Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Photo-catalytic Study of Malachite Green Dye Degradation Using Rice Straw Extracted Activated Carbon Supported ZnO Nano-particles

Author(s): Radwa A. El-Salamony*, Abeer A. Emam, Nagwa A. Badawy and Sara F. El-Morsi

Volume 10, Issue 6, 2020

Page: [849 - 859] Pages: 11

DOI: 10.2174/2210681209666190722121926

Price: $65

Abstract

Objective: ZnO nanoparticles were synthesized using wet impregnation method, and activated carbon from rice straw (RS) prepared through chemical route.

Methods: The nano-composites ZnO-AC series were prepared with different ZnO:AC ratio of 10, 20, 50, and 70% to optimize the zinc oxide nanoparticles used. The obtained composites were characterized by FE-SEM, XRD, SBET, and optical techniques then used for the photo-degradation of Malachite green dye (MG) under visible light.

Results: It was found that 10ZnO-AC exhibited excellent visible light photo-catalytic performance. The ·OH radicals’ formation is matching with photo-activity of the prepared composites. The photo-degradation efficiency of MG increased from 63% to 93%, when the 10ZnO-AC photocatalyst amount was increased from 0.5 to 6 g/L.

Conclusion: The GC-MS technique was used to analyze the intermediates formed; up to 15 kinds of chemicals were identified as the degradation products.

Keywords: ZnO-AC, visible light, photo-degradation, malachite green dye, radical scavenger, GC-MS technique.

Graphical Abstract
[1]
Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separ. Purif. Tech., 2007, 53(1), 97-110.
[http://dx.doi.org/10.1016/j.seppur.2006.06.018]
[2]
Fernandez, C.; Larrechi, M.S.; Callao, M.P. An analytical overview of processes for removing organic dyes from wastewater effluents. Trends Analyt. Chem., 2010, 29(2), 1202-1121.
[http://dx.doi.org/10.1016/j.trac.2010.07.011]
[3]
Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments, 2003, 58(3), 179-196.
[http://dx.doi.org/10.1016/S0143-7208(03)00064-0]
[4]
Saha, P.; Chowdhury, S.; Gupt, S.; Kumar, I.; Kumar, R. Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean Soil Air Water, 2010, 38(5–6), 437-445.
[http://dx.doi.org/10.1002/clen.200900234]
[5]
Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol., 2004, 66(3), 319-329.
[http://dx.doi.org/10.1016/j.aquatox.2003.09.008] [PMID: 15129773]
[6]
Panda, N.; Sahoo, H.; Mohapatra, S. Decolourization of methyl orange using fenton-like mesoporous Fe2O3-SiO2 composite. J. Hazard. Mater., 2011, 185(1), 359-365.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.042] [PMID: 20934248]
[7]
Gobara, H.M.; Elsalamony, R.A.; Hassan, S.A. Sonophotocatalytic degradation of Eriochrome black-T dye in water using Ti grafted SBA-15. J. Porous Mater., 2016, 23, 1311-1318.http://sci-hub.tw/10.1007/s10934-016-0190-3
[http://dx.doi.org/10.1007/s10934-016-0190-3]
[8]
Hassan, S.A.; El–Salamony, R.A. Photocatalytic disc-shaped composite systems for removal of hazardous dyes in aqueous solutions. Can. Chem. Trans., 2013, 2(1), 57-71.
[http://dx.doi.org/10.13179/canchemtrans.2014.02.01.0057]
[9]
Morsi, R.E.; Elsalamony, R.A. Superabsorbent enhanced-catalytic core/shell nanocomposites hydrogel for efficient water decolorization. New J. Chem., 2016, 40, 2927-2934.
[http://dx.doi.org/10.1039/C5NJ02823J]
[10]
Rossetto, E.; Petkowicz, D.I.; dos Santos, J.H.Z.; Pergher, S.B.C.; Penha, F.G. Bentonites impregnated with TiO2 for photodegradation of methylene blue. Appl. Clay Sci., 2010, 48(4), 602-606.
[http://dx.doi.org/10.1016/j.clay.2010.03.010]
[11]
Sh, H.; Xie, J.; Xu, H.; Li, H.; Gu, Z.; Sun, G.; Xu, Y. Structural characterization and photocatalytic activity of NiO/AgNbO3. J. Alloys Compd., 2010, 496, 633-637.
[http://dx.doi.org/10.1016/j.jallcom.2010.02.148]
[12]
Qamar, M.; Muneer, M.; Bahnemann, D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J. Environ. Manage., 2006, 80(2), 99-106.
[http://dx.doi.org/10.1016/j.jenvman.2005.09.002] [PMID: 16359776]
[13]
Ahangar, G.E.; Abbaspour-Fard, M.H.; Shahtahmassebi, N.; Khojastehpour, M.; Maddahi, P. Preparation and characterization of PVA/ZnO nanocomposite. J. Food Process. Preserv., 2015, 39, 1442-1451.
[http://dx.doi.org/10.1111/jfpp.12363]
[14]
Al-Fori, M.; Dobretsov, S.; Myint, M.T.Z.; Dutta, J. Antifouling properties of zinc oxide nanorod coatings. Biofouling, 2014, 30(7), 871-882.
[http://dx.doi.org/10.1080/08927014.2014.942297] [PMID: 25115521]
[15]
Chen, J.; Wen, X.; Shi, X.; Pan, R. Synthesis of zinc oxide/activated carbon nano-composites and photodegradation of rhodamine B. Environ. Eng. Sci., 2012, 29(6), 392-398.
[http://dx.doi.org/10.1089/ees.2010.0260] [PMID: 22693415]
[16]
Rao, G.R.; Mishra, B.G. Structural, redox and catalytic chemistry of ceria based materials. Bulletin of the Catalysis Society of India, 2003, 2, 122-134.
[17]
El-Salamony, R.A.; Amdeha, E.; Badawy, N.A.; Ghoneim, S.A.; Al-Sabagh, M.A. Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: a comparative study. Toxicol. Environ. Chem., 2018, 100, 143-156.
[http://dx.doi.org/10.1080/02772248.2018.1497634]
[18]
Roosta, M.; Ghaedi, M.; Yousefi, F. Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by zinc sulfide nanoparticles loaded on activated carbon: experimental design. RSC Advances, 2015, 5, 100129-100141.
[http://dx.doi.org/10.1039/C5RA16121E]
[19]
Erhan, A.A.; Madalena, M.; Freitas, A. The effects of different activated carbon supports and support modifications on the properties of Pr/AC catalysts. Carbon, 2001, 39(2), 175-185.
[http://dx.doi.org/10.1016/S0008-6223(00)00102-0]
[20]
El-Salamony, R.A.; Amdeha, E.; Ghoneim, S.A.; Badawy, N.A.; Salem, K.M.; Al-Sabagh, A.M. Titania modified activated carbon prepared from sugarcane bagasse: Adsorption and photocatalytic degradation of methylene blue under visible light irradiation. Environ. Technol., 2017, 38(24), 3122-3136.
[http://dx.doi.org/10.1080/21622515.2017.1290148] [PMID: 28278770]
[21]
El-Gendy, N.Sh.; El-Salamony, R.A.; Younis, S.A. Green synthesis of fluorapatite from waste animal bones and the photo-catalytic degradation activity of a new ZnO/green biocatalyst nano-composite for removal of chlorophenols. J. Water Process Eng., 2016, 12, 8-19.
[http://dx.doi.org/10.1016/j.jwpe.2016.05.007]
[22]
Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun., 2000, 2, 207-210.
[http://dx.doi.org/10.1016/S1388-2481(00)00006-0]
[23]
Sayed, M.; Fu, P.; Shah, L.A.; Khan, H.M.; Nisar, J.; Ismail, M.; Zhang, P. UV-photocatalytic degradation of bezafibrate by hydrothermally synthesized enhanced 001 facets TiO2/Ti Film. J. Phys. Chem. A, 2016, 120(1), 118-127.
[http://dx.doi.org/10.1021/acs.jpca.5b10502] [PMID: 26673943]
[24]
Geniev, S.D.; Turmanov, S.C.; Dimitrov, A.S.; Vlaev, L.T. Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. J. Therm. Anal. Calorim., 2008, 93(2), 387-396.http://sci-hub.tw/10.1007/s10973-007-8429-5
[http://dx.doi.org/10.1007/s10973-007-8429-5]
[25]
Zhang, W.H.; Zhang, W.D. Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sens. Actuators B Chem., 2008, 134(2), 403-408.
[http://dx.doi.org/10.1016/j.snb.2008.05.015]
[26]
Sobana, N.; Swaminathan, M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol. Energy Mater. Sol. Cells, 2007, 91, 727-734.
[http://dx.doi.org/10.1016/j.solmat.2006.12.013]
[27]
Tryb, B.; Morawski, A.W.; Inagaki, M. Application of TiO2- mounted activated carbon to the removal of phenol from water. Appl. Catal. B, 2003, 41, 427-433.
[http://dx.doi.org/10.1016/S0926-3373(02)00173-X]
[28]
El-Salamony, R.A.; Gobara, H.M.; Younis, S.A.; Moustafa, Y.M. Zn+2 doped x-Ti-SiO2 tricomposites for Enhancement the Photocatalytic Degradation of Phenol under UV irradiation. J Sol-Gel materials and technology, 2017, 83, 422-435. Available from: http://sci-hub.tw/10.1007/s10971-017-4427-7
[29]
Wang, X.J.; Song, J.K.; Huang, J.Y.; Zhang, J.; Wang, X.; Ma, R.R.; Wang, J.Y.; Zhao, J.F. Activated carbon-based magnetic TiO2 photocatalyst co-doped with iodine and nitrogen for organic pollution degradation. Appl. Surf. Sci., 2016, 390, 190-201.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.040]
[30]
Khan, G.; Kim, Y.K.; Choi, S.K.; Han, D.S.; Abdel-Wahab, A.; Park, H. Evaluating the catalytic effects of carbon materials on the photocatalytic reduction and oxidation reactions of TiO2. Bull. Korean Chem. Soc., 2013, 34, 1137-1144.
[http://dx.doi.org/10.5012/bkcs.2013.34.4.1137]
[31]
Pastrana-Martínez, L.M.; Morales-Torres, S.; Papageorgiou, S.K.; Katsaros, F.K.; Romanos, G.E.; Figueiredo, J.L.; Faria, J.L.; Falaras, P.; Silva, A.M. Photocatalytic behaviour of nanocarbon-TiO2 composites and immobilization into hollow fibres. Appl. Catal. B, 2013, 142, 101-111.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.074]
[32]
El-Salamony, R.A.; Gobara, H.M.; Younis, S.A. potential application of MoO3 loaded SBA-15 photo-catalyst for removal of multiple organic pollutants from water environment. J. Water Process Eng., 2017, 18, 102-112.
[http://dx.doi.org/10.1016/j.jwpe.2017.06.010]
[33]
Liu, D.D.; Liu, Y.M.; Wu, Z.S.; Tian, F.; Ye, B.C.; Chen, X.Q. Enhancement of photodegradation of Ce, N, and P tri-doped TiO2/AC by microwave radiation with visible light response for naphthalene. J. Taiwan Inst. Chem. Eng., 2016, 68, 506-513.
[http://dx.doi.org/10.1016/j.jtice.2016.10.002]
[34]
Shalaby, N.H.; Elsalamony, R.A.; El Naggar, A.M.A. Mesoporous waste extracted SiO2-Al2O3 supported Ni and Ni-H3PW12O40 nano-catalysts for photo-degradation of methyl orange dye under UV irradiation. New J. Chem., 2018, 42, 9177-9186.
[http://dx.doi.org/10.1039/C8NJ01479E]
[35]
Ouazene, N.; Sahmoune, M.N. Equilibrium and kinetic modelling of astrazon yellow adsorption by saw dust: effect of important parameters. Int. J. Chem. React. Eng., 2010, 8, 151.
[http://dx.doi.org/10.2202/1542-6580.2413]
[36]
Lan, S.; Liu, L.; Li, R.Q.; Leng, Z.H.; Gan, S.C. Hierarchical hollow structure ZnO: synthesis, characterization, and highly efficient adsorption/photocatalysis toward Congo red. Ind. Eng. Chem. Res., 2014, 53(8), 3131-3139.
[http://dx.doi.org/10.1021/ie404053m]
[37]
Zhang, Z.; Xu, Y.; Ma, X.; Li, F.; Liu, D.; Chen, Z.; Zhang, F.; Dionysiou, D.D. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). J. Hazard. Mater., 2012, 209-210, 271-277.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.021] [PMID: 22309653]
[38]
Yu, J.; Wang, W.; Cheng, B.; Su, B.L. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C, 2009, 113, 6743-6750.http://sci-hub.tw/10.1021/jp900136q
[http://dx.doi.org/10.1021/jp900136q]
[39]
Li, H.H.; Yin, S.; Wang, Y.H.; Sato, T. Efficient persistent photocatalytic decomposition of nitrogen monoxide over a fluorescence-assisted CaAl2O4: (Eu, Nd)/(Ta, N)-codoped TiO2/Fe2O3. Appl. Catal. B, 2013, 132, 487-492.
[http://dx.doi.org/10.1016/j.apcatb.2012.12.026]
[40]
Shekofteh-Gohari, M.; Habibi-Yangjeh, A. Novel magnetically separable Fe3O4@ ZnO/AgCl nanocomposites with highly enhanced photocatalytic activities under visible-light irradiation. Separ. Purif. Tech., 2015, 147, 194-202.
[http://dx.doi.org/10.1016/j.seppur.2015.04.034]
[41]
Wang, J.; Jiang, W.J.; Liu, D.; Wei, Z.; Zhu, Y.F. Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. Appl. Catal. B, 2015, 176, 306-314.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.022]
[42]
Palanisamy, B.; Babu, C.M.; Sundaravel, B.; Anandan, S.; Murugesan, V. Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J. Hazard. Mater., 2013, 252-253, 233-242.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.060] [PMID: 23535564]
[43]
Ju, Y.; Yang, S.; Ding, Y.; Sun, C.; Zhang, A.; Wang, L. Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways. J. Phys. Chem. A, 2008, 112(44), 11172-11177.
[http://dx.doi.org/10.1021/jp804439z] [PMID: 18841945]
[44]
Yong, L.; Zhanqi, G.; Yuefei, J.; Xiaobin, H.; Cheng, S.; Shaogui, Y.; Lianhong, W.; Qingeng, W.; Die, F. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways. J. Hazard. Mater., 2015, 285, 127-136.
[http://dx.doi.org/10.1016/j.jhazmat.2014.11.041] [PMID: 25497025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy