Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments

Author(s): Ajay Kumar, Divya Rana, Rajat Rana and Rohit Bhatia*

Volume 13, Issue 1, 2020

Page: [17 - 30] Pages: 14

DOI: 10.2174/1874467212666190724150723

Price: $65

Abstract

Background: Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors.

Objective: In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus.

Conclusion: There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.

Keywords: Phosphatases, insulin, cancer, diabetes mellitus, obesity, clinical trials, PTP1B.

Graphical Abstract
[1]
Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011. 2011794089
[http://dx.doi.org/10.4061/2011/794089] [PMID: 22195276]
[2]
Bollu, L.R.; Mazumdar, A.; Savage, M.I.; Brown, P.H. Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin. Cancer Res., 2017, 23(9), 2136-2142.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0934] [PMID: 28087641]
[3]
Bhore, N.; Wang, B.J.; Chen, Y.W.; Liao, Y.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int. J. Mol. Sci., 2017, 18(9), 1963.
[http://dx.doi.org/10.3390/ijms18091963] [PMID: 28902166]
[4]
Brown-Shimer, S.; Johnson, K.A.; Lawrence, J.B.; Johnson, C.; Bruskin, A.; Green, N.R.; Hill, D.E. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc. Natl. Acad. Sci. USA, 1990, 87(13), 5148-5152.
[http://dx.doi.org/10.1073/pnas.87.13.5148] [PMID: 2164224]
[5]
Hendriks, W.J.; Pulido, R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim. Biophys. Acta, 2013, 1832(10), 1673-1696.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.022] [PMID: 23707412]
[6]
Tonks, N.K.; Diltz, C.D.; Fischer, E.H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem., 1988, 263(14), 6722-6730.
[PMID: 2834386]
[7]
Frangioni, J.V.; Beahm, P.H.; Shifrin, V.; Jost, C.A.; Neel, B.G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell, 1992, 68(3), 545-560.
[http://dx.doi.org/10.1016/0092-8674(92)90190-N] [PMID: 1739967]
[8]
Richan, T. Conservative Tryptophan Mutations in Protein Tyrosine Phosphatase PTP1B and its Effect on Catalytic Rate and Chemical Reaction,Master of ScienceThesis; Utah State University: Logan, Utah, 2017.
[9]
He, R.J.; Yu, Z.H.; Zhang, R.Y.; Zhang, Z.Y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol. Sin., 2014, 35(10), 1227-1246.
[http://dx.doi.org/10.1038/aps.2014.80] [PMID: 25220640]
[10]
Cho, H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm., 2013, 91, 405-424.
[http://dx.doi.org/10.1016/B978-0-12-407766-9.00017-1] [PMID: 23374726]
[11]
Klaman, L.D.; Boss, O.; Peroni, O.D.; Kim, J.K.; Martino, J.L.; Zabolotny, J.M.; Moghal, N.; Lubkin, M.; Kim, Y.B.; Sharpe, A.H.; Stricker-Krongrad, A.; Shulman, G.I.; Neel, B.G.; Kahn, B.B. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol., 2000, 20(15), 5479-5489.
[http://dx.doi.org/10.1128/MCB.20.15.5479-5489.2000] [PMID: 10891488]
[12]
Tonks, N.K. PTP1B: from the sidelines to the front lines! FEBS Lett., 2003, 546(1), 140-148.
[http://dx.doi.org/10.1016/S0014-5793(03)00603-3] [PMID: 12829250]
[13]
Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol., 2006, 7(11), 833-846.
[http://dx.doi.org/10.1038/nrm2039] [PMID: 17057753]
[14]
Ukkola, O.; Santaniemi, M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Intern. Med., 2002, 251(6), 467-475.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00992.x] [PMID: 12028501]
[15]
Morris, D.L.; Rui, L. Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab., 2009, 297(6), E1247-E1259.
[http://dx.doi.org/10.1152/ajpendo.00274.2009] [PMID: 19724019]
[16]
Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, 115(5), 1111-1119.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[17]
Hotamisligil, G.S. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes, 2005, 54(Suppl. 2), S73-S78.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S73] [PMID: 16306344]
[18]
Vieira, M.N.; Lyra, E. Silva, N.M.; Ferreira, S.T.; De Felice, F.G. Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy? Front. Aging Neurosci., 2017, 9, 7.
[http://dx.doi.org/10.3389/fnagi.2017.00007] [PMID: 28197094]
[19]
Song, G.J.; Jung, M.; Kim, J.H.; Park, H.; Rahman, M.H.; Zhang, S.; Zhang, Z.Y.; Park, D.H.; Kook, H.; Lee, I.K.; Suk, K. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J. Neuroinflammation, 2016, 13(1), 86.
[http://dx.doi.org/10.1186/s12974-016-0545-3] [PMID: 27095436]
[20]
Jiang, Z.X.; Zhang, Z.Y. Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev., 2008, 27(2), 263-272.
[http://dx.doi.org/10.1007/s10555-008-9113-3] [PMID: 18259840]
[21]
Chen, P.J.; Cai, S.P.; Huang, C.; Meng, X.M.; Li, J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology, 2015, 337, 10-20.
[http://dx.doi.org/10.1016/j.tox.2015.08.006] [PMID: 26299811]
[22]
Koren, S.; Fantus, I.G. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 621-640.
[http://dx.doi.org/10.1016/j.beem.2007.08.004] [PMID: 18054739]
[23]
Gurzov, E.N.; Stanley, W.J.; Brodnicki, T.C.; Thomas, H.E. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol. Metab., 2015, 26(1), 30-39.
[http://dx.doi.org/10.1016/j.tem.2014.10.004] [PMID: 25432462]
[24]
Nguyen, L.K.; Matallanas, D.; Croucher, D.R.; von Kriegsheim, A.; Kholodenko, B.N. Signalling by protein phosphatases and drug development: a systems-centred view. FEBS J., 2013, 280(2), 751-765.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08522.x] [PMID: 22340367]
[25]
Barr, A.J. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med. Chem., 2010, 2(10), 1563-1576.
[http://dx.doi.org/10.4155/fmc.10.241] [PMID: 21426149]
[26]
McConnell, J.L.; Wadzinski, B.E. Targeting protein serine/threonine phosphatases for drug development. Mol. Pharmacol., 2009, 75(6), 1249-1261.
[http://dx.doi.org/10.1124/mol.108.053140] [PMID: 19299564]
[27]
Liu, Z.Q.; Liu, T.; Chen, C.; Li, M.Y.; Wang, Z.Y.; Chen, R.S.; Wei, G.X.; Wang, X.Y.; Luo, D.Q. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol. Appl. Pharmacol., 2015, 285(1), 61-70.
[http://dx.doi.org/10.1016/j.taap.2015.03.011] [PMID: 25796170]
[28]
Méndez-García, L.A.; Trejo-Millán, F.; Martínez-Reyes, C.P.; Manjarrez-Reyna, A.N.; Esquivel-Velázquez, M.; Melendez-Mier, G.; Islas-Andrade, S.; Rojas-Bernabé, A.; Kzhyshkowska, J.; Escobedo, G. Infliximab ameliorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP1B activation in 3T3L1 adipocytes in vitro. Scand. J. Immunol., 2018, 88(5)e12716
[http://dx.doi.org/10.1111/sji.12716] [PMID: 30260514]
[29]
Chen, J.; Mangelinckx, S.; Ma, L.; Wang, Z.; Li, W.; De Kimpe, N. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia, 2014, 99, 1-6.
[http://dx.doi.org/10.1016/j.fitote.2014.08.015] [PMID: 25172103]
[30]
Jung, H.A.; Paudel, P.; Seong, S.H.; Min, B.S.; Choi, J.S. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorg. Med. Chem. Lett., 2017, 27(11), 2274-2280.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.054] [PMID: 28454670]
[31]
Kim, D.H.; Paudel, P.; Yu, T.; Ngo, T.M.; Kim, J.A.; Jung, H.A.; Yokozawa, T.; Choi, J.S. Characterization of the inhibitory activity of natural tanshinones from Salvia miltiorrhiza roots on protein tyrosine phosphatase 1B. Chem. Biol. Interact., 2017, 278, 65-73.
[http://dx.doi.org/10.1016/j.cbi.2017.10.013] [PMID: 29031618]
[32]
Ma, Y.M.; Tao, R.Y.; Liu, Q.; Li, J.; Tian, J.Y.; Zhang, X.L.; Xiao, Z.Y.; Ye, F. PTP1B inhibitor improves both insulin resistance and lipid abnormalities in vivo and in vitro. Mol. Cell. Biochem., 2011, 357(1-2), 65-72.
[http://dx.doi.org/10.1007/s11010-011-0876-4] [PMID: 21603884]
[33]
Morishita, K.; Shoji, Y.; Tanaka, S.; Fukui, M.; Ito, Y.; Kitao, T.; Ozawa, S.I.; Hirono, S.; Shirahase, H. Novel non-carboxylate benzoylsulfonamide-based protein tyrosine phosphatase 1B inhibitors with non-competitive actions. Chem. Pharm. Bull. (Tokyo), 2017, 65(12), 1144-1160.
[http://dx.doi.org/10.1248/cpb.c17-00635] [PMID: 29199219]
[34]
Na, B.; Nguyen, P.H.; Zhao, B.T.; Vo, Q.H.; Min, B.S.; Woo, M.H. Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharm. Biol., 2016, 54(3), 474-480.
[http://dx.doi.org/10.3109/13880209.2015.1048372] [PMID: 26084800]
[35]
Nguyen, C.N.; Trinh, B.T.D.; Tran, T.B.; Nguyen, L.T.; Jäger, A.K.; Nguyen, L.D. Anti-diabetic xanthones from the bark of Garcinia xanthochymus. Bioorg. Med. Chem. Lett., 2017, 27(15), 3301-3304.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.021] [PMID: 28624142]
[36]
Nishizaki, T.; Gotoh, A.; Shimizu, T.; Tanaka, A. The phosphatidylethanolamine derivative diDCP-LA-PE mimics intracellular insulin signaling. Sci. Rep., 2016, 6, 27267.
[http://dx.doi.org/10.1038/srep27267] [PMID: 27251941]
[37]
Paudel, P.; Yu, T.; Seong, S.H.; Kuk, E.B.; Jung, H.A.; Choi, J.S. Protein tyrosine phosphatase 1B inhibition and glucose uptake potentials of mulberrofuran G, albanol B, and kuwanon G from root bark of Morus alba L. in insulin-resistant HepG2 cells: An in vitro and in silico study. Int. J. Mol. Sci., 2018, 19(5), 1542.
[http://dx.doi.org/10.3390/ijms19051542] [PMID: 29786669]
[38]
Proença, C.; Freitas, M.; Ribeiro, D.; Sousa, J.L.C.; Carvalho, F.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study. Food Chem. Toxicol., 2018, 111, 474-481.
[http://dx.doi.org/10.1016/j.fct.2017.11.039] [PMID: 29175190]
[39]
Qin, Z.; Pandey, N.R.; Zhou, X.; Stewart, C.A.; Hari, A.; Huang, H.; Stewart, A.F.; Brunel, J.M.; Chen, H.H. Functional properties of Claramine: a novel PTP1B inhibitor and insulin-mimetic compound. Biochem. Biophys. Res. Commun., 2015, 458(1), 21-27.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.040] [PMID: 25623533]
[40]
Ramírez-Espinosa, J.J.; Rios, M.Y.; Paoli, P.; Flores-Morales, V.; Camici, G.; de la Rosa-Lugo, V.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; Estrada-Soto, S. Synthesis of oleanolic acid derivatives: In vitro, in vivo and in silico studies for PTP-1B inhibition. Eur. J. Med. Chem., 2014, 87, 316-327.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.036] [PMID: 25264584]
[41]
Riya, M.P.; Antu, K.A.; Pal, S.; Chandrakanth, K.C.; Anilkumar, K.S.; Tamrakar, A.K.; Srivastava, A.K.; Raghu, K.G. Antidiabetic property of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J. Diabetes, 2015, 7(4), 548-561.
[http://dx.doi.org/10.1111/1753-0407.12216] [PMID: 25224159]
[42]
Sun, J.; Wang, Y.; Fu, X.; Chen, Y.; Wang, D.; Li, W.; Xing, S.; Li, G. Magnolia officinalis extract contains potent inhibitors against PTP1B and attenuates hyperglycemia in db/db mice. BioMed Res. Int., 2015. 2015139451
[http://dx.doi.org/10.1155/2015/139451] [PMID: 26064877]
[43]
Sun, W.; Zhang, B.; Zheng, H.; Zhuang, C.; Li, X.; Lu, X.; Quan, C.; Dong, Y.; Zheng, Z.; Xiu, Z. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes. Life Sci., 2017, 169, 52-64.
[http://dx.doi.org/10.1016/j.lfs.2016.11.012] [PMID: 27871946]
[44]
Wiese, J.; Aldemir, H.; Schmaljohann, R.; Gulder, T.A.M.; Imhoff, J.F. Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar. Drugs, 2017, 15(6), 191.
[http://dx.doi.org/10.3390/md15060191] [PMID: 28635658]
[45]
Ahn, J.H.; Cho, S.Y.; Ha, J.D.; Chu, S.Y.; Jung, S.H.; Jung, Y.S.; Baek, J.Y.; Choi, I.K.; Shin, E.Y.; Kang, S.K.; Kim, S.S.; Cheon, H.G.; Yang, S.D.; Choi, J.K. Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett., 2002, 12(15), 1941-1946.
[http://dx.doi.org/10.1016/S0960-894X(02)00331-1] [PMID: 12113814]
[46]
Lakshminarayana, N.; Prasad, Y.R.; Gharat, L.; Thomas, A.; Narayanan, S.; Raghuram, A.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel dibenzo[b,d]furan carboxylic acids as potential anti-diabetic agents. Eur. J. Med. Chem., 2010, 45(9), 3709-3718.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.020] [PMID: 20627471]
[47]
González-Rodríguez, Á.; Santamaría, B.; Mas-Gutierrez, J.A.; Rada, P.; Fernández-Millán, E.; Pardo, V.; Álvarez, C.; Cuadrado, A.; Ros, M.; Serrano, M.; Valverde, Á.M. Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1-independent manner. Mol. Nutr. Food Res., 2015, 59(8), 1431-1442.
[http://dx.doi.org/10.1002/mnfr.201400933] [PMID: 25808216]
[48]
Lees, E.K.; Krol, E.; Shearer, K.; Mody, N.; Gettys, T.W.; Delibegovic, M. Effects of hepatic protein tyrosine phosphatase 1B and methionine restriction on hepatic and whole-body glucose and lipid metabolism in mice. Metabolism, 2015, 64(2), 305-314.
[http://dx.doi.org/10.1016/j.metabol.2014.10.038] [PMID: 25468142]
[49]
Maeda, A.; Kai, K.; Ishii, M.; Ishii, T.; Akagawa, M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Ay mice. Mol. Nutr. Food Res., 2014, 58(6), 1177-1189.
[http://dx.doi.org/10.1002/mnfr.201300675] [PMID: 24668740]
[50]
Wrobel, J.; Sredy, J.; Moxham, C.; Dietrich, A.; Li, Z.; Sawicki, D.R.; Seestaller, L.; Wu, L.; Katz, A.; Sullivan, D.; Tio, C.; Zhang, Z.Y. PTP1B inhibition and antihyperglycemic activity in the ob/ob mouse model of novel 11-arylbenzo[b]naphtho[2,3-d]furans and 11-arylbenzo[b]naphtho[2,3-d]thiophenes. J. Med. Chem., 1999, 42(17), 3199-3202.
[http://dx.doi.org/10.1021/jm990260v] [PMID: 10464006]
[51]
Lakshminarayana, N.; Rajendra Prasad, Y.; Gharat, L.; Thomas, A.; Ravikumar, P.; Narayanan, S.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel isochroman carboxylic acid derivatives as potential anti-diabetic agents. Eur. J. Med. Chem., 2009, 44(8), 3147-3157.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.009] [PMID: 19349096]
[52]
Guertin, K.R.; Setti, L.; Qi, L.; Dunsdon, R.M.; Dymock, B.W.; Jones, P.S.; Overton, H.; Taylor, M.; Williams, G.; Sergi, J.A.; Wang, K.; Peng, Y.; Renzetti, M.; Boyce, R.; Falcioni, F.; Garippa, R.; Olivier, A.R. Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg. Med. Chem. Lett., 2003, 13(17), 2895-2898.
[http://dx.doi.org/10.1016/S0960-894X(03)00623-1] [PMID: 14611852]
[53]
Mao, X.Q.; Yu, F.; Wang, N.; Wu, Y.; Zou, F.; Wu, K.; Liu, M.; Ouyang, J.P. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine, 2009, 16(5), 416-425.
[http://dx.doi.org/10.1016/j.phymed.2008.12.011] [PMID: 19201177]
[54]
Shi, D.; Xu, F.; He, J.; Li, J.; Fan, X.; Han, L. Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomelaconfervoides extract in diabetic rats. Chin. Sci. Bull., 2008, 53(16), 2476-2479.
[55]
Jiang, B.; Guo, S.; Shi, D.; Guo, C.; Wang, T. Discovery of novel bromophenol 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isobutoxy-methyl)benzyl)benzene-1,2-diol as protein tyrosine phosphatase 1B inhibitor and its anti-diabetic properties in C57BL/KsJ-db/db mice. Eur. J. Med. Chem., 2013, 64, 129-136.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.037] [PMID: 23644196]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy