Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Breaking the Barrier of Cancer through Papaya Extract and their Formulation

Author(s): Sumana Saha and Tapan Kumar Giri*

Volume 19, Issue 13, 2019

Page: [1577 - 1587] Pages: 11

DOI: 10.2174/1871520619666190722160955

Price: $65

Abstract

Background: In the last decade, many new avenues of cancer treatment have opened up but the costs of treatment have sky-rocketed too. Hence, screening of indigenously available plant and animal resources for anti-carcinogenic potential is an important branch of anticancer research. The effort has been made through this comprehensive review to highlight the recent developments of anticancer therapies using different parts of papaya plant extract.

Methods: In search of the naturally existing animals and plants for anticarcinogenic potential, papaya plant has been exploited by the scientist working in this research field. A widespread literature search was performed for writing this review.

Results: Different constituents of Carica papaya responsible for anticancer activities have been discussed. Papaya extract for the treatment of breast, liver, blood, pancreas, skin, prostate, and colon cancer have also been reported. Finally, the various formulation approach using Carica papaya extract have been highlighted.

Conclusion: The information provided in this review might be useful for researchers in designing of novel formulation of Carica papaya extract for the treatment of cancer.

Keywords: Carica papaya, anticancer activity, silver nanoparticles, constituents, apoptosis, DNA.

Graphical Abstract
[1]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99(1), 1-13.
[2]
Giri, T.K.; Pramanik, K.; Barman, T.K.; Maity, S. Nano-encapsulation of dietary phytoconstituent capsaicin on emulsome: Evaluation of anticancer activity through the measurement of liver oxidative stress in rats. Anticancer. Ag Med. Chem., 2017, 17(12), 1669-1678.
[3]
Giri, T.K.; Bhowmick, S.; Maity, S. Entrapment of capsaicin loaded nanoliposome in pH responsive hydrogel beads for colonic delivery. J. Drug Deliv. Sci. Technol., 2017, 39, 417-422.
[4]
Amin, A.; Gali-Muhtasib, H.; Ocker, M.; Schneider-Stock, R. Overview of major classes of plant-derived anticancer drugs. Int. J. Biomed. Sci., 2009, 5(1), 1-11.
[5]
Giri, T.K.; Alexander, A. Ajazuddin; Barman, T.K.; Maity, S. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system. Curr. Drug Deliv., 2016, 13(1), 27-39.
[6]
Giri, T.K.; Dey, B.; Maity, S. Preparation and characterization of nanoemulsome entrapped in enteric coated hydrogel beads for the controlled delivery of capsaicin to the colon. Curr. Drug Ther., 2018, 13, 98-105.
[7]
Dong, Y.; Yang, M.M.; Kwan, C.Y. In vitro inhibition of proliferation of HL-60 cells by tetrandrine and coriolus versicolor peptide derived from Chinese medicinal herbs. Life Sci., 1997, 60(8), PL135-PL140.
[8]
Kwak, T.W.; Park, S.B.; Kim, H.J.; Jeong, Y.I.; Kang, D.H. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells. Oncol Targets Ther., 2016, 10, 137-144.
[9]
Bharti, A.C.; Donato, N.; Singh, S.; Aggarwal, B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003, 101(3), 1053-1062.
[10]
Zhang, B.; Gu, Y. Low expression of ERK signaling pathway affecting proliferation, cell cycle arrest and apoptosis of human gastric HGC-27 cells line. Mol. Biol. Rep., 2014, 41(6), 3659-3669.
[11]
Tarantilis, P.A.; Morjani, H.; Polissiou, M.; Manfait, M. Inhibition of growth and induction of differentiation of promyelocytic leukemia (HL-60) by carotenoids from Crocus sativus L. Anticancer Res., 1994, 14(5A), 1913-1918.
[12]
Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules, 2018, 23(4), 1-18.
[13]
Howard, S.M.H.; Theologides, A.; Sheppard, J.R. Comparative effects of vindesine, vinblastine, and vincristine on mitotic arrest and hormonal response of L1210 leukemia cells. Cancer Res., 1980, 40(8 Pt 1), 2695-2700.
[14]
Aherne, G.W.; Hardcastle, A.; Valenti, M.; Bryant, A.; Rogers, P.; Pettit, G.R.; Srirangam, J.K.; Kelland, L.R. Antitumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Cancer Chemother. Pharmacol., 1996, 38(3), 225-232.
[15]
Ganguly, A.; Yang, H.; Cabral, F. Paclitaxel-dependent cell lines reveal a novel drug activity. Mol. Cancer Ther., 2010, 9(11), 2914-2923.
[16]
Chang, J.Y.; Guo, X.; Chen, H.X.; Jiang, Z.; Fu, Q.; Wang, H.K.; Bastow, K.F.; Zhu, X.K.; Guan, J.; Lee, K.H.; Cheng, Y.C. Unique biochemical, cytotoxic, and antitumor activity of camptothecin and 4β-amino-4′-O-demethylepipodophyllotoxin conjugates. Biochem. Pharmacol., 2000, 59(5), 497-508.
[17]
Abad, A.; López-Pérez, J.L.; del Olmo, E.; García-Fernández, L.F.; Francesch, A.; Trigili, C.; Barasoain, I.; Andreu, J.M.; Díaz, J.F.; San Feliciano, A. Synthesis and antimitotic and tubulin interaction profiles of novel pinacol derivatives of podophyllotoxins. J. Med. Chem., 2012, 55(15), 6724-6737.
[18]
Safia; Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast Mitogen Activated Protein Kinase (MAPK) pathway. PLoS One, 2015, 10(9)e0137991
[19]
Quintás-Cardama, A.; Cortes, J. Homoharringtonine for the treatment of chronic myelogenous leukemia. Expert Opin. Pharmacother., 2008, 9(6), 1029-1037.
[20]
Pardee, A.B.; Li, Y.Z.; Li, C.J. Cancer therapy with beta-lapachone. Curr. Cancer Drug Targets, 2002, 2(3), 227-242.
[21]
Zhou, H.B.; Chen, J.J.; Wang, W.X.; Cai, J.T.; Du, Q. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice. World J. Gastroenterol., 2005, 11(2), 280-284.
[22]
Hasan, M.N.; Choudhry, H.; Razvi, S.S.; Moselhy, S.S.; Kumosani, T.A.; Zamzami, M.A.; Omran, Z.; Halwani, M.A.; Al-Babili, S.; Abualnaja, K.O.; Al-Malki, A.L.; Alhosin, M.; Asami, T. Synthetic strigolactone analogues reveal anti-cancer activities on hepatocellular carcinoma cells. Bioorg. Med. Chem. Lett., 2018, 28(6), 1077-1083.
[23]
Lee, Y.; Sung, B.; Kang, Y.J.; Kim, D.H.; Jang, J.Y.; Hwang, S.Y.; Kim, M.; Lim, H.S.; Yoon, J.H.; Chung, H.Y.; Kim, N.D. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int. J. Oncol., 2014, 44(5), 1599-1606.
[24]
Mousavi, S.H.; Tavakkol-Afshari, J.; Brook, A.; Jafari-Anarkooli, I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem. Toxicol., 2009, 47(8), 1909-1913.
[25]
Cho, E.; Chung, E.Y.; Jang, H.Y.; Hong, O.Y.; Chae, H.S.; Jeong, Y.J.; Kim, S.Y.; Kim, B.S.; Yoo, D.J.; Kim, J.S.; Park, K.H. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anticancer. Ag Med. Chem., 2017, 17(11), 1519-1525.
[26]
Maurya, B.K.; Trigun, S.K. Fisetin attenuates AKT associated growth promoting events in aflatoxin B1 induced hepatocellular carcinoma. Anticancer. Ag Med. Chem., 2018, 18(13), 1885-1891.
[27]
Sundaram, M.K.; Ansari, M.Z.; Al Mutery, A.; Ashraf, M.; Nasab, R.; Rai, S.; Rais, N.; Hussain, A. genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells. Anticancer. Ag Med. Chem., 2018, 18(3), 412-421.
[28]
Fuzer, A.M.; Martin, A.C.B.M.; Becceneri, A.B.; da Silva, J.A.; Vieira, P.C.; Cominetti, M.R. [10]-Gingerol affects multiple metastatic processes and induces apoptosis in MDA-MB-231 breast tumor cells. Anticancer. Agents Med. Chem., 2018, 19(5), 645-654.
[29]
Nguyen, T.T.; Tran, E.; Ong, C.K.; Lee, S.K.; Do, P.T.; Huynh, T.T.; Nguyen, T.H.; Lee, J.J.; Tan, Y.; Ong, C.S.; Huynh, H. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell. Physiol., 2003, 197(1), 110-121.
[30]
Sharmila, R.; Manoharan, S. Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Indian J. Exp. Biol., 2012, 50(3), 187-194.
[31]
Hastak, K.; Gupta, S.; Ahmad, N.; Agarwal, M.K.; Agarwal, M.L.; Mukhtar, H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene, 2003, 22(31), 4851-4859.
[32]
Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res., 2007, 67(8), 3853-3861.
[33]
Chien, S.Y.; Wu, Y.C.; Chung, J.G.; Yang, J.S.; Lu, H.F.; Tsou, M.F.; Wood, W.G.; Kuo, S.J.; Chen, D.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol., 2009, 28(8), 493-503.
[34]
Feng, M.; Zhong, L.X.; Zhan, Z.Y.; Huang, Z.H.; Xiong, J.P. Resveratrol treatment inhibits proliferation of and induces apoptosis in human colon cancer cells. Med. Sci. Monit., 2016, 22, 1101-1108.
[35]
Yogiraj, V.; Goyal, P.K.; Chauhan, C.S.; Goyal, A.; Vyas, B. Carica papaya Linn: An Overview. Int. J. Herb. Med., 2014, 2(5), 1-8.
[36]
Mello, V.J.; Gomes, M.T.; Lemos, F.O.; Delfino, J.L.; Andrade, S.P.; Lopes, M.T.; Salas, C.E. The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine, 2008, 15(4), 237-244.
[37]
Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3101-3105.
[38]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[39]
Basu, A.; Haldar, S. Dietary isothiocyanate mediated apoptosis of human cancer cells is associated with Bcl-xL phosphorylation. Int. J. Oncol., 2008, 33(4), 657-663.
[40]
van Breemen, R.B.; Pajkovic, N. Multitargeted therapy of cancer by lycopene. Cancer Lett., 2008, 269(2), 339-351.
[41]
Lucas, T.P. The Most Wonderful Tree in the World: The Papaw Tree (carica Papaia); Carter-Watson Company: Brisbane, 1914.
[42]
Miyoshi, N.; Uchida, K.; Osawa, T.; Nakamura, Y. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells. Int. J. Cancer, 2007, 120(3), 484-492.
[43]
García-Solís, P.; Yahia, E.M.; Morales-Tlalpan, V.; Díaz-Muñoz, M. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7. Int. J. Food Sci. Nutr., 2009, 60(Suppl. 6), 32-46.
[44]
Somanah, J.; Ramsaha, S.; Verma, S.; Kumar, A.; Sharma, P.; Singh, R.K.; Aruoma, O.I.; Bourdon, E.; Bahorun, T. Fermented papaya preparation modulates the progression of N-methyl-N-nitrosourea induced hepatocellular carcinoma in Balb/c mice. Life Sci., 2016, 151, 330-338.
[45]
Krishna, K.L.; Paridhavi, M.; Patel, J.A. Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn.). Nat. Prod. Radiance, 2008, 7, 364-373.
[46]
Parle, M. Gurditta. Basketful benefits of papaya. Int. Res. J. Pharm., 2011, 2, 6-12.
[47]
Kurata, R.; Adachi, M.; Yamakawa, O.; Yoshimoto, M. Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J. Agric. Food Chem., 2007, 55(1), 185-190.
[48]
Liu, Y.J.; Zhou, C.Y.; Qiu, C.H.; Lu, X.M.; Wang, Y.T. Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL60 cells. Mol. Med. Rep., 2013, 8(4), 1106-1110.
[49]
Kang, T.Y.; Yang, H.R.; Zhang, J.; Li, D.; Lin, J.; Wang, L.; Xu, X. The studies of chlorogenic Acid antitumor mechanism by gene chip detection: The immune pathway gene expression. J. Anal. Methods Chem., 2013, 2013617243
[50]
Ménard, R.; Khouri, H.E.; Plouffe, C.; Dupras, R.; Ripoll, D.; Vernet, T.; Tessier, D.C.; Lalberté, F.; Thomas, D.Y.; Storer, A.C. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry, 1990, 29(28), 6706-6713.
[51]
Chandran, S.P.; Nachinmuthu, K.P.; Natarajan, S.B.; Inamdar, M.G.; Shahimi, M.S.B.M. Papain loaded solid lipid nanoparticles for colorectal cancer therapy. Curr. Cancer Ther. Rev., 2018, 14, 75-87.
[52]
Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep., 2016, 36(1), 271-278.
[53]
Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res., 2016, 8(2), 968-980.
[54]
Rashed, K.N.; Fouche, G. Anticancer activity of Carica papaya extracts in vitro and phytochemical analysis. Greener. J. Pharm. Pharmacol., 2013, 1, 1-5.
[55]
Levy, J.; Bosin, E.; Feldman, B.; Giat, Y.; Miinster, A.; Danilenko, M.; Sharoni, Y. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr. Cancer, 1995, 24(3), 257-266.
[56]
Wu, C.; Han, L.; Riaz, H.; Wang, S.; Cai, K.; Yang, L. The chemopreventive effect of β-cryptoxanthin from mandarin on human stomach cells (BGC-823). Food Chem., 2013, 136(3-4), 1122-1129.
[57]
Sahu, R.P.; Srivastava, S.K. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J. Natl. Cancer Inst., 2009, 101(3), 176-193.
[58]
Kim, E.J.; Hong, J.E.; Eom, S.J.; Lee, J.Y.; Park, J.H. Oral administration of benzyl-isothiocyanate inhibits solid tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. Breast Cancer Res. Treat., 2011, 130(1), 61-71.
[59]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosisinducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[60]
Kim, S.H.; Choi, K.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res., 2013, 29(4), 229-234.
[61]
Devi, K.P.; Rajavel, T.; Habtemariam, S.; Nabavi, S.F.; Nabavi, S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci., 2015, 142, 19-25.
[62]
Toma, S.; Losardo, P.L.; Vincent, M.; Palumbo, R. Effectiveness of beta-carotene in cancer chemoprevention. Eur. J. Cancer Prev., 1995, 4(3), 213-224.
[63]
Ono, M.; Takeshima, M.; Nakano, S. Mechanism of the anticancer effect of Lycopene (Tetraterpenoids). Enzymes, 2015, 37, 139-166.
[64]
Faure, H.; Fayol, V.; Galabert, C.; Grolier, P.; Le Moël, G.; Steghens, J.P.; Van Kappel, A.; Nabet, F. Carotenoids: 1. Metabolism and physiology. Ann. Biol. Clin. (Paris), 1999, 57(2), 169-183.
[65]
Pasquet, V.; Morisset, P.; Ihammouine, S.; Chepied, A.; Aumailley, L.; Berard, J.B.; Serive, B.; Kaas, R.; Lanneluc, I.; Thiery, V.; Lafferriere, M.; Piot, J.M.; Patrice, T.; Cadoret, J.P.; Picot, L. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar. Drugs, 2011, 9(5), 819-831.
[66]
Bi, M.C.; Rosen, R.; Zha, R.Y.; McCormick, S.A.; Song, E.
Hu, D.N. Zeaxanthin induces apoptosis in human uveal melanoma cells through Bcl-2 family proteins and intrinsic apoptosis pathway. Evid. Based Complement. Alternat. Med., 2013, 2013205082
[67]
Fauziya, S.; Krishnamurthy, R. Papaya (Carica papaya): Source material for anticancer. CIBTech. J. Pharm. Sci., 2013, 2, 25-34.
[68]
Yin, M.C.; Lin, C.C.; Wu, H.C.; Tsao, S.M.; Hsu, C.K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: Potential mechanisms of action. J. Agric. Food Chem., 2009, 57(14), 6468-6473.
[69]
Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol., 2013, 19(43), 7726-7734.
[70]
Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem., 2011, 349(1-2), 11-19.
[71]
Belkaid, A.; Currie, J.C.; Desgagnés, J.; Annabi, B. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int., 2006, 6, 7.
[72]
Thornalley, P.J. Isothiocyanates: Mechanism of cancer chemopreventive action. Anticancer Drugs, 2002, 13(4), 331-338.
[73]
Sindhu, E.R.; Firdous, A.P.; Ramnath, V.; Kuttan, R. Effect of carotenoid lutein on N-nitrosodiethylamine-induced hepatocellular carcinoma and its mechanism of action. Eur. J. Cancer Prev., 2013, 22(4), 320-327.
[74]
Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol., 2015, 36(12), 9437-9446.
[75]
Otsuki, N.; Dang, N.H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacol., 2010, 127(3), 760-767.
[76]
Mustafa, M.; Nornazirah, A.; Salih, F.A. IIIzam, E.L.; Suleiman, M.; Sharifa, A.M. Breast cancer: Detection markers, prognosis, and prevention. J. Dental Med. Sci. (New York), 2016, 15, 73-80.
[77]
Rumiyati, S.A. Effect of the protein fraction of Carica papaya L. leaves on the expressions of p53 and Bcl-2 in breast cancer cells line. Indones. J. Pharm., 2006, 17, 170-176.
[78]
Zuhrotun Nisa, F.; Astuti, M.; Murdiati, A.; Mubarika Haryana, S. Anti-proliferation and apoptosis induction of aqueous leaf extract of Carica papaya L. on human breast cancer cells MCF-7. Pak. J. Biol. Sci., 2017, 20(1), 36-41.
[79]
Rahmat, A.; Rosli, R.; Endrini, S.; Sah, Z.W. Antiproliferative activity of pure lycopene compared to both extracted lycopene and juices from watermelon (Citrullus vulgaris) and papaya (Carica papaya) on human breast and liver cancer cell lines. J. Med. Sci. (New York), 2002, 2, 55-58.
[80]
Akila, M.; Sushama, A.; Kumaresan, R. Study on in vitro cytotoxicity of papain against liver cancer cell line Hep G2. Int. J. Pharm. Pharm. Sci., 2014, 6, 160-161.
[81]
Tan, S.A.; Ramos, S.; Martín, M.A.; Mateos, R.; Harvey, M.; Ramanathan, S.; Najimudin, N.; Alam, M.; Bravo, L.; Goya, L. Protective effects of papaya extracts on tert-butyl hydroperoxide mediated oxidative injury to human liver cells (An in-vitro study). Free Radic. Antioxid., 2012, 2, 10-19.
[82]
Praveena, R.; Jethinlalkhosh, J.P.; Doss, V.A. Pharmacological evaluation of antineoplastic activity of hydroethanolic extract of unripe fruit of carica papaya linn using animal model. Asian. J. Pharm. Clin. Res., 2017, 10, 179-181.
[83]
Vuong, Q.V.; Hirun, S.; Chuen, T.L.; Goldsmith, C.D.; Murchie, S.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Antioxidant and anticancer capacity of saponin‐enriched Carica papaya leaf extracts. Int. J. Food Sci. Technol., 2015, 5, 169-177.
[84]
Devaraj, K.B.; Kumar, P.R.; Prakash, V. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J. Agric. Food Chem., 2008, 56(23), 11417-11423.
[85]
Maverakis, E.; Miyamura, Y.; Bowen, M.P.; Correa, G.; Ono, Y.; Goodarzi, H. Light, including ultraviolet. J. Autoimmun., 2010, 34(3), J247-J257.
[86]
Nguyen, T.T.; Parat, M.O.; Hodson, M.P.; Pan, J.; Shaw, P.N.; Hewavitharana, A.K. Chemical characterization and in vitro cytotoxicity on squamous cell carcinoma cells of Carica papaya leaf extracts. Toxins (Basel), 2015, 8(1), 1-11.
[87]
Nguyen, T.T.; Parat, M.O.; Shaw, P.N.; Hewavitharana, A.K.; Hodson, M.P. Traditional aboriginal preparation alters the chemical profile of carica papaya leaves and impacts on cytotoxicity towards human squamous cell carcinoma. PLoS One, 2016, 11(2)e0147956
[88]
Pandey, S.; Walpole, C.; Cabot, P.J.; Shaw, P.N.; Batra, J.; Hewavitharana, A.K. Selective anti-proliferative activities of Carica papaya leaf juice extracts against prostate cancer. Biomed. Pharmacother., 2017, 89, 515-523.
[89]
Alotaibi, K.S.; Li, H.; Rafi, R.; Siddiqui, R.A. Papaya black seeds have beneficial anticancer effects on PC-3 prostate cancer cells. J. Cancer Metastasis Treat., 2017, 3, 161-168.
[90]
Bhaumik, A.; Swapna, M.; Sucharitha, M.; Devika, K.; Ashwini, K.N. the bioactive compounds obtained from the papaya (Carica papaya) act as potential anticancer agents against the human prostate cancer cell line DU-145. Int. J. Pharm Biol Sci., 2015, 1, 1-5.
[91]
Lohsoonthorn, P.; Danvivat, D. Colorectal cancer risk factors: A case-control study in Bangkok. Asia Pac. J. Public Health, 1995, 8(2), 118-122.
[92]
Sianipar, M.P.; Suwarso, E.; Rosidah, R. antioxidant and anticancer activities of hexane fraction from Carica papaya L. male flower. Asian. J. Pharm. Clin. Res., 2018, 11, 81-83.
[93]
Li, W.; Liu, X.; Yang, Q.; Zhang, N.; Du, Y.; Zhu, H. Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with β-cyclodextrin. Food Chem., 2015, 184, 99-104.
[94]
Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol. Environ. Saf., 2016, 134(Pt 2), 467-473.
[95]
Muthukumar, T.; Sudhakumari Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.H. Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem., 2016, 51, 384-391.
[96]
Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperuma, S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq., 2016, 219, 232-238.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy