Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Design, Synthesis and Characterization of Novel Quinoline Derivatives from Substituted Acetophenone as an Antioxidant Agent

Author(s): Archana Singh, Karuna S. Shukla * and Monika Chaudhary

Volume 10, Issue 4, 2020

Page: [495 - 501] Pages: 7

DOI: 10.2174/2210315509666190725141334

Price: $65

Abstract

Background: In a search for new antioxidant agents, a series of eleven diversely substituted quinoline containing chalcone derived from a quinoline scaffold were synthesized and evaluated as antioxidant agents.

Methods: Compounds were prepared via Claisen-Schmidt condensations of 2, 6-dichloroquinoline- 3-carbaldehyde with appropriately substituted acetophenones. All the synthesized compounds were characterized by spectral (FTIR, mass by ESI and 1H NMR) and elemental analysis. The synthesized compounds were investigated for their in vitro antioxidant activity by FRAP assay method.

Results: Among the screened compounds QHM-1, QH-1, QDB-1 and QE-1 exhibited significant antioxidant activities.

Conclusion: It can be predicted that electron releasing groups with higher resonating structures makes the compound more potent than the compounds with electron releasing group and less resonating structures. The electron releasing behavior of compounds proved them good terminators of radical chain reactions.

Keywords: Acetophenone, chalcone, claisen-schmidt condensation, antioxidant activity, quinolone, FRAP assay.

Graphical Abstract
[1]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[2]
Dave, S.S.; Rahatgaonkar, A.M. Experimental and computational evaluation of new quinolinyl chalcones as potent antiplasmodial agents. Indian J. Chem., 2009, 48, 1780-1793.
[3]
Dixit, S.K.; Mishra, N.; Sharma, M.; Singh, S.; Agarwal, A.; Awasthi, S.K.; Bhasin, V.K. Synthesis and in vitro antiplasmodial activities of fluoroquinolone analogs. Eur. J. Med. Chem., 2012, 51, 52-59.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.006] [PMID: 22424611]
[4]
Dave, S.S.; Rahatgaonkar, A.M. Syntheses and anti-microbial evaluation of new quinoline scaffold derived pyrimidine derivatives. Arab. J. Chem., 2011, 9, S451-S456.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.009]
[5]
Desai, N.C.; Dodiya, A.M. Synthesis, characterization and antimicrobial screening of quinoline based quinazolinone-4-thiazolidinone heterocycles. Arab. J. Chem., 2014, 7, 906-913.
[http://dx.doi.org/10.1016/j.arabjc.2011.08.007]
[6]
Desai, N.C.; Dodiya, A.; Shihory, N. Synthesis and antimicrobial activity of novel quinazolinone–thiazolidine–quinoline compounds. J. Saudi Chem. Soc., 2011, 39, 277-282.
[7]
Bhat, A.R. Tazeem, Azam, A.; Choi, I.; Athar, F. 3-(1, 3, 4-Thiadiazole-2-yl) quinoline derivatives: Synthesis, characterization and anti-microbial activity. Eur. J. Med. Chem., 2011, 46, 3158-3166.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.013] [PMID: 21530014]
[8]
Praveen, C. DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[9]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[10]
Manjunatha, J.R.; Bettadaiah, B.K.; Negi, P.S.; Srinivas, P. Synthesis of quinoline derivatives of tetrahydrocurcumin and zingerone and evaluation of their antioxidant and antibacterial attributes. Food Chem., 2013, 136(2), 650-658.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.052] [PMID: 23122110]
[11]
Sun, X.Y.; Wu, R.; Wen, X.; Guo, L.; Zhou, C.P.; Li, J.; Quan, Z.S.; Bao, J. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4,5-dihydro-imidazo[1,2-a]quinoline derivatives. Eur. J. Med. Chem., 2013, 60, 451-455.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.034] [PMID: 23321259]
[12]
Zhang, Y.; Fang, Y.; Liang, H.; Wang, H.; Hu, K.; Liu, X.; Yi, X.; Peng, Y. Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives. Bioorg. Med. Chem. Lett., 2013, 23(1), 107-111.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.006] [PMID: 23206864]
[13]
Wettasinghe, M.; Shahidi, F. Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem., 2000, 70, 17-26.
[http://dx.doi.org/10.1016/S0308-8146(99)00269-1]
[14]
Alam, M.M.; Sarkar, D.P.; Husain, A.; Marella, A.; Shaquiquzzaman, A. Mymoona, Akhter, Shaharyar, M.; AlaM, O.; Azam, F. Synthesis of quinoline-attached furan-2(3H)-ones having anti-inflamatory and antibacterial properties with reduced gastro intestinal toxicity and lipid peroxidation. J. Serb. Chem. Soc., 2011, 76, 1617-1626.
[http://dx.doi.org/10.2298/JSC110131142A]
[15]
Kathrotiya, H.G.; Patel, M.P. Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents. Eur. J. Med. Chem., 2013, 63, 675-684.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.017] [PMID: 23567957]
[16]
Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Shanthan Rao, P.; Pamanji, R.; Venkateswara Rao, J.; Narsaiah, B. Synthesis of novel 2-alkyl triazole-3-alkyl substituted quinoline derivatives and their cytotoxic activity. Bioorg. Med. Chem. Lett., 2013, 23(5), 1225-1227.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.021] [PMID: 23352638]
[17]
Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res., 2002, 36(2), 177-187.
[http://dx.doi.org/10.1080/10715760290006411] [PMID: 11999386]
[18]
Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Jap. J. Nutr., 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[19]
Iakovlev, A.; Broberg, A.; Stenlid, J. Fungal modification of the hydroxyl radical detector coumarin-3-carboxylic acid. FEMS Microbiol. Ecol., 2003, 46(2), 197-202.
[http://dx.doi.org/10.1016/S0168-6496(03)00213-7] [PMID: 19719573]
[20]
Anthoni, U.; Christophersen, C.; Nielsen, P.H.; Kjaer, E.B.; Musaeus, G.F.; Schultz, A.C. Marine structure. World Patent 9,511,592, PCT/DK 94/00405, May 4 1995.
[21]
Khokra, S.L.; Parashar, B.; Dhamija, H.K.; Chandel, A.; Rekha, C. A Review describing various In vitro methods for evaluation of antioxidant activity. Asian J. Biochem. Pharm. Res, 2011, 4, 44-49.
[22]
Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy; Cengage Learning: Boston, Massachusetts, US, 2007.
[23]
Kalsi, P.S. Spectroscopy of organic compounds; New Age International Ltd: New Delhi, India, 2004.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy