Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Differential Expression of MARK4 Protein and Related Perturbations in Females with Ovulatory PCOS

Author(s): Ahmad Fazilat, Nadia Rashid, Aruna Nigam, Shadab Anjum, Nimisha Gupta and Saima Wajid*

Volume 19, Issue 7, 2019

Page: [1064 - 1074] Pages: 11

DOI: 10.2174/1871530319666190719145823

Price: $65

Abstract

Background: Ovulatory PCOS (OPCOS) is the mildest form of the polycystic ovarian syndrome among all four determined phenotypes. Though the females with OPCOS are ovulating, hyperandrogenism and polycystic ovarian morphology increase the susceptibility of cardiovascular diseases, insulin resistance, hyperlipidemia and metabolic syndrome in these females.

Objectives: The aim of the study was to identify the significance associated with OPCOS phenotype through serum proteomic profiling of OPCOS females and normal age-matched healthy ovulating females.

Methods: One and two-dimensional gel-based proteomic approaches were adopted to fractionate the complex serum proteome. Differential protein profiles generated were analyzed with PD-QUEST Software. Protein spots differing in intensity by >2-fold were selected and identified further by MALDI-TOF MS. Validation of identified protein was carried out by Biolayer Interferometry.

Results: One and two-dimensional gel profiles revealed a differential expression pattern of proteins. 10 selected spots were identified as GMP synthase [glutamine hydrolyzing], zinc finger protein 518A, pericentriolar material 1 protein, BCLAF1 and THRAP3 family member 3, MAP/microtubule affinityregulating kinase 4, H/ACA ribonucleoprotein complex subunit 1, Melanoma-associated antigen B3 and Zinc finger protein 658B. Expression of MAP/microtubule affinity-regulating kinase 4 (MARK4) was found to be downregulated in OPCOS females as compared to controls on validation.

Conclusion: Reduced expression of MARK4 protein in OPCOS increases the associated risk of hyperlipidemia, hyperandrogenism and metabolic syndrome, thus the protein holds strong candidature as a drug target for the syndrome.

Keywords: PCOS, Ovulatory PCOS, MARK4, Proteomics, hyperandrogenism, hyperlipidemia.

Graphical Abstract
[1]
Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod., 2018, 33(9), 1602-1618.
[http://dx.doi.org/10.1093/humrep/dey256] [PMID: 30052961]
[2]
Daniilidis, A.; Dinas, K. Long term health consequences of polycystic ovarian syndrome: a review analysis. Hippokratia, 2009, 13(2), 90-92.
[PMID: 19561777]
[3]
Broekmans, F.J.; Knauff, E.A.H.; Valkenburg, O.; Laven, J.S.; Eijkemans, M.J.; Fauser, B.C. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors. BJOG, 2006, 113(10), 1210-1217.
[http://dx.doi.org/10.1111/j.1471-0528.2006.01008.x] [PMID: 16972863]
[4]
Lujan, M.E.; Chizen, D.R.; Pierson, R.A. Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies. J. Obstet. Gynaecol. Can., 2008, 30(8), 671-679.
[http://dx.doi.org/10.1016/S1701-2163(16)32915-2] [PMID: 18786289]
[5]
Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril., 2016, 106(1), 6-15.
[http://dx.doi.org/10.1016/j.fertnstert.2016.05.003] [PMID: 27233760]
[6]
Hurov, J.; Piwnica-Worms, H. The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle, 2007, 6(16), 1966-1969.
[http://dx.doi.org/10.4161/cc.6.16.4576] [PMID: 17721078]
[7]
Trinczek, B.; Brajenovic, M.; Ebneth, A.; Drewes, G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J. Biol. Chem., 2004, 279(7), 5915-5923.
[http://dx.doi.org/10.1074/jbc.M304528200] [PMID: 14594945]
[8]
Goldstein, B.; Macara, I.G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell, 2007, 13(5), 609-622.
[http://dx.doi.org/10.1016/j.devcel.2007.10.007] [PMID: 17981131]
[9]
Matenia, D.; Mandelkow, E-M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci., 2009, 34(7), 332-342.
[http://dx.doi.org/10.1016/j.tibs.2009.03.008] [PMID: 19559622]
[10]
Mandelkow, E-M.; Thies, E.; Trinczek, B.; Biernat, J.; Mandelkow, E. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J. Cell Biol., 2004, 167(1), 99-110.
[http://dx.doi.org/10.1083/jcb.200401085] [PMID: 15466480]
[11]
Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol., 2002, 156(6), 1051-1063.
[http://dx.doi.org/10.1083/jcb.200108057] [PMID: 11901170]
[12]
Yu, W.; Polepalli, J.; Wagh, D.; Rajadas, J.; Malenka, R.; Lu, B. A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Hum. Mol. Genet., 2012, 21(6), 1384-1390.
[http://dx.doi.org/10.1093/hmg/ddr576] [PMID: 22156579]
[13]
Naz, F.; Anjum, F.; Islam, A.; Ahmad, F.; Hassan, M.I. Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem. Biophys., 2013, 67(2), 485-499.
[http://dx.doi.org/10.1007/s12013-013-9550-7] [PMID: 23471664]
[14]
Magnani, I.; Novielli, C.; Fontana, L.; Tabano, S.; Rovina, D.; Moroni, R.F.; Bauer, D.; Mazzoleni, S.; Colombo, E.A.; Tedeschi, G.; Monti, L.; Porta, G.; Bosari, S.; Frassoni, C.; Galli, R.; Bello, L.; Larizza, L. Differential signature of the centrosomal MARK4 isoforms in glioma. Anal. Cell. Pathol. (Amst.), 2011, 34(6), 319-338.
[http://dx.doi.org/10.1155/2011/206756] [PMID: 22156016]
[15]
Liu, Z.; Gan, L.; Chen, Y.; Luo, D.; Zhang, Z.; Cao, W.; Zhou, Z.; Lin, X.; Sun, C. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci. Rep., 2016, 6, 21382.
[http://dx.doi.org/10.1038/srep21382] [PMID: 26888669]
[16]
Rovina, D.; Fontana, L.; Monti, L.; Novielli, C.; Panini, N.; Sirchia, S.M.; Erba, E.; Magnani, I.; Larizza, L. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur. J. Cell Biol., 2014, 93(8-9), 355-365.
[http://dx.doi.org/10.1016/j.ejcb.2014.07.004] [PMID: 25123532]
[17]
Parveen, I.; Khan, P.; Ali, S.; Hassan, M.I.; Ahmed, N. Synthesis, molecular docking and inhibition studies of novel 3-N-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors. Eur. J. Med. Chem., 2018, 159, 166-177.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.030] [PMID: 30290280]
[18]
Timm, T.; Li, X.Y.; Biernat, J.; Jiao, J.; Mandelkow, E.; Vandekerckhove, J.; Mandelkow, E.M. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J., 2003, 22(19), 5090-5101.
[http://dx.doi.org/10.1093/emboj/cdg447] [PMID: 14517247]
[19]
McInnes, K. J.; Brown, K. A.; Hunger, N. I.; Simpson, E. R. Regulation of LKB1 expression by sex hormones in adipocytes. International journal of obesity (2005), 2012, 36(7), 982-5.
[http://dx.doi.org/10.1038/ijo.2011.172]
[20]
McInnes, K.J.; Corbould, A.; Simpson, E.R.; Jones, M.E. Regulation of adenosine 5′,monophosphate-activated protein kinase and lipogenesis by androgens contributes to visceral obesity in an estrogen-deficient state. Endocrinology, 2006, 147(12), 5907-5913.
[http://dx.doi.org/10.1210/en.2006-0879] [PMID: 16990341]
[21]
Shackelford, D.B.; Shaw, R.J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer, 2009, 9(8), 563-575.
[http://dx.doi.org/10.1038/nrc2676] [PMID: 19629071]
[22]
Feng, M.; Tian, L.; Gan, L.; Liu, Z.; Sun, C. Mark4 promotes adipogenesis and triggers apoptosis in 3T3-L1 adipocytes by activating JNK1 and inhibiting p38MAPK pathways. Biol. Cell, 2014, 106(9), 294-307.
[http://dx.doi.org/10.1111/boc.201400004] [PMID: 24989893]
[23]
Morak, M.; Schmidinger, H.; Riesenhuber, G.; Rechberger, G.N.; Kollroser, M.; Haemmerle, G.; Zechner, R.; Kronenberg, F.; Hermetter, A. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol. Cell. Proteomics, 2012, 11(12), 1777-1789.
[http://dx.doi.org/10.1074/mcp.M111.015743] [PMID: 22984285]
[24]
Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol., 2011, 13(9), 1016-1023.
[http://dx.doi.org/10.1038/ncb2329] [PMID: 21892142]
[25]
Wang, Q.; Imam, M.U.; Yida, Z.; Wang, F. Peroxisome proliferator-activated receptor gamma (PPARγ) as a target for concurrent management of diabetes and obesity-related cancer. Curr. Pharm. Des., 2017, 23(25), 3677-3688.
[http://dx.doi.org/10.2174/1381612823666170704125104] [PMID: 28677503]
[26]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[27]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[28]
Misawa, T.; Takahama, M.; Kozaki, T.; Lee, H.; Zou, J.; Saitoh, T.; Akira, S. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol., 2013, 14(5), 454-460.
[http://dx.doi.org/10.1038/ni.2550] [PMID: 23502856]
[29]
Hoffman, H.M.; Wright, F.A.; Broide, D.H.; Wanderer, A.A.; Kolodner, R.D. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am. J. Hum. Genet., 2000, 66(5), 1693-1698.
[http://dx.doi.org/10.1086/302874] [PMID: 10741953]
[30]
Lu, A.; Wu, H. Structural mechanisms of inflammasome assembly. FEBS J., 2015, 282(3), 435-444.
[http://dx.doi.org/10.1111/febs.13133] [PMID: 25354325]
[31]
Li, X.; Thome, S.; Ma, X.; Amrute-Nayak, M.; Finigan, A.; Kitt, L.; Masters, L.; James, J.R.; Shi, Y.; Meng, G.; Mallat, Z. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat. Commun., 2017, 8, 15986.
[http://dx.doi.org/10.1038/ncomms15986] [PMID: 28656979]
[32]
Dunn, J.H.; Fujita, M. PYCARD (PYD and CARD domain containing). Atlas Genet. Cytogenet. Oncol. Haematol., 2015.
[http://dx.doi.org/10.4267/2042/56440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy