907]
[87]
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2(11): 2.
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[88]
Almblad H, Harrison JJ, Rybtke M, et al. The cyclic amp-vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP. J Bacteriol 2015; 197(13): 2190-200.
[http://dx.doi.org/10.1128/JB.00193-15] [PMID: 25897033]
[89]
Ali Saleemi M, Kumari Palanisamy N, Hwa Wong E. Alterna-tive approaches to combat medicinally important biofilm-forming pathogens. Antimicrobials, Antibiotic Resistance, An-tibiofilm Strategies and Activity Methods. IntechOpen 2019.
[90]
Worthington RJ, Richards JJ, Melander C. Small molecule control of bacterial biofilms. Org Biomol Chem 2012; 10(37): 7457-74.
[http://dx.doi.org/10.1039/c2ob25835h] [PMID: 22733439]
[91]
Sambanthamoorthy K, Sloup RE, Parashar V, et al. Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 2012; 56(10): 5202-11.
[http://dx.doi.org/10.1128/AAC.01396-12] [PMID: 22850508]
[92]
Andersson EK, Chapman M. Small molecule disruption of B. subtilis biofilms by targeting the amyloid matrix. Chem Biol 2013; 20(1): 5-7.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.004] [PMID: 23352134]
[93]
Andersson EK, Bengtsson C, Evans ML, et al. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 2013; 20(10): 1245-54.
[http://dx.doi.org/10.1016/j.chembiol.2013.07.017] [PMID: 24035282]
[94]
Cegelski L, Pinkner JS, Hammer ND, et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 2009; 5(12): 913-9.
[http://dx.doi.org/10.1038/nchembio.242] [PMID: 19915538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy