Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review

Author(s): Cedric S. Graebin*, Felipe V. Ribeiro, Kamilla R. Rogério and Arthur E. Kümmerle*

Volume 16, Issue 6, 2019

Page: [855 - 899] Pages: 45

DOI: 10.2174/1570179416666190718153703

Price: $65

Abstract

Multicomponent reactions (MCRs) are composed of three or more reagents in which the final product has all or most of the carbon atoms from its starting materials. These reactions represent, in the medicinal chemistry context, great potential in the research for new bioactive compounds, since their products can present great structural complexity. The aim of this review is to present the main multicomponent reactions since the original report by Strecker in 1850 from nowadays, covering their evolution, highlighting their significance in the discovery of new bioactive compounds. The use of MCRs is, indeed, a growing field of interest in the synthesis of bioactive compounds and approved drugs, with several examples of commerciallyavailable drugs that are (or can be) obtained through these protocols.

Keywords: Multicomponent reactions, heterocycles, medicinal chemistry, drug syntheses, bioactive compounds, large-scale synthetic protocol.

Graphical Abstract
[1]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[2]
Batalha, P.N. Recentes avanços em reações multicomponentes: Uma perspectiva entre os anos de 2008 e 2011. Rev. Virtual Quim, 2012, 4(1), 13-45.
[3]
Horváth, I.T.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107(6), 2169-2173.
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[4]
Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry, 2000, 6(18), 3321-3329.
[http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A] [PMID: 11039522]
[5]
Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett., 2019, 10(3), 389-392.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00579] [PMID: 30891146]
[6]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Ann. der Chemie und Pharm., 1850, 75, 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[7]
Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[8]
Biginelli, P. Aldureides of ethylic acetoacetate and ethylic oxaloacetate. Gazz. Chim. Ital., 1893, 23, 360-416.
[9]
Mannich, C.; Krösche, W. Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch. Pharm. (Weinheim), 1912, 250, 647-667.
[http://dx.doi.org/10.1002/ardp.19122500151]
[10]
Passerini, M.; Simone, L. Composto del p-isonitrilazobenzolo con acetone e acido acetico. Gazz. Chim. Ital., 1921, 51, 126-129.
[11]
Bucherer, H.; Fischbeck, H. Hexahydrodiphenylamine and its derivatives. J. Prakt. Chem., 1934, 140, 69.
[12]
Bergs, H. Verfahren Zur Darstellung von Hydantoinen. Patent 1929, DE566094C.
[13]
Kabachnik, M.; Medved, T. New synthesis of aminophosphonic acids. Dokl. Akad. Nauk SSSR, 1952, 83, 689-692.
[14]
Fields, E.K. The Synthesis of esters of substituted amino phosphonic acids 1a. J. Am. Chem. Soc., 1952, 74, 1528-1531.
[http://dx.doi.org/10.1021/ja01126a054]
[15]
Asinger, F. Über die gemeinsame einwirkung von schwefel und ammoniak auf ketone. Angew. Chem., 1956, 68, 413-413.
[http://dx.doi.org/10.1002/ange.19560681209]
[16]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Studies on isonitriles. Angew. Chem., 1959, 71, 373-388.
[17]
Gewald, K.; Schinke, E.; Böttcher, H. Heterocyclen aus CH-aciden nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven nitrilen, carbonylverbindungen und schwefel. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[18]
Larsen, S.D.; Grieco, P.A. Aza Diels-Alder reactions in aqueous solution: cyclocondensation of dienes with simple iminium salts generated under mannich conditions. J. Am. Chem. Soc., 1985, 107, 1768-1769.
[http://dx.doi.org/10.1021/ja00292a057]
[19]
Petasis, N.A.; Akritopoulou, I. The boronic acid mannich reaction: A new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett., 1993, 34, 583-586.
[http://dx.doi.org/10.1016/S0040-4039(00)61625-8]
[20]
Groebke, K.; Hunziker, J.; Fraser, W.; Peng, L.; Diederichsen, U.; Zimmermann, K.; Holzner, A.; Leumann, C.; Eschenmoser, A. Warum pentose- und nicht hexose-nucleinsäuren. teil V. (Purin-Purin)-basenpaarung in der homo-DNS-reihe: guanin, isoguanin, 2,6-diaminopurin und xanthin. Helv. Chim. Acta, 1998, 81, 375-474.
[http://dx.doi.org/10.1002/hlca.19980810302]
[21]
Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett., 1998, 39, 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4]
[22]
Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed. Engl., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234:AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
[23]
SCOPUS Indexing Database Service. http://www.scopus.com
[24]
Rujiter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[25]
Maeda, S.; Komagawa, S.; Uchiyama, M.; Morokuma, K. Finding reaction pathways for multicomponent reactions: The passerini reaction is a four-component reaction. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 644-649.
[http://dx.doi.org/10.1002/anie.201005336] [PMID: 21226143]
[26]
Kalinski, C.; Lemoine, H.; Schmidt, J.; Burdack, C.; Kolb, J.; Umkehrer, M.; Ross, G. Multicomponent reactions as a powerful tool for generic drug synthesis. Synthesis (Stuttg), 2008, 2008, 4007-4011.
[http://dx.doi.org/10.1055/s-0028-1083239]
[27]
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8] [PMID: 19082754]
[28]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[29]
Chacko, S.; Ramapanicker, R. Proline catalyzed, one-pot three component mannich reaction and sequential cyclization toward the synthesis of 2-substituted piperidine and pyrrolidine alkaloids. Tetrahedron Lett., 2015, 56, 2023-2026.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.001]
[30]
Marson, C.M. Multicomponent and sequential organocatalytic reactions: Diversity with atom-economy and enantiocontrol. Chem. Soc. Rev., 2012, 41(23), 7712-7722.
[31]
Wang, Q.; Wang, D-X.; Wang, M-X.; Zhu, J. Still unconquered: Enantioselective passerini and ugi multicomponent reactions. Acc. Chem. Res., 2018, 51(5), 1290-1300.
[http://dx.doi.org/10.1021/acs.accounts.8b00105] [PMID: 29708723]
[32]
Ugi, I.; Werner, B.; Dömling, A.; Yu, W. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8, 53-66.
[http://dx.doi.org/10.3390/80100053]
[33]
Zarganes-Tzitzikas, T.; Dömling, A. Modern multicomponent reactions for better drug syntheses. Org. Chem. Front., 2014, 1(7), 834-837.
[http://dx.doi.org/10.1039/C4QO00088A] [PMID: 25147729]
[34]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[35]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[36]
Ahmadi, T.; Mohammadi Ziarani, G.; Gholamzadeh, P.; Mollabagher, H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry, 2017, 28, 708-724.
[http://dx.doi.org/10.1016/j.tetasy.2017.04.002]
[37]
Pori, M.; Galletti, P.; Soldati, R.; Giacomini, D. Asymmetric strecker reaction with chiral amines: A catalyst-free protocol using acetone cyanohydrin in water. Eur. J. Org. Chem., 2013, 2013, 1683-1695.
[http://dx.doi.org/10.1002/ejoc.201201533]
[38]
Soloshonok, V.; Sorochinsky, A. Practical methods for the synthesis of symmetrically α,α-disubstituted α-amino acids. Synthesis (Stuttg), 2010, 2010, 2319-2344.
[http://dx.doi.org/10.1055/s-0029-1220013]
[39]
Nájera, C.; Sansano, J.M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev., 2007, 107(11), 4584-4671.
[http://dx.doi.org/10.1021/cr050580o] [PMID: 17915933]
[40]
Cai, X.; Xie, B. Recent advances on asymmetric strecker reactions. ARKIVOC, 2014, 2014, 205.
[http://dx.doi.org/10.3998/ark.5550190.p008.487]
[41]
Wang, J.; Liu, X.; Feng, X. Asymmetric strecker reactions. Chem. Rev., 2011, 111(11), 6947-6983.
[http://dx.doi.org/10.1021/cr200057t] [PMID: 21851054]
[42]
Dhanasekaran, S.; Suneja, A.; Bisai, V.; Singh, V.K. Approach to isoindolinones, isoquinolinones, and THIQs via lewis acid-catalyzed domino strecker-lactamization/alkylations. Org. Lett., 2016, 18(4), 634-637.
[http://dx.doi.org/10.1021/acs.orglett.5b03331] [PMID: 26843100]
[43]
Stadnikoff, G. Über den reaktionsmechanismus bei der entstehung von α-amino- und iminosäuren. Ber. Dtsch. Chem. Ges., 1907, 40, 1014-1019.
[http://dx.doi.org/10.1002/cber.190704001153]
[44]
Snyesarev, A.P. Strecker reaction. J. Russ. Phys. Chem. Soc., 1914, 46, 217-223.
[45]
Ogata, Y.; Kawasaki, A. Mechanistic aspects of the strecker aminonitrile synthesis. J. Chem. Soc. B Phys. Org., 1971, 1971, 325-329.
[46]
Taillades, J.; Commeyras, A. Systemes de strecker et apparentes—II. Tetrahedron, 1974, 30, 2493-2501.
[http://dx.doi.org/10.1016/S0040-4020(01)97121-2]
[47]
Mendez, L.; Kouznetsov, V. First girgensohnine analogs prepared through incl3-catalyzed strecker reaction and their bioprospection. Curr. Org. Synth., 2014, 10, 969-973.
[http://dx.doi.org/10.2174/157017941006140206105449]
[48]
Carreño Otero, A.L.; Vargas Méndez, L.Y.; Duque, L. J.E.; Kouznetsov, V.V. Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. Eur. J. Med. Chem., 2014, 78, 392-400.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.067] [PMID: 24704612]
[49]
McClure, K.J.; Maher, M.; Wu, N.; Chaplan, S.R.; Eckert, W.A., III; Lee, D.H.; Wickenden, A.D.; Hermann, M.; Allison, B.; Hawryluk, N.; Breitenbucher, J.G.; Grice, C.A. Discovery of a novel series of selective HCN1 blockers. Bioorg. Med. Chem. Lett., 2011, 21(18), 5197-5201.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.051] [PMID: 21824780]
[50]
Rao Madivada, L.; Reddy Anumala, R.; Gilla, G.; Kagga, M.; Bandichhor, R. An efficient and large scale synthesis of clopidogrel: Antiplatelet drug. Der Pharma Chem., 2012, 4, 479-488.
[51]
Kürti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis, 1st ed; Oxford Academic Press, 2005.
[52]
Evans, C.G.; Gestwicki, J.E. Enantioselective organocatalytic hantzsch synthesis of polyhydroquinolines. Org. Lett., 2009, 11(14), 2957-2959.
[http://dx.doi.org/10.1021/ol901114f] [PMID: 19527003]
[53]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[54]
Kiyani, H.; Ghiasi, M. Solvent-free efficient one-pot synthesis of biginelli and hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst. Res. Chem. Intermed., 2015, 41, 5177-5203.
[http://dx.doi.org/10.1007/s11164-014-1621-x]
[55]
Sirisha, K.; Rajyalaxmi, I.; Olivia, S. Synthesis and in vitro p-glycoprotein inhibitory activity of novel 1,4-dihydropyridine derivatives. 2014, 7, 2544-2552.
[56]
Dollé, F.; Hinnen, F.; Valette, H.; Fuseau, C.; Duval, R.; Péglion, J-L.; Crouzel, C. Synthesis of two optically active calcium channel antagonists labelled with carbon-11 for in vivo cardiac PET imaging. Bioorg. Med. Chem., 1997, 5(4), 749-764.
[http://dx.doi.org/10.1016/S0968-0896(97)00024-2] [PMID: 9158874]
[57]
Vardanyan, R.S.; Hruby, V.J. Synthesis of Essential Drugs; Elsevier, 2006.
[http://dx.doi.org/10.1016/B978-0-444-52166-8.X5000-6]
[58]
Johnson, D.S.; Li, J.J. The Art of Drug Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
[http://dx.doi.org/10.1002/9780470134979]
[59]
Natale, N.R.; Rogers, M.E.; Staples, R.; Triggle, D.J.; Rutledge, A. Lipophilic 4-isoxazolyl-1,4-dihydropyridines: synthesis and structure-activity relationships. J. Med. Chem., 1999, 42(16), 3087-3093.
[http://dx.doi.org/10.1021/jm980439q] [PMID: 10447952]
[60]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[61]
Sridhar, R.; Perumal, P.T. A New protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: Synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-Yl)-1,4-dihydropyridines. Tetrahedron, 2005, 61, 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
[62]
Kiyani, H.; Ghiasi, M. Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3,4,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions. Chin. Chem. Lett., 2014, 25(2), 313-316.
[63]
Dharma Rao, G.B. Hantzsch reaction: A greener and sustainable approach to 1,4-dihydropyridines using non-commercial β-ketoesters. J. Heterocycl. Chem., 2018.
[http://dx.doi.org/10.1002/jhet.3309]
[64]
Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C-F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch Reaction. Tetrahedron Lett., 2005, 46, 5771-5774.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.148]
[65]
Sharma, G.V.; Reddy, K.L.; Lakshmi, P.S.; Krishna, P.R. ‘In Situ’ Generated ‘HCl’ - an efficient catalyst for solvent-free Hantzsch Reaction at room temperature: Synthesis of new dihydropyridine glycoconjugates. Synthesis (Stuttg), 2006, 2006, 55-58.
[http://dx.doi.org/10.1055/s-2005-921744]
[66]
Li, B.L.; Zhong, A.G.; Ying, A.G. Novel SO3H-functionalized ionic liquids - catalyzed facile and efficient synthesis of polyhydroquinoline derivatives via hantzsch condensation under ultrasound irradiation. J. Heterocycl. Chem., 2015, 52, 445-449.
[http://dx.doi.org/10.1002/jhet.2070]
[67]
Mondal, S.; Patra, B.C.; Bhaumik, A. One-pot synthesis of polyhydroquinoline derivatives through organic-solid-acid-catalyzed Hantzsch condensation reaction. ChemCatChem, 2017, 9, 1469-1475.
[http://dx.doi.org/10.1002/cctc.201601409]
[68]
Pramanik, M.; Bhaumik, A. Self-assembled hybrid tinphosphonate nanoparticles with bimodal porosity: An insight towards the efficient and selective catalytic process for the synthesis of bioactive 1,4-dihydropyridines under solvent-free conditions. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 11210.
[http://dx.doi.org/10.1039/c3ta12476b]
[69]
Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M.A.; Shirmardi-Shaghasemi, B.; Khavasi, H.R. Hantzsch reaction on free nano-Fe2O3 catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. (Camb.), 2011, 47(32), 9230-9232.
[http://dx.doi.org/10.1039/c1cc12693h] [PMID: 21766097]
[70]
Niaz, H.; Kashtoh, H.; Khan, J.A.J.; Khan, A.; Wahab, A-T.; Alam, M.T.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem., 2015, 95, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.018] [PMID: 25817770]
[71]
Desai, N.C.; Trivedi, A.R.; Somani, H.C.; Bhatt, K.A. Design, synthesis, and biological evaluation of 1,4-dihydropyridine derivatives as potent antitubercular agents. Chem. Biol. Drug Des., 2015, 86(3), 370-377.
[http://dx.doi.org/10.1111/cbdd.12502] [PMID: 25534154]
[72]
Magalhaes, L.G.; Marques, F.B.; da Fonseca, M.B.; Rogério, K.R.; Graebin, C.S.; Andricopulo, A.D. Discovery of a series of acridinones as mechanism-based tubulin assembly inhibitors with anticancer activity. PLoS One, 2016, 11(8)e0160842
[http://dx.doi.org/10.1371/journal.pone.0160842] [PMID: 27508497]
[73]
Pandit, A.B.; Savant, M.M.; Ladva, K.D. An efficient one-pot synthesis of highly substituted pyridone derivatives and their antimicrobial and antifungal activity. J. Heterocycl. Chem., 2018, 55, 983-987.
[http://dx.doi.org/10.1002/jhet.3128]
[74]
Lapidot, I.; Albeck, A.; Gellerman, G.; Shatzmiller, S.; Grynszpan, F. 1,4-Dihydropyridine cationic peptidomimetics with antibacterial activity. Int. J. Pept. Res. Ther., 2015, 21, 243-247.
[http://dx.doi.org/10.1007/s10989-015-9460-1]
[75]
Sandhu, S.S.; Sandhy, J.S. Past, Present and future of the Biginelli Reaction: A critical perspective. ARKIVOC, 2011, 2012, 66.
[http://dx.doi.org/10.3998/ark.5550190.0013.103]
[76]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[77]
Tron, G.C.; Minassi, A.; Appendino, G. Pietro Biginelli: The man behind the reaction. Eur. J. Org. Chem., 2011, 2011, 5541-5550.
[http://dx.doi.org/10.1002/ejoc.201100661]
[78]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers., 2018, 22(3), 751-767.
[http://dx.doi.org/10.1007/s11030-018-9841-4] [PMID: 29936682]
[79]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[80]
Pramanik, M.; Bhaumik, A. Phosphonic acid functionalized ordered mesoporous material: a new and ecofriendly catalyst for one-pot multicomponent Biginelli reaction under solvent-free conditions. ACS Appl. Mater. Interfaces, 2014, 6(2), 933-941.
[http://dx.doi.org/10.1021/am404298a] [PMID: 24372168]
[81]
Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli Reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 2019, 21(3), 105-148.
[http://dx.doi.org/10.1021/acscombsci.8b00120] [PMID: 30645098]
[82]
Oliverio, M.; Costanzo, P.; Nardi, M.; Rivalta, I.; Procopio, A. Facile ecofriendly synthesis of monastrol and its structural isomers via Biginelli reaction. ACS Sustain. Chem.& Eng., 2014, 2, 1228-1233.
[http://dx.doi.org/10.1021/sc5000682]
[83]
Folkers, K.; Johnson, T.B. Researches on pyrimidines. CXXXVI. The mechanism of formation of tetrahydropyrimidines by the Biginelli Reaction 1. J. Am. Chem. Soc., 1933, 55, 3784-3791.
[http://dx.doi.org/10.1021/ja01336a054]
[84]
Sweet, F.; Fissekis, J.D. Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli Reaction. J. Am. Chem. Soc., 1973, 95, 8741-8749.
[http://dx.doi.org/10.1021/ja00807a040]
[85]
Kappe, C.O. A Reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. support for an N-acyliminium ion intermediate(1). J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u] [PMID: 11671828]
[86]
De Souza, R.O.M.A.; da Penha, E.T.; Milagre, H.M.S.; Garden, S.J.; Esteves, P.M.; Eberlin, M.N.; Antunes, O.A.C. The three-component Biginelli Reaction: A combined experimental and theoretical mechanistic investigation. Chemistry, 2009, 15(38), 9799-9804.
[http://dx.doi.org/10.1002/chem.200900470] [PMID: 19670193]
[87]
Vitório, F.; Pereira, T.M.; Castro, R.N.; Guedes, G.P.; Graebin, C.S.; Kümmerle, A.E. Synthesis and mechanism of novel fluorescent coumarin-dihydropyrimidinone dyads obtained by the biginelli multicomponent reaction. New J. Chem., 2015, 39, 2323-2332.
[http://dx.doi.org/10.1039/C4NJ02155J]
[88]
Malani, K.; Thakkar, S.S.; Thakur, M.C.; Ray, A.; Doshi, H. Synthesis, characterization and in silico designing of diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxylate derivative as anti-proliferative and anti-microbial agents. Bioorg. Chem., 2016, 68, 265-274.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.001] [PMID: 27616159]
[89]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[90]
Akhaja, T.N.; Raval, J.P. 1,3-Dihydro-2H-indol-2-ones derivatives: Design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem., 2011, 46(11), 5573-5579.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.023] [PMID: 21981980]
[91]
Lauro, G.; Strocchia, M.; Terracciano, S.; Bruno, I.; Fischer, K.; Pergola, C.; Werz, O.; Riccio, R.; Bifulco, G. Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1). Eur. J. Med. Chem., 2014, 80, 407-415.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.061] [PMID: 24794772]
[92]
Ismaili, L.; Nadaradjane, A.; Nicod, L.; Guyon, C.; Xicluna, A.; Robert, J-F.; Refouvelet, B. Synthesis and antioxidant activity evaluation of new hexahydropyrimido[5,4-c]quinoline-2,5-diones and 2-thioxohexahydropyrimido[5,4-c]quinoline-5-ones obtained by Biginelli Reaction in two steps. Eur. J. Med. Chem., 2008, 43(6), 1270-1275.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.012] [PMID: 17854952]
[93]
Stefani, H.A.; Oliveira, C.B.; Almeida, R.B.; Pereira, C.M.P.; Braga, R.C.; Cella, R.; Borges, V.C.; Savegnago, L.; Nogueira, C.W. Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: A new class of potential antioxidant agents. Eur. J. Med. Chem., 2006, 41(4), 513-518.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.007] [PMID: 16516351]
[94]
Arunkhamkaew, S.; Athipornchai, A.; Apiratikul, N.; Suksamrarn, A.; Ajavakom, V. Novel racemic tetrahydrocurcuminoid dihydropyrimidinone analogues as potent acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(10), 2880-2882.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.069] [PMID: 23583510]
[95]
Godoi, M.N.; Costenaro, H.S.; Kramer, E.; Machado, P.S.; D’Oca, M.G.M.; Russowsky, D. Síntese do monastrol e novos compostos de biginelli promovida por in(OTf)3. Quim. Nova, 2005, 28, 1010-1013.
[http://dx.doi.org/10.1590/S0100-40422005000600015]
[96]
Roy, S.; Jadhavar, P.; Seth, K.; Sharma, K.; Chakraborti, A. Organocatalytic application of ionic liquids: [Bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones. Synthesis (Stuttg), 2011, 2011, 2261-2267.
[http://dx.doi.org/10.1055/s-0030-1260067]
[97]
van Marle, C.M.; Tollens, B. Ueber formaldehyd-derivate des acetophenons. Ber. Dtsch. Chem. Ges., 1903, 36, 1351-1357.
[http://dx.doi.org/10.1002/cber.19030360207]
[98]
Eshghi, H.; Rahimizadeh, M.; Eshkil, F.; Hosseini, M.; Bakavoli, M.; Sanei-Ahmadabad, M. Synthesis of novel bis(β-aminocarbonyl) compounds and some β-aminocarbonyls by catalyst-free multicomponent Mannich Reactions. J. Iran. Chem. Soc., 2014, 11, 685-692.
[http://dx.doi.org/10.1007/s13738-013-0340-3]
[99]
Bala, S.; Sharma, N.; Kajal, A.; Kamboj, S.; Saini, V. Mannich bases: An important pharmacophore in present scenario. Int. J. Med. Chem., 2014, 2014Article ID 191072
[http://dx.doi.org/10.1155/2014/191072] [PMID: 25478226]
[100]
Heravi, M.M.; Zadsirjan, V.; Bozorgpour Savadjani, Z. Applications of mannich reaction in total syntheses of natural products. Curr. Org. Synth., 2014, 18, 2287-2891.
[101]
Córdova, A. The direct catalytic asymmetric mannich reaction. Acc. Chem. Res., 2004, 37(2), 102-112.
[http://dx.doi.org/10.1021/ar030231l] [PMID: 14967057]
[102]
Cummings, T.F.; Shelton, J.R. Mannich Reaction mechanisms. J. Org. Chem., 1960, 25, 419-423.
[http://dx.doi.org/10.1021/jo01073a029]
[103]
Wang, H.; Yan, J.F.; Song, X.L.; Fan, L.; Xu, J.; Zhou, G.M.; Jiang, L.; Yang, D.C. Synthesis and antidiabetic performance of β-amino ketone containing nabumetone moiety. Bioorg. Med. Chem., 2012, 20(6), 2119-2130.
[http://dx.doi.org/10.1016/j.bmc.2012.01.028] [PMID: 22364952]
[104]
Petrović, V.P.; Simijonović, D.; Živanović, M.N.; Košarić, J.V.; Petrović, Z.D.; Marković, S.; Marković, S.D. Vanillic mannich bases: Synthesis and screening of biological activity. mechanistic insight into the reaction with 4-chloroaniline. RSC Advances, 2014, 4, 24635-24644.
[http://dx.doi.org/10.1039/C4RA03909B]
[105]
Bae, H.Y.; Kim, M.J.; Sim, J.H.; Song, C.E. Direct catalytic asymmetric mannich reaction with dithiomalonates as excellent mannich donors: Organocatalytic synthesis of (R)-sitagliptin. Angew. Chem. Int. Ed. Engl., 2016, 55(36), 10825-10829.
[http://dx.doi.org/10.1002/anie.201605167] [PMID: 27486059]
[106]
Ramozzi, R.; Chéron, N.; Braïda, B.; Hiberty, P.C.; Fleurat-Lessard, P. A valence bond view of isocyanides’ electronic structure. New J. Chem., 2012, 36, 1137.
[http://dx.doi.org/10.1039/c2nj40050b]
[107]
Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. Isonitrile syntheses. Angew. Chem. Int. Ed. Engl., 1965, 4, 472-484.
[http://dx.doi.org/10.1002/anie.196504721]
[108]
Qiu, G.; Ding, Q.; Wu, J. Recent advances in isocyanide insertion chemistry. Chem. Soc. Rev., 2013, 42(12), 5257-5269.
[http://dx.doi.org/10.1039/c3cs35507a] [PMID: 23456037]
[109]
Reza Kazemizadeh, A.; Ramazani, A. Synthetic applications of passerini reaction. Curr. Org. Chem., 2012, 16, 418-450.
[http://dx.doi.org/10.2174/138527212799499868]
[110]
Baker, R.H.; Stanonis, D. The Passerini Reaction. III. Stereochemistry and Mechanism 1,2. J. Am. Chem. Soc., 1951, 73, 699-702.
[http://dx.doi.org/10.1021/ja01146a060]
[111]
Moran, E.J.; Armstrong, R.W. Highly convergent approach to the synthesis of the epoxy-amide fragment of the azinomycins. Tetrahedron Lett., 1991, 32, 3807-3810.
[http://dx.doi.org/10.1016/S0040-4039(00)79381-6]
[112]
Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res., 1996, 29, 123-131.
[http://dx.doi.org/10.1021/ar9502083]
[113]
Falck, J.R.; Manna, S. An intramolecular passerini reaction: synthesis of hydrastine. Tetrahedron Lett., 1981, 22, 619-620.
[http://dx.doi.org/10.1016/S0040-4039(01)92504-3]
[114]
Wang, Z. Bucherer-Bergs Hydantoin Synthesis. In: Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
[http://dx.doi.org/10.1002/9780470638859.conrr122]
[115]
Monteiro, J.; Pieber, B.; Corrêa, A.; Kappe, C. Continuous synthesis of hydantoins: Intensifying the Bucherer-Bergs Reaction. Synlett, 2015, 27, 83-87.
[http://dx.doi.org/10.1055/s-0035-1560317]
[116]
Ware, E. The chemistry of the hydantoins. Chem. Rev., 1950, 46(3), 403-470.
[http://dx.doi.org/10.1021/cr60145a001] [PMID: 24537833]
[117]
Taillades, J.; Rousset, A.; Lasperas, M.; Commeyras, A. Mécanisme de La réaction de bucherer-bergs. Comparaison avec l’hydratation basique des aminonitriles. Bull. Soc. Chim. Fr., 1986, 4, 650-658.
[118]
Handzlik, J.; Bojarski, A.J.; Satała, G.; Kubacka, M.; Sadek, B.; Ashoor, A.; Siwek, A.; Więcek, M.; Kucwaj, K.; Filipek, B.; Kieć-Kononowicz, K. SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT(7) receptor ligands among phenylpiperazine hydantoin derivatives. Eur. J. Med. Chem., 2014, 78, 324-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.065] [PMID: 24691057]
[119]
Koura, M.; Matsuda, T.; Okuda, A.; Watanabe, Y.; Yamaguchi, Y.; Kurobuchi, S.; Matsumoto, Y.; Shibuya, K. Design, synthesis and pharmacology of 1,1-bistrifluoromethylcarbinol derivatives as liver X receptor β-selective agonists. Bioorg. Med. Chem. Lett., 2015, 25(13), 2668-2674.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.080] [PMID: 25998501]
[120]
Thomas, A.A.; Hunt, K.W.; Volgraf, M.; Watts, R.J.; Liu, X.; Vigers, G.; Smith, D.; Sammond, D.; Tang, T.P.; Rhodes, S.P.; Metcalf, A.T.; Brown, K.D.; Otten, J.N.; Burkard, M.; Cox, A.A.; Do, M.K.G.; Dutcher, D.; Rana, S.; DeLisle, R.K.; Regal, K.; Wright, A.D.; Groneberg, R.; Scearce-Levie, K.; Siu, M.; Purkey, H.E.; Lyssikatos, J.P.; Gunawardana, I.W. Discovery of 7-tetrahydropyran-2-yl chromans: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors that reduce amyloid β-protein (Aβ) in the central nervous system. J. Med. Chem., 2014, 57(3), 878-902.
[http://dx.doi.org/10.1021/jm401635n] [PMID: 24397738]
[121]
Fields, E.K. The Synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc., 1952, 74, 1528-1531.
[http://dx.doi.org/10.1021/ja01126a054]
[122]
Pettersen, D.; Marcolini, M.; Bernardi, L.; Fini, F.; Herrera, R.P.; Sgarzani, V.; Ricci, A. Direct access to enantiomerically enriched α-amino phosphonic acid derivatives by organocatalytic asymmetric hydrophosphonylation of imines. J. Org. Chem., 2006, 71(16), 6269-6272.
[http://dx.doi.org/10.1021/jo060708h] [PMID: 16872218]
[123]
Cheng, X.; Goddard, R.; Buth, G.; List, B. Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Angew. Chem. Int. Ed. Engl., 2008, 47(27), 5079-5081.
[http://dx.doi.org/10.1002/anie.200801173] [PMID: 18512858]
[124]
Joly, G.D.; Jacobsen, E.N. Thiourea-catalyzed enantioselective hydrophosphonylation of imines: practical access to enantiomerically enriched α-amino phosphonic acids. J. Am. Chem. Soc., 2004, 126(13), 4102-4103.
[http://dx.doi.org/10.1021/ja0494398] [PMID: 15053588]
[125]
Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R. Catalytic asymmetric synthesis of α-amino phosphonates using enantioselective carbon-carbon bond-forming reactions. J. Am. Chem. Soc., 2004, 126(21), 6558-6559.
[http://dx.doi.org/10.1021/ja048791i] [PMID: 15161276]
[126]
Cherkasov, R.A.; Galkin, V.I. The Kabachnik-Fields Reaction: Synthetic potential and the problem of the mechanism. Russ. Chem. Rev., 1998, 67, 857-882.
[http://dx.doi.org/10.1070/RC1998v067n10ABEH000421]
[127]
Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: Mechanism and synthetic use. Molecules, 2012, 17(11), 12821-12835.
[http://dx.doi.org/10.3390/molecules171112821] [PMID: 23117425]
[128]
Prasad, S.S.; Kumar, K.S.; Jayaprakash, S.H.; Krishna, B.S.; Sundar, C.S.; Rao, P.V.; Babu, T.M.; Rajendra, W.; Reddy, C.S. Design, synthesis, antioxidant, and anti-breast cancer activities of novel diethyl(alkyl/aryl/heteroarylamino)(4-(pyridin-2-yl)phenyl)methylphosphonates. Arch. Pharm. (Weinheim), 2013, 346(5), 380-391.
[http://dx.doi.org/10.1002/ardp.201300032] [PMID: 23589377]
[129]
Borsea, A.U.; Patila, N.L.; Patila, M.N.; Malib, R.S. Efficient one pot, three-component synthesis of new α-aminophosphonates and investigation of their antimicrobial activity. Der Pharma Chem., 2016, 8, 256-261.
[130]
Dayalan, V.M.; Arthanareeswari, M.; Kamaraj, P.; Kumar, B.S. One pot synthesis, characterisation and antimicrobial activity of α- amino phosphonates. Chem. Sci. Trans., 2013, 2(S1), S167-S172.
[131]
Abdou, W.M.; Barghash, R.F.; Khidre, R.E. Antineoplastic activity of fused nitrogen-phosphorus heterocycles and derived phosphonates. Monatshefte für Chemie -. Chem. Mon., 2013, 144, 1233-1242.
[132]
Weigert, W.M.; Offermanns, H.; Scherberich, P. D-penicillamine--production and properties. Angew. Chem. Int. Ed. Engl., 1975, 14(5), 330-336.
[http://dx.doi.org/10.1002/anie.197503301] [PMID: 808979]
[133]
Asinger, F.; Thiel, M. Einfache synthesen und chemisches verhalten neuer heterocyclischer ringsysteme. Angew. Chem., 1958, 70, 667-683.
[134]
Asinger, F.; Offermanns, H. Syntheses with ketones, sulfur, and ammonia or amines at room temperature. Angew. Chem. Int. Ed. Engl., 1967, 6, 907-919.
[http://dx.doi.org/10.1002/anie.196709071]
[135]
Martens, J.; Offermanns, H.; Scherberich, P. Einfache synthese von racemischem cystein. Angew. Chem., 1981, 93, 680-683.
[http://dx.doi.org/10.1002/ange.19810930808]
[136]
Liu, Z-Q. Two neglected multicomponent reactions: Asinger and groebke reaction for constructing thiazolines and imidazolines. Curr. Org. Synth., 2015, 12, 20-60.
[http://dx.doi.org/10.2174/1570179411999141112144441]
[138]
Zumbrägel, N.; Wagner, K.; Weißing, N.; Gröger, H. Biocatalytic reduction of 2-monosubstituted 3-thiazolines using imine reductases. J. Heterocycl. Chem., 2019.
[http://dx.doi.org/10.1002/jhet.3437]
[139]
Zumbrägel, N.; Gröger, H. One-pot synthesis of a 3-thiazolidine through combination of an Asinger-type multi-component-condensation reaction with an enzymatic imine reduction. J. Biotechnol., 2019, 291, 35-40.
[http://dx.doi.org/10.1016/j.jbiotec.2018.12.009] [PMID: 30579889]
[140]
Dömling, A. The discovery of new isocyanide-based multi-component reactions. Curr. Opin. Chem. Biol., 2000, 4(3), 318-323.
[http://dx.doi.org/10.1016/S1367-5931(00)00095-8] [PMID: 10826976]
[141]
Monfardini, I.; Huang, J-W.; Beck, B.; Cellitti, J.F.; Pellecchia, M.; Dömling, A. Screening multicomponent reactions for X-linked inhibitor of apoptosis-baculoviral inhibitor of apoptosis protein repeats domain binder. J. Med. Chem., 2011, 54(3), 890-900.
[http://dx.doi.org/10.1021/jm101341m] [PMID: 21241056]
[142]
Schlüter, T.; Frerichs, N.; Schmidtmann, M.; Martens, J. Consecutive multicomponent reactions: Synthesis of 3-acyl-4-alkynyl-substituted 1,3-thiazolidines. Synthesis (Stuttg), 2018, 50, 1123-1132.
[http://dx.doi.org/10.1055/s-0036-1591873]
[143]
Rainoldi, G.; Begnini, F.; de Munnik, M.; Lo Presti, L.; Vande Velde, C.M.L.; Orru, R.; Lesma, G.; Ruijter, E.; Silvani, A. Sequential multicomponent strategy for the diastereoselective synthesis of densely functionalized spirooxindole-fused thiazolidines. ACS Comb. Sci., 2018.
[http://dx.doi.org/10.1021/acscombsci.7b00179]
[144]
Chandgude, A.L.; Narducci, D.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes. RSC Advances, 2017, 7(79), 49995-49998.
[http://dx.doi.org/10.1039/C7RA07392E] [PMID: 29430295]
[145]
Kröger, D.; Franz, M.; Schmidtmann, M.; Martens, J. Sequential multicomponent reactions and a Cu-mediated rearrangement: diastereoselective synthesis of tricyclic ketones. Org. Lett., 2015, 17(23), 5866-5869.
[http://dx.doi.org/10.1021/acs.orglett.5b03057] [PMID: 26571048]
[146]
Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73, 187-191.
[http://dx.doi.org/10.1351/pac200173010187]
[147]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE31 68>3.0.CO;2-U] [PMID: 11028061]
[148]
Barreto, A. de F.S.; Vercillo, O.E.; Wessjohann, L.A.; Andrade, C.K.Z. Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein J. Org. Chem., 2014, 10, 1017-1022.
[http://dx.doi.org/10.3762/bjoc.10.101] [PMID: 24991252]
[149]
Ugi, I.; Offermann, K. Asymmetric 1,3-induction during the? -addition of immonium ions and carboxylate anions onto isonitriles. Angew. Chem. Int. Ed. Engl., 1963, 2, 624-624.
[http://dx.doi.org/10.1002/anie.196306241]
[150]
Iacobucci, C.; Reale, S.; Gal, J-F.; De Angelis, F. Insight into the mechanisms of the multicomponent ugi and ugi-smiles reactions by ESI-MS(/MS). Eur. J. Org. Chem., 2014, 2014, 7087-7090.
[http://dx.doi.org/10.1002/ejoc.201403179]
[151]
Dolle, R.E.; Le Bourdonnec, B.; Morales, G.A.; Moriarty, K.J.; Salvino, J.M. Comprehensive survey of combinatorial library synthesis: 2005. J. Comb. Chem., 2006, 8(5), 597-635.
[http://dx.doi.org/10.1021/cc060095m] [PMID: 16961395]
[152]
La Spisa, F.; Feo, A.; Mossetti, R.; Tron, G.C. An efficient synthesis of symmetric and unsymmetric bis-(β-aminoamides) via Ugi multicomponent reaction. Org. Lett., 2012, 14(23), 6044-6047.
[http://dx.doi.org/10.1021/ol302935y] [PMID: 23150900]
[153]
Liu, H.; William, S.; Herdtweck, E.; Botros, S.; Dömling, A. MCR synthesis of praziquantel derivatives. Chem. Biol. Drug Des., 2012, 79(4), 470-477.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01288.x] [PMID: 22151001]
[154]
Rossen, K.; Pye, P.J.; DiMichele, L.M.; Volante, R.P.; Reider, P.J. An efficient asymmetric hydrogenation approach to the synthesis of the crixivan® piperazine intermediate. Tetrahedron Lett., 1998, 39, 6823-6826.
[http://dx.doi.org/10.1016/S0040-4039(98)01484-1]
[155]
Znabet, A.; Polak, M.M.; Janssen, E.; de Kanter, F.J.J.; Turner, N.J.; Orru, R.V.A.; Ruijter, E. A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem. Commun. (Camb.), 2010, 46(42), 7918-7920.
[http://dx.doi.org/10.1039/c0cc02823a] [PMID: 20856952]
[156]
Wehlan, H.; Oehme, J.; Schäfer, A.; Rossen, K. Development of scalable conditions for the Ugi reaction—application to the synthesis of (R)-. Lacosamide. Org. Process Res. Dev., 2015, 19, 1980-1986.
[http://dx.doi.org/10.1021/acs.oprd.5b00228]
[157]
Cioc, R.; Schaepkens van Riempst, L.; Schuckman, P.; Ruijter, E.; Orru, R. Ugi four-center three-component reaction as a direct approach to racetams. Synthesis (Stuttg), 2016, 49, 1664-1674.
[http://dx.doi.org/10.1055/s-0036-1588672]
[158]
Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[159]
Puterová, Z.; Krutosiková, A.; Végh, D. Gewald reaction: Synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, 2010, 209.
[http://dx.doi.org/10.3998/ark.5550190.0011.105]
[160]
Peet, N.P.; Sunder, S.; Barbuch, R.J.; Vinogradoff, A.P. Mechanistic observations in the gewald syntheses of 2-aminothiophenes. J. Heterocycl. Chem., 1986, 23, 129-134.
[http://dx.doi.org/10.1002/jhet.5570230126]
[161]
Tinsley, J.M. Gewald Aminothiophene Synthesis. In: Name Reactions in Heterocyclic Chemistry; Wiley-Blackwell: New York, 2015; pp. 193-198.
[162]
Chakrabarti, J.K.; Hotten, T.M.; Tupper, D.E. Process for preparing 2- methyl-thieno-benzodiazepine. US Patent US6008216., 1998.
[163]
Thomas, J.; Jana, S.; Sonawane, M.; Fiey, B.; Balzarini, J.; Liekens, S.; Dehaen, W. A new four-component reaction involving the Michael addition and the Gewald reaction, leading to diverse biologically active 2-aminothiophenes. Org. Biomol. Chem., 2017, 15(18), 3892-3900.
[http://dx.doi.org/10.1039/C7OB00707H] [PMID: 28443928]
[164]
Podolin, P.L. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of I B kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and ant. J. Pharmacol. Exp. Ther., 2004, 312, 373-381.
[http://dx.doi.org/10.1124/jpet.104.074484] [PMID: 15316093]
[165]
Wang, X.; Chen, D.; Yu, S.; Zhang, Z.; Wang, Y.; Qi, X.; Fu, W.; Xie, Z.; Ye, F. Synthesis and evaluation of biological and antitumor activities of tetrahydrobenzothieno[2,3-d]pyrimidine derivatives as novel inhibitors of FGFR1. Chem. Biol. Drug Des., 2016, 87(4), 499-507.
[http://dx.doi.org/10.1111/cbdd.12687] [PMID: 26575787]
[166]
Kim, D.; Huang, Y.; Wang, K.; Dömling, A. New macrocycles with potent antituberculosis activity accessed by one-pot multicomponent reactions. Chem. Heterocycl. Compd., 2013, 49, 849-859.
[http://dx.doi.org/10.1007/s10593-013-1319-9]
[167]
Titchenell, P.M.; Showalter, H.D.; Pons, J-F.; Barber, A.J.; Jin, Y.; Antonetti, D.A. Synthesis and structure-activity relationships of 2-amino-3-carboxy-4-phenylthiophenes as novel atypical protein kinase C inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(10), 3034-3038.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.019] [PMID: 23566515]
[168]
Nakhi, A.; Adepu, R.; Rambabu, D.; Kishore, R.; Vanaja, G.R.; Kalle, A.M.; Pal, M. Thieno[3,2-c]pyran-4-one based novel small molecules: Their synthesis, crystal structure analysis and in vitro evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(13), 4418-4427.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.109] [PMID: 22632935]
[169]
Valant, C.; Aurelio, L.; Devine, S.M.; Ashton, T.D.; White, J.M.; Sexton, P.M.; Christopoulos, A.; Scammells, P.J. Synthesis and characterization of novel 2-amino-3-benzoylthiophene derivatives as biased allosteric agonists and modulators of the adenosine A(1) receptor. J. Med. Chem., 2012, 55(5), 2367-2375.
[http://dx.doi.org/10.1021/jm201600e] [PMID: 22315963]
[170]
Aly, H.M.; Saleh, N.M.; Elhady, H.A. Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents. Eur. J. Med. Chem., 2011, 46(9), 4566-4572.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.035] [PMID: 21840088]
[171]
Huang, Y.; Wolf, S.; Bista, M.; Meireles, L.; Camacho, C.; Holak, T.A.; Dömling, A. 1,4-Thienodiazepine-2,5-diones via MCR (I): synthesis, virtual space and p53-Mdm2 activity. Chem. Biol. Drug Des., 2010, 76(2), 116-129.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00989.x] [PMID: 20492448]
[172]
Balamurugan, K.; Perumal, S.; Reddy, A.S.K.; Yogeeswari, P.; Sriram, D. A facile domino protocol for the regioselective synthesis and discovery of novel 2-amino-5-arylthieno-[2,3-b]thiophenes as antimycobacterial agents. Tetrahedron Lett., 2009, 50, 6191-6195.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.085]
[173]
Vaghasiya, S.J.; Dodiya, D.K.; Trivedi, A.R.; Shah, V.H. Synthesis and biological screening of some novel pyrazolo[3′,4′:4,5]thieno[2,3-d]pyrimidin-8-ones via Gewald reaction. ARKIVOC, 2008, 2008, 1.
[http://dx.doi.org/10.3998/ark.5550190.0009.c01]
[174]
Deng, Y.; Zhou, X.; Kugel Desmoulin, S.; Wu, J.; Cherian, C.; Hou, Z.; Matherly, L.H.; Gangjee, A. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J. Med. Chem., 2009, 52(9), 2940-2951.
[http://dx.doi.org/10.1021/jm8011323] [PMID: 19371039]
[175]
Grieco, P.A.; Bahsas, A. Role reversal in the cyclocondensation of cyclopentadiene with heterodienophiles derived from aryl amines and aldehydes: synthesis of novel tetrahydroquinolines. Tetrahedron Lett., 1988, 29, 5855-5858.
[http://dx.doi.org/10.1016/S0040-4039(00)82208-X]
[176]
Li, J.J. Povarov Reaction. In: Name Reactions; Springer International Publishing: Cham, 2014; pp. 493-494.
[http://dx.doi.org/10.1007/978-3-319-03979-4_221]
[177]
Povarov, L.S. A β-unsaturated ethers and their analogues in reactions of diene synthesis. Russ. Chem. Rev., 1967, 36, 656-670.
[http://dx.doi.org/10.1070/RC1967v036n09ABEH001680]
[178]
Li, X.; Xing, Q.; Li, P.; Zhao, J.; Li, F. Three-component povarov reaction with alcohols as alkene precursors: efficient access to 2-arylquinolines. Eur. J. Org. Chem., 2017, 2017, 618-625.
[http://dx.doi.org/10.1002/ejoc.201601343]
[179]
Kobayashi, S.; Ishitani, H.; Nagayama, S. Lanthanide triflate catalyzed imino diels-alder reactions; convenient syntheses of pyridine and quinoline derivatives. Synthesis (Stuttg), 1995, 1995, 1195-1202.
[http://dx.doi.org/10.1055/s-1995-4066]
[180]
Crousse, B.; Bégué, J-P.; Bonnet-Delpon, D. Synthesis of 2-CF(3)-tetrahydroquinoline and quinoline derivatives from CF(3)-N-aryl-aldimine. J. Org. Chem., 2000, 65(16), 5009-5013.
[http://dx.doi.org/10.1021/jo9918807] [PMID: 10956485]
[181]
Kobayashi, S.; Nagayama, S. A new methodology for combinatorial synthesis. preparation of diverse quinoline derivatives using a novel polymer-supported scandium catalyst. J. Am. Chem. Soc., 1996, 118, 8977-8978.
[http://dx.doi.org/10.1021/ja961062l]
[182]
Yakaiah, T.; Lingaiah, B.P.V.; Narsaiah, B.; Kumar, K.P.; Murthy, U.S.N. GdCl(3) catalysed Grieco condensation: a facile approach for the synthesis of novel pyrimidine and annulated pyrimidine fused indazole derivatives in single pot under mild conditions and their anti-microbial activity. Eur. J. Med. Chem., 2008, 43(2), 341-347.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.031] [PMID: 17521778]
[183]
Yakaiah, T.; Kurumurthy, C.; Lingaiah, B.P.V.; Narsaiah, B.; Pamanji, R.; Velatooru, L.R.; Venkateswara Rao, J.; Gururaj, S.; Parthasarathy, T.; Sridhar, B. GdCl3 promoted synthesis of novel pyrimidine fused indazole derivatives and their anticancer activity. Med. Chem. Res., 2012, 21, 4261-4273.
[http://dx.doi.org/10.1007/s00044-011-9962-0]
[184]
Nagata, N.; Miyakawa, M.; Amano, S.; Furuya, K.; Yamamoto, N.; Nejishima, H.; Inoguchi, K. Tetrahydroquinolines as a novel series of nonsteroidal selective androgen receptor modulators: Structural requirements for better physicochemical and biological properties. Bioorg. Med. Chem. Lett., 2011, 21(21), 6310-6313.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.118] [PMID: 21944856]
[185]
Nagata, N.; Miyakawa, M.; Amano, S.; Furuya, K.; Yamamoto, N.; Inoguchi, K. Design and synthesis of tricyclic tetrahydroquinolines as a new series of nonsteroidal selective androgen receptor modulators (SARMs). Bioorg. Med. Chem. Lett., 2011, 21(6), 1744-1747.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.073] [PMID: 21349712]
[186]
Nagata, N.; Furuya, K.; Oguro, N.; Nishiyama, D.; Kawai, K.; Yamamoto, N.; Ohyabu, Y.; Satsukawa, M.; Miyakawa, M. Lead evaluation of tetrahydroquinolines as nonsteroidal selective androgen receptor modulators for the treatment of osteoporosis. ChemMedChem, 2014, 9(1), 197-206.
[http://dx.doi.org/10.1002/cmdc.201300348] [PMID: 24273094]
[187]
Gore, V.K.; Ma, V.V.; Yin, R.; Ligutti, J.; Immke, D.; Doherty, E.M.; Norman, M.H. Structure-activity relationship (SAR) investigations of tetrahydroquinolines as BKCa agonists. Bioorg. Med. Chem. Lett., 2010, 20(12), 3573-3578.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.125] [PMID: 20493696]
[188]
Wolfgang Staehle. Bruge, D.; Schiemann, K.; Finsinger, D.; Buchstaller, H.-P.; Zenke, F.; Amendt, C. Structure-activity relationship (SAR) investigations of tetrahydroquinolines as BKCa agonists. Bioorg. Med. Chem. Lett., 2006, 20(12), 3573-3578.
[189]
Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction. Chem. Rev., 2010, 110(10), 6169-6193.
[http://dx.doi.org/10.1021/cr100108k] [PMID: 20677749]
[190]
Candeias, N.R.; Cal, P.M.S.D.; André, V.; Duarte, M.T.; Veiros, L.F.; Gois, P.M.P. Water as the Reaction medium for multicomponent reactions based on boronic acids. Tetrahedron, 2010, 66, 2736-2745.
[http://dx.doi.org/10.1016/j.tet.2010.01.084]
[191]
Petasis, N.A. Multicomponent Reactions with Organoboron Compounds. In: Multicomponent Reactions; Wiley-VCH Verlag GmbH & Co.: KGaA: Weinheim, FRG. , 2005; pp. 199-223.
[http://dx.doi.org/10.1002/3527605118.ch7]
[192]
Kelemen, Á.A.; Szabó, B.P.; Kovács, P.; Keserű, G.M. The first synthesis of furo[2,3-c]pyridazin-4(1H)-one derivatives. Tetrahedron Lett., 2016, 57, 64-66.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.068]
[193]
Schlienger, N.; Bryce, M.R.; Hansen, T.K. The boronic mannich reaction in a solid-phase approach. Tetrahedron, 2000, 56, 10023-10030.
[http://dx.doi.org/10.1016/S0040-4020(00)00957-1]
[194]
Zhangyong, H.; Zeming, C.; Kui, Y.; Jin, W. Novel method for synthesis of anti-influenza medicament zanamivir. chinese patent CN104744415A 2013.
[195]
Sugiyama, S.; Arai, S.; Kiriyama, M.; Ishii, K. A convenient synthesis of immunosuppressive agent FTY720 using the petasis reaction. Chem. Pharm. Bull. (Tokyo), 2005, 53(1), 100-102.
[http://dx.doi.org/10.1248/cpb.53.100] [PMID: 15635240]
[196]
Shaaban, S.; Abdel-Wahab, B.F. Groebke-Blackburn-Bienaymé multicomponent reaction: Emerging chemistry for drug discovery. Mol. Divers., 2016, 20(1), 233-254.
[http://dx.doi.org/10.1007/s11030-015-9602-6] [PMID: 26016721]
[197]
Hulme, C.; Lee, Y-S. Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol. Divers., 2008, 12(1), 1-15.
[http://dx.doi.org/10.1007/s11030-008-9072-1] [PMID: 18409015]
[198]
Parenty, A.D.C.; Song, Y-F.; Richmond, C.J.; Cronin, L. A general and efficient five-step one-pot procedure leading to nitrogen-bridgehead heterocycles containing an imidazole ring. Org. Lett., 2007, 9(12), 2253-2256.
[http://dx.doi.org/10.1021/ol070263z] [PMID: 17500559]
[199]
Mahdavi, M.; Dianat, S.; Khavari, B.; Moghimi, S.; Abdollahi, M.; Safavi, M.; Mouradzadegun, A.; Kabudanian Ardestani, S.; Sabourian, R.; Emami, S.; Akbarzadeh, T.; Shafiee, A.; Foroumadi, A. Synthesis and biological evaluation of novel imidazopyrimidin-3-amines as anticancer agents. Chem. Biol. Drug Des., 2017, 89(5), 797-805.
[http://dx.doi.org/10.1111/cbdd.12904] [PMID: 27860301]
[200]
Sashidhara, K.V.; Singh, L.R.; Choudhary, D.; Arun, A.; Gupta, S.; Adhikary, S.; Palnati, G.R.; Konwar, R.; Trivedi, R. Design, synthesis and in vitro evaluation of coumarin-imidazo[1,2-a]pyridine derivatives against cancer induced osteoporosis. RSC Advances, 2016, 6, 80037-80048.
[http://dx.doi.org/10.1039/C6RA15674F]
[201]
Chen, J-F.; Liu, Z-Q. Synthesis of imidazo[1,2-a]quinoxalines by double groebke reactions and inhibitory effects on radicals and DNA oxidation. Tetrahedron, 2016, 72, 1850-1859.
[http://dx.doi.org/10.1016/j.tet.2016.02.042]
[202]
Salunke, D.B.; Yoo, E.; Shukla, N.M.; Balakrishna, R.; Malladi, S.S.; Serafin, K.J.; Day, V.W.; Wang, X.; David, S.A. Structure-activity relationships in human toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J. Med. Chem., 2012, 55(18), 8137-8151.
[http://dx.doi.org/10.1021/jm301066h] [PMID: 22924757]
[203]
Semreen, M.H.; El-Awady, R.; Abu-Odeh, R.; Saber-Ayad, M.; Al-Qawasmeh, R.A.; Chouaib, S.; Voelter, W.; Al-Tel, T.H. Tandem multicomponent reactions toward the design and synthesis of novel antibacterial and cytotoxic motifs. Curr. Med. Chem., 2013, 20(11), 1445-1459.
[http://dx.doi.org/10.2174/0929867311320110007] [PMID: 23409711]
[204]
Zhou, H.; Wang, W.; Khorev, O.; Zhang, Y.; Miao, Z.; Meng, T.; Shen, J. Three-component, one-pot sequential synthesis of tetracyclic Pyrido[2′,1′:2,3]imidazo[5,1- a ]isoquinolinium compounds as potent anticancer agents. Eur. J. Org. Chem., 2012, 2012, 5585-5594.
[http://dx.doi.org/10.1002/ejoc.201200542]
[205]
Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Antibacterial activities of Groebke-Blackburn-Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg. Med. Chem., 2012, 20(19), 5850-5863.
[http://dx.doi.org/10.1016/j.bmc.2012.07.052] [PMID: 22925449]
[206]
Al-Tel, T.H.; Al-Qawasmeh, R.A. Post Groebke-Blackburn multicomponent protocol: synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(12), 5848-5855.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.049] [PMID: 20934788]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy