Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Systematic Review Article

Medicinal Plants with anti-Acanthamoeba Activity: A Systematic Review

Author(s): Tooran Nayeri Chegeni, Mahdi Fakhar*, Fatemeh Ghaffarifar * and Reza Saberi

Volume 20, Issue 5, 2020

Page: [620 - 650] Pages: 31

DOI: 10.2174/1871526519666190716095849

Price: $65

Abstract

Background: Recently, herbal medicine has received much attention in the literature. Several essential oils or plant extracts have been found to have anti-Acanthamoeba properties against trophozoites and cysts of Acanthamoeba spp.

Objective: The aim of this systematic review is to introduce anti-Acanthamoeba properties of some essential oils or plant extracts; perhaps the results of this research will be used to prevent and treat infectious diseases.

Methods: All published papers in English and Persian databases were systematically searched for some specific keywords to find articles that have influenced plant compounds on Acanthamoeba up to April 2018. Articles related to the subject were selected and studied.

Results: A total of 51 articles including 136 experiments (128 in vitro and 8 in vivo) between 1999 and 2018, met our eligibility criteria. Totally, 110 species of plants belonging to 34 families, mainly Lamiaceae (15 plant species) and Asteraceae (13 plant species) were studied against trophozoites and cysts of Acanthamoba in in vitro and in vivo. Most of the plant's species were Citrus (6 species), Allium (5 species), Peucedanum, Piper, Lippia, and Olive (4 species). The most frequently used parts were leaves, aerial parts, flowers, bark, rhizomes, and seeds.

Conclusions: Recent studies have shown that many natural compounds have high anti-parasitic properties and low toxicity. Our research team hopes that the information provided in present systematic review can improve new experimental and clinical trials and herbal combination therapy. Further studies are needed to understand the molecular mechanisms in the anti-amoebic reactions of plant species and ocular toxicity of extracts in animal models.

Keywords: Acanthamoeba, medicinal plants, complementary medicine, systematic review, lamiaceae, asteraceae.

[1]
Johnston, S.P.; Sriram, R.; Qvarnstrom, Y.; Roy, S.; Verani, J.; Yoder, J.; Lorick, S.; Roberts, J.; Beach, M.J.; Visvesvara, G. Resistance of Acanthamoeba cysts to disinfection in multiple contact lens solutions. J. Clin. Microbiol., 2009, 47(7), 2040-2045.
[http://dx.doi.org/10.1128/JCM.00575-09] [PMID: 19403771]
[2]
Niyyati, M.; Lorenzo-Morales, J.; Rahimi, F.; Motevalli-Haghi, A.; Martín-Navarro, C.M.; Farnia, S.; Valladares, B.; Rezaeian, M. Isolation and genotyping of potentially pathogenic Acanthamoeba strains from dust sources in Iran. Trans. R. Soc. Trop. Med. Hyg., 2009, 103(4), 425-427.
[http://dx.doi.org/10.1016/j.trstmh.2008.12.007] [PMID: 19185896]
[3]
Visvesvara, GS Free-living pathogenic amoebae. Free-living pathogenic amoebae 1980, 704-708.
[4]
Schroeder, J.M.; Booton, G.C.; Hay, J.; Niszl, I.A.; Seal, D.V.; Markus, M.B.; Fuerst, P.A.; Byers, T.J. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of acanthamoebae from humans with keratitis and from sewage sludge. J. Clin. Microbiol., 2001, 39(5), 1903-1911.
[http://dx.doi.org/10.1128/JCM.39.5.1903-1911.2001] [PMID: 11326011]
[5]
Clarke, D.W.; Niederkorn, J.Y. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol., 2006, 22(4), 175-180.
[http://dx.doi.org/10.1016/j.pt.2006.02.004] [PMID: 16500148]
[6]
Martinez, A.J. Free-living amoebas; natural history, prevention, diagnosis, pathology and treatment of disease; Crc Press, 1985.
[7]
Parmar, D.N.; Awwad, S.T.; Petroll, W.M.; Bowman, R.W.; McCulley, J.P.; Cavanagh, H.D. Tandem scanning confocal corneal microscopy in the diagnosis of suspected acanthamoeba keratitis. Ophthalmology, 2006, 113(4), 538-547.
[http://dx.doi.org/10.1016/j.ophtha.2005.12.022] [PMID: 16581415]
[8]
Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev., 2003, 16(2), 273-307.
[http://dx.doi.org/10.1128/CMR.16.2.273-307.2003] [PMID: 12692099]
[9]
Mahgoub, M.A. Acanthamoeba keratitis. Parasitol. United J., 2010, 3(1), 2.
[10]
Hammersmith, K.M. Diagnosis and management of Acanthamoeba keratitis. Curr. Opin. Ophthalmol., 2006, 17(4), 327-331.
[http://dx.doi.org/10.1097/01.icu.0000233949.56229.7d] [PMID: 16900022]
[11]
Derda, M.; Hadaś, E.; Cholewiński, M.; Skrzypczak, Ł.; Grzondziel, A.; Wojtkowiak-Giera, A. Artemisia annua L. as a plant with potential use in the treatment of acanthamoebiasis. Parasitol. Res., 2016, 115(4), 1635-1639.
[http://dx.doi.org/10.1007/s00436-016-4902-z] [PMID: 26782959]
[12]
Kilvington, S.; Larkin, D.F.; White, D.G.; Beeching, J.R. Laboratory investigation of Acanthamoeba keratitis. J. Clin. Microbiol., 1990, 28(12), 2722-2725.
[http://dx.doi.org/10.1128/JCM.28.12.2722-2725.1990] [PMID: 1980681]
[13]
El-Sayed, N.M.; Ismail, K.A.; Ahmed, S.A.; Hetta, M.H. In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts. Parasitol. Res., 2012, 110(5), 1985-1992.
[http://dx.doi.org/10.1007/s00436-011-2727-3] [PMID: 22146994]
[14]
Hadaś, E.; Derda, M.; Cholewiński, M. Evaluation of the effectiveness of tea tree oil in treatment of Acanthamoeba infection. Parasitol. Res., 2017, 116(3), 997-1001.
[http://dx.doi.org/10.1007/s00436-017-5377-2] [PMID: 28124137]
[15]
Niyyati, M.; Dodangeh, S.; Lorenzo-Morales, J. A review of the current research trends in the application of medicinal plants as a source for novel therapeutic agents against Acanthamoeba infections. Iran. J. Pharm. Res., 2016, 15(4), 893-900.
[PMID: 28243287]
[16]
Pinna, A.; Porcu, T.; Boscia, F.; Cano, A.; Erre, G.; Mattana, A. Free-living amoebae keratitis. Cornea, 2017, 36(7), 785-790.
[http://dx.doi.org/10.1097/ICO.0000000000001226] [PMID: 28486311]
[17]
Visvesvara, G.S.; Schuster, F.L. Opportunistic Free-living Amebae, Part I1. Clin. Microbiol. Newsl., 2008, 30(20), 151-158.
[http://dx.doi.org/10.1016/j.clinmicnews.2008.09.004]
[18]
Obeid, W.N.; Araújo, R.D.; Vieira, L.A.; Machado, M.D. Ceratite bilateral por Acanthamoeba: relato de caso. Arq. Bras. Oftalmol., 2003, 66(6), 876-880.
[http://dx.doi.org/10.1590/S0004-27492003000700025]
[19]
Leitsch, D.; Köhsler, M.; Marchetti-Deschmann, M.; Deutsch, A.; Allmaier, G.; Duchêne, M.; Walochnik, J. Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot. Cell, 2010, 9(4), 611-618.
[http://dx.doi.org/10.1128/EC.00300-09] [PMID: 20190073]
[20]
Khan, N.A. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol. Rev., 2006, 30(4), 564-595.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00023.x] [PMID: 16774587]
[21]
Tepe, B.; Malatyali, E.; Degerli, S.; Berk, S. In vitro amoebicidal activities of Teucrium polium and T. chamaedrys on Acanthamoeba castellanii trophozoites and cysts. Parasitol. Res., 2012, 110(5), 1773-1778.
[http://dx.doi.org/10.1007/s00436-011-2698-4] [PMID: 22037826]
[22]
Kosrirukvongs, P.; Wanachiwanawin, D.; Visvesvara, G.S. Treatment of acanthamoeba keratitis with chlorhexidine. Ophthalmology, 1999, 106(4), 798-802.
[http://dx.doi.org/10.1016/S0161-6420(99)90169-0] [PMID: 10201605]
[23]
Uemura, T.; Hirai, S.; Mizoguchi, N.; Goto, T.; Lee, J.Y.; Taketani, K.; Nakano, Y.; Shono, J.; Hoshino, S.; Tsuge, N.; Narukami, T.; Takahashi, N.; Kawada, T. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol. Nutr. Food Res., 2010, 54(11), 1596-1608.
[http://dx.doi.org/10.1002/mnfr.200900609] [PMID: 20540147]
[24]
Hirano, K.; Sai, S. Severe Acanthamoeba sclerokeratitis in a non-contact lens wearer. Acta Ophthalmol. Scand., 1999, 77(3), 347-348.
[http://dx.doi.org/10.1034/j.1600-0420.1999.770321.x] [PMID: 10406160]
[25]
Kumar, R.; Lloyd, D. Recent advances in the treatment of Acanthamoeba keratitis. Clin. Infect. Dis., 2002, 35(4), 434-441.
[http://dx.doi.org/10.1086/341487] [PMID: 12145728]
[26]
Shinwari, Z.K. Medicinal plants research in Pakistan. J. Med. Plants Res., 2010, 4(3), 161-176.
[27]
Vunda, S.L.; Sauter, I.P.; Cibulski, S.P.; Roehe, P.M.; Bordignon, S.A.; Rott, M.B.; Apel, M.A.; von Poser, G.L. Chemical composition and amoebicidal activity of Croton pallidulus, Croton ericoides, and Croton isabelli (Euphorbiaceae) essential oils. Parasitol. Res., 2012, 111(3), 961-966.
[http://dx.doi.org/10.1007/s00436-012-2918-6] [PMID: 22526294]
[28]
Malatyali, E.; Tepe, B.; Degerli, S.; Berk, S. In vitro amoebicidal activities of Satureja cuneifolia and Melissa officinalis on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(6), 2175-2180.
[http://dx.doi.org/10.1007/s00436-011-2744-2] [PMID: 22160280]
[29]
Wojtkowiak-Giera, A.; Derda, M.; Kosik-Bogacka, D.; Kolasa-Wołosiuk, A.; Solarczyk, P.; Cholewiński, M.; Wandurska-Nowak, E.; Jagodziński, P.P.; Hadaś, E. Influence of Artemisia annua L. on toll-like receptor expression in brain of mice infected with Acanthamoeba sp. Exp. Parasitol., 2018, 185, 17-22.
[http://dx.doi.org/10.1016/j.exppara.2018.01.008] [PMID: 29317241]
[30]
Kielian, T.; Esen, N.; Bearden, E.D. Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia, 2005, 49(4), 567-576.
[http://dx.doi.org/10.1002/glia.20144] [PMID: 15593098]
[31]
Leow-Dyke, S.; Allen, C.; Denes, A.; Nilsson, O.; Maysami, S.; Bowie, A.G.; Rothwell, N.J.; Pinteaux, E. Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J. Neuroinflammation, 2012, 9(1), 230.
[http://dx.doi.org/10.1186/1742-2094-9-230] [PMID: 23034047]
[32]
Ren, M.Y.; Wu, X.Y. Toll-like receptor 4 signalling pathway activation in a rat model of Acanthamoeba Keratitis. Parasite Immunol., 2011, 33(1), 25-33.
[http://dx.doi.org/10.1111/j.1365-3024.2010.01247.x] [PMID: 21155840]
[33]
Hunt, S.; Yoshida, M.; Davis, C.E.; Greenhill, N.S.; Davis, P.F. An extract of the medicinal plant Artemisia annua modulates production of inflammatory markers in activated neutrophils. J. Inflamm. Res., 2015, 8, 9-14.
[http://dx.doi.org/10.2147/JIR.S75484] [PMID: 25609991]
[34]
Wang, Y.; Huang, Z.; Wang, L.; Meng, S.; Fan, Y.; Chen, T.; Cao, J.; Jiang, R.; Wang, C. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes. Int. J. Mol. Med., 2011, 27(2), 233-241.
[http://dx.doi.org/10.3892/ijmm.2010.580] [PMID: 21165548]
[35]
Sanguan, S.; Wannasan, A.; Junkum, A.; Jitpakdi, A.; Riyong, D.; Champakaew, D.; Pitasawat, B. Screening for in vitro amoebicidal activity of plant essential oils against Acanthamoeba sp. Chiang Mai Medical Journal., 2018, 57(2), 89-98.
[36]
Panatieri, L.F.; Brazil, N.T.; Faber, K.; Medeiros-Neves, B.; von Poser, G.L.; Rott, M.B.; Zorzi, G.K.; Teixeira, H.F. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular Acanthamoeba keratitis. AAPS PharmSciTech, 2017, 18(3), 721-728.
[http://dx.doi.org/10.1208/s12249-016-0550-y] [PMID: 27225384]
[37]
Derda, M.; Thiem, B.; Budzianowski, J.; Wojt, W.J.; Wojtkowiak-Giera, A. The evaluation of the amebicidal activity of Eryngium planum extracts. Acta Pol. Pharm., 2013, 70(6), 1027-1034.
[PMID: 24383326]
[38]
Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res., 2009, 53(5), 600-608.
[http://dx.doi.org/10.1002/mnfr.200800204] [PMID: 19194970]
[39]
Lee-Huang, S.; Zhang, L.; Huang, P.L.; Chang, Y.T.; Huang, P.L. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun., 2003, 307(4), 1029-1037.
[http://dx.doi.org/10.1016/S0006-291X(03)01292-0] [PMID: 12878215]
[40]
Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents, 2009, 33(5), 461-463.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.026] [PMID: 19135874]
[41]
Balanehru, S.; Nagarajan, B. Protective effect of oleanolic acid and ursolic acid against lipid peroxidation. Biochem. Int., 1991, 24(5), 981-990.
[PMID: 1776961]
[42]
Jafarpoor, N; Abbasi-Maleki, S; Asadi-Samani, M; Khayatnouri, MH Evaluation of antidepressant-like effect of hydroalcoholic extract of Passiflora incarnata in animal models of depression in male mice., 2014, 3(1), 41-45.
[43]
Ingale, A.G.; Hivrale, A.U. Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr. J. Plant Sci., 2010, 4(10), 417-426.
[44]
Madhumathi, S Antimicrobial activity of leaf extract of passiflora incarnata L,
[45]
Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res., 2007, 40(3), 349-356.
[http://dx.doi.org/10.1590/S0100-879X2007000300010] [PMID: 17334532]
[46]
de Lima, G.P.; de Souza, T.M.; de Paula Freire, G.; Farias, D.F.; Cunha, A.P.; Ricardo, N.M.; de Morais, S.M.; Carvalho, A.F. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol. Res., 2013, 112(5), 1953-1958.
[http://dx.doi.org/10.1007/s00436-013-3351-1] [PMID: 23435925]
[47]
de Melo, J.O.; Bitencourt, T.A.; Fachin, A.L.; Cruz, E.M.; de Jesus, H.C.; Alves, P.B.; de Fátima Arrigoni-Blank, M.; de Castro Franca, S.; Beleboni, R.O.; Fernandes, R.P.; Blank, A.F.; Scher, R. Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop., 2013, 128(1), 110-115.
[http://dx.doi.org/10.1016/j.actatropica.2013.06.024] [PMID: 23850505]
[48]
Escobar, P.; Milena Leal, S.; Herrera, L.V.; Martinez, J.R.; Stashenko, E. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Mem. Inst. Oswaldo Cruz, 2010, 105(2), 184-190.
[http://dx.doi.org/10.1590/S0074-02762010000200013] [PMID: 20428679]
[49]
Farias-Junior, P.A.; Rios, M.C.; Moura, T.A.; Almeida, R.P.; Alves, P.B.; Blank, A.F.; Fernandes, R.P.; Scher, R. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol. Res., 2012, 45(4), 399-402.
[http://dx.doi.org/10.4067/S0716-97602012000400012] [PMID: 23558998]
[50]
Ocazionez, R.E.; Meneses, R.; Torres, F.Á.; Stashenko, E. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem. Inst. Oswaldo Cruz, 2010, 105(3), 304-309.
[http://dx.doi.org/10.1590/S0074-02762010000300010] [PMID: 20512244]
[51]
Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Santos, R.C.; Vaucher, R.A.; Raffin, R.P.; Gomes, P.; Dambros, M.G.; Miletti, L.C.; Boligon, A.A.; Athayde, M.L.; Monteiro, S.G. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp. Parasitol., 2014, 141, 21-27.
[http://dx.doi.org/10.1016/j.exppara.2014.03.007] [PMID: 24657576]
[52]
Cheng, A.M.; Sheha, H.; Tseng, S.C. Recent advances on ocular Demodex infestation. Curr. Opin. Ophthalmol., 2015, 26(4), 295-300.
[http://dx.doi.org/10.1097/ICU.0000000000000168] [PMID: 26058028]
[53]
Tighe, S.; Gao, Y.Y.; Tseng, S.C. Terpinen-4-ol is the most active ingredient of tea tree oil to kill Demodex mites. Transl. Vis. Sci. Technol., 2013, 2(7), 2.
[http://dx.doi.org/10.1167/tvst.2.7.2] [PMID: 24349880]
[54]
Jukić, M.; Miloš, M. Catalytic oxidation and antioxidant properties of thyme essential oils (Thymus vulgarae L.). Croat. Chem. Acta, 2005, 78(1), 105-110.
[55]
Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem., 2015, 173, 339-347.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.042] [PMID: 25466031]
[56]
Santoro, G.F. das Graças Cardoso, M.; Guimarães, L.G.; Salgado, A.P.; Menna-Barreto, R.F.; Soares, M.J. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol. Res., 2007, 100(4), 783-790.
[http://dx.doi.org/10.1007/s00436-006-0326-5] [PMID: 17024354]
[57]
Adams, A.; Kruma, Z.; Verhé, R.; De Kimpe, N.; Kreicbergs, V. Volatile profiles of rapeseed oil flavored with basil, oregano, and thyme as a function of flavoring conditions. J. Am. Oil Chem. Soc., 2011, 88(2), 201-212.
[http://dx.doi.org/10.1007/s11746-010-1661-3]
[58]
Bensmira, M.; Jiang, B.; Nsabimana, C.; Jian, T. Effect of lavender and thyme incorporation in sunflower seed oil on its resistance to frying temperatures. Food Res. Int., 2007, 40(3), 341-346.
[http://dx.doi.org/10.1016/j.foodres.2006.10.004]
[59]
Sangsuwon, C.; Jirujchariyakul, W.; Roongruangchai, K. Chemical Constituents and Antiamoebic of Methanolic Fraction from Peperomia pellucida (Linn.) Kunth. InApplied Mechanics and Materials. Trans Tech Publ., 2015, 709, 417-421.
[60]
Thao, N.T.; Hung, T.M.; Lee, M.K.; Kim, J.C.; Min, B.S.; Bae, K. Triterpenoids from Camellia japonica and their cytotoxic activity. Chem. Pharm. Bull. (Tokyo), 2010, 58(1), 121-124.
[http://dx.doi.org/10.1248/cpb.58.121] [PMID: 20045980]
[61]
Polat, Z.A.; Vural, A.; Tepe, B.; Cetin, A. In vitro amoebicidal activity of four Allium species on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. Parasitol. Res., 2007, 101(2), 397-402.
[http://dx.doi.org/10.1007/s00436-007-0487-x] [PMID: 17318581]
[62]
Chu, D.M.; Miles, H.; Toney, D.; Ngyuen, C.; Marciano-Cabral, F. Amebicidal activity of plant extracts from Southeast Asia on Acan-thamoeba spp. Parasitol. Res., 1998, 84(9), 746-752.
[http://dx.doi.org/10.1007/s004360050480] [PMID: 9766904]
[63]
Rodríguez-Zaragoza, S.; Ordaz, C.; Avila, G.; Muñoz, J.L.; Arciniegas, A.; Romo de Vivar, A. In vitro evaluation of the amebicidal activity of Buddleia cordata (Loganiaceae, H.B.K.) on several strains of Acanthamoeba. J. Ethnopharmacol., 1999, 66(3), 327-334.
[http://dx.doi.org/10.1016/S0378-8741(98)00186-X] [PMID: 10473180]
[64]
Mojica, E.R.; Deocaris, C.C.; Endriga, M.A. Essential oils as anti-protozoal agents. Philipp. J. Crop Sci., 2004, 29(3), 41-43.
[65]
Polat, Z.A.; Tepe, B.; Vural, A. In vitro effectiveness of Thymus sipyleus subsp. sipyleus var. sipyleus on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. Parasitol. Res., 2007, 101(6), 1551-1555.
[http://dx.doi.org/10.1007/s00436-007-0674-9] [PMID: 17661186]
[66]
Polat, Z.A.; Vural, A.; Ozan, F.; Tepe, B.; Özcelik, S.; Cetin, A. In vitro evaluation of the amoebicidal activity of garlic (Allium sativum) extract on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. J. Ocul. Pharmacol. Ther., 2008, 24(1), 8-14.
[http://dx.doi.org/10.1089/jop.2007.0035] [PMID: 18370873]
[67]
Ródio, C.; da Rocha Vianna, D.; Kowalski, K.P.; Panatieri, L.F.; von Poser, G.; Rott, M.B. In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol. Res., 2008, 104(1), 191-194.
[http://dx.doi.org/10.1007/s00436-008-1186-y] [PMID: 18795331]
[68]
Roongruangchai, K.; Kummalue, T.; Sookkua, T.; Roongruangchai, J. Several Fractions of Pouzolzia indica methanolic extract were lethal to the Acanthamoeba Cyst: in vitro study. Siriraj Med. J., 2017, 61(6), 297-300.
[69]
Roongruangchai, J.; Sookkua, T.; Kummalue, T.; Roongruangchai, K. Pouzolzia indica methanolic extract fraction 2 and povidone-iodine induced changes in the cyst of Acanthamoeba spp.: light and electron microscopic studies. J. Med. Assoc. Thai., 2009, 92(11), 1492-1499.
[PMID: 19938742]
[70]
Goze, I.; Alim, A.; Dag, S.; Tepe, B.; Polat, Z.A. In vitro amoebicidal activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. J. Ocul. Pharmacol. Ther., 2009, 25(4), 293-298.
[http://dx.doi.org/10.1089/jop.2008.0132] [PMID: 19450152]
[71]
Derda, M.; Hadaś, E.; Thiem, B. Plant extracts as natural amoebicidal agents. Parasitol. Res., 2009, 104(3), 705-708.
[http://dx.doi.org/10.1007/s00436-008-1277-9] [PMID: 19050923]
[72]
Cho, P.; Shi, G.; Yap, M.; Boost, M.V. Effects of Lead Phytochemicals of Radix Scutellariae on Acanthamoeba. Invest. Ophthalmol. Vis. Sci., 2016, 57(15), 6591-6595.
[http://dx.doi.org/10.1167/iovs.16-20533] [PMID: 27918833]
[73]
Santos, I.G.; Scher, R.; Rott, M.B.; Menezes, L.R.; Costa, E.V.; Cavalcanti, S.C.; Blank, A.F. Aguiar, Jdos.S.; da Silva, T.G.; Dolabella, S.S. Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol. Res., 2016, 115(2), 535-540.
[http://dx.doi.org/10.1007/s00436-015-4769-4] [PMID: 26446087]
[74]
Mahboob, T.; Azlan, A.M.; Tan, T.C.; Samudi, C.; Sekaran, S.D.; Nissapatorn, V.; Wiart, C. Anti-encystment and amoebicidal activity of Lonicera japonica Thunb. and its major constituent chlorogenic acid in vitro. Asian Pac. J. Trop. Med., 2016, 9(9), 866-871.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.008] [PMID: 27633300]
[75]
Panatieri, L.F. Avaliação da atividade amebicida de nanoemulsões contendo extrato hexânico de Pterocaulon balansae (Asteraceae) frente a Acanthamoebasp. Porto Alegre In: Dissertação de Mestrado, Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul; , 2015.
[76]
Albouchi, F.; Sifaoui, I.; Reyes-Batlle, M.; López-Arencibia, A.; Piñero, J.E.; Lorenzo-Morales, J.; Abderrabba, M. Chemical composition and anti-Acanthamoeba activity of Melaleuca styphelioides essential oil. Exp. Parasitol., 2017, 183, 104-108.
[http://dx.doi.org/10.1016/j.exppara.2017.10.014] [PMID: 29103900]
[77]
Souhaiel, N.; Sifaoui, I.; Ben Hassine, D.; Bleton, J.; Bonose, M.; Moussa, F.; Piñero, J.E.; Lorenzo-Morales, J.; Abderrabba, M. Ammoides pusilla (Apiaceae) essential oil: Activity against Acanthamoeba castellanii Neff. Exp. Parasitol., 2017, 183, 99-103.
[http://dx.doi.org/10.1016/j.exppara.2017.10.011] [PMID: 29102680]
[78]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M.; Lorenzo-Morales, J.; Haghighi, A.; Azargashb, E. The amoebicidal activity of Ziziphus vulgaris extract and its fractions on pathogenic Acanthamoeba trophozoites and cysts. Trop. Biomed., 2017, 34(1), 127-136.
[79]
Hajaji, S.; Jabri, M.A.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; B’chir, F.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp. Parasitol., 2017, 183, 224-230.
[http://dx.doi.org/10.1016/j.exppara.2017.09.013] [PMID: 28917707]
[80]
Saoudi, S.; Sifaoui, I.; Chammem, N.; Reyes-Batlle, M.; López-Arencibia, A.; Pacheco-Fernández, I.; Pino, V.; Hamdi, M.; Jiménez, I.A.; Bazzocchi, I.L.; Piñero, J.E.; Lorenzo-Morales, J. Anti-Acanthamoeba activity of Tunisian Thymus capitatus essential oil and organic extracts. Exp. Parasitol., 2017, 183, 231-235.
[http://dx.doi.org/10.1016/j.exppara.2017.09.014] [PMID: 28916454]
[81]
Hadaś, E.; Derda, M.; Nawrot, J.; Nowak, G.; Thiem, B. Evaluation of the amoebicidal activities of Centaurea bella, Centaurea daghestanica, Rhaponticum pulchrum and Tanacetum vulgare against pathogenic Acanthamoeba spp. Acta Pol. Pharm., 2017, 74(6), 1827-1832.
[82]
Sauter, I.P.; dos Santos, J.C.; Apel, M.A.; Cibulski, S.P.; Roehe, P.M.; von Poser, G.L.; Rott, M.B. Amoebicidal activity and chemical composition of Pterocaulon polystachyum (Asteraceae) essential oil. Parasitol. Res., 2011, 109(5), 1367-1371.
[http://dx.doi.org/10.1007/s00436-011-2383-7] [PMID: 21523423]
[83]
Roongruangchai, K.; Kummalue, T.; Sookkua, T.; Roongruangchai, J. Comparison of Pouzolzia indica methanolic extract and Virkon against cysts of Acanthamoeba spp. Southeast Asian J. Trop. Med. Public Health, 2010, 41(4), 776-784.
[PMID: 21073052]
[84]
Sauter, I.P.; Rossa, G.E.; Lucas, A.M.; Cibulski, S.P.; Roehe, P.M.; da Silva, L.A.; Rott, M.B.; Vargas, R.M.; Cassel, E.; von Poser, G.L. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crops Prod., 2012, 40, 292-295.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.025]
[85]
Malatyali, E.; Tepe, B.; Degerli, S.; Berk, S.; Akpulat, H.A. In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(1), 167-174.
[http://dx.doi.org/10.1007/s00436-011-2466-5] [PMID: 21626154]
[86]
Degerli, S.; Tepe, B.; Celiksoz, A.; Berk, S.; Malatyali, E. In vitro amoebicidal activity of Origanum syriacum and Origanum laevigatum on Acanthamoeba castellanii cysts and trophozoites. Exp. Parasitol., 2012, 131(1), 20-24.
[http://dx.doi.org/10.1016/j.exppara.2012.02.020] [PMID: 22417972]
[87]
Degerli, S.; Berk, S.; Malatyali, E.; Tepe, B. Screening of the in vitro amoebicidal activities of Pastinaca armenea (Fisch. & C.A.Mey.) and Inula oculus-christi (L.) on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(2), 565-570.
[http://dx.doi.org/10.1007/s00436-011-2524-z] [PMID: 21735149]
[88]
Sifaoui, I.; López-Arencibia, A.; Martín-Navarro, C.M.; Chammem, N.; Mejri, M.; Lorenzo-Morales, J.; Abderabba, M.; Piñero, J.E. Activity assessment of Tunisian olive leaf extracts against the trophozoite stage of Acanthamoeba. Parasitol. Res., 2013, 112(8), 2825-2829.
[http://dx.doi.org/10.1007/s00436-013-3453-9] [PMID: 23681194]
[89]
Castro, L.C.; Sauter, I.P.; Ethur, E.M.; Kauffmann, C.; Dall’Agnol, R.; Souza, J.; Cibulski, S.P.; Muniz, A.W.; Weidlich, L.; Lohmann, P.M.; Roehe, P.M. In vitro effect of Acanthospermum australe (Asteraceae) extracts on Acanthamoeba polyphaga trophozoites. Rev. Bras. Plantas Med., 2013, 15(4), 589-594.
[http://dx.doi.org/10.1590/S1516-05722013000400016]
[90]
Shoaib, H.M.; Muazzam, A.G.; Mir, A.; Jung, S.Y.; Matin, A. Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells in vitro. Parasitol. Res., 2013, 112(3), 1179-1188.
[http://dx.doi.org/10.1007/s00436-012-3249-3] [PMID: 23306385]
[91]
Sifaoui, I.; López-Arencibia, A.; Ticona, J.C.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Mejri, M.; Lorenzo-Morales, J.; Jiménez, A.I.; Valladares, B.; Lopez-Bazzocchi, I.; Abderabba, M.; Piñero, J.E. Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts. Exp. Parasitol., 2014, 145(Suppl.), S111-S114.
[http://dx.doi.org/10.1016/j.exppara.2014.02.018] [PMID: 24726697]
[92]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M. Anti-Acanthamoeba activities of chloroformic fractions of Trigonella Foenum graecum (seed) and their cytotoxity on mice macrophage cell. Novelty in Biomedicine., 2015, 3(4), 182-188.
[93]
Kuźma, Ł.; Derda, M.; Hadaś, E.; Wysokińska, H. Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acanthamoeba spp. Parasitol. Res., 2015, 114(1), 323-327.
[http://dx.doi.org/10.1007/s00436-014-4211-3] [PMID: 25382125]
[94]
Sangsuwon, C.; Jirujchariyakul, W.; Roongruangchai, K. Chemical Constituents and Antiamoebic of Methanolic Fraction from Peperomia pellucida (Linn.). Kunth. Appl. Mech. Mater., 2015, 709, 417-421.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.709.417]
[95]
Boost, M.; Yau, P.; Yap, M.; Cho, P. Determination of cytotoxicity of traditional Chinese medicine herbs, Rhizoma coptidis, Radix scutellariae, and Cortex phellodendri, by three methods. Cont. Lens Anterior Eye, 2016, 39(2), 128-132.
[http://dx.doi.org/10.1016/j.clae.2015.09.003] [PMID: 26421730]
[96]
Nayeri Chegeni, T.; Ghafarifar, F.; Khoshzaban, F.; Dalimi Asl, A. The effects of artemisinin and aqueous and alcoholic extracts of Artemisia annua on Acanthamoeb genotype T4 in vitro. Modares J Med Sci Pathol., 2016, 19(2), 75-87.
[97]
Ghazouani, N.; Sifaoui, I.; Bachrouch, O.; Abderrabba, M.E.; Pinero, J.; Lorenzo-Morales, J. Essential oil composition and anti Acan-thamoeba studies of Teucrium ramosissimum. Exp. Parasitol., 2017, 183, 207-211.
[http://dx.doi.org/10.1016/j.exppara.2017.09.010] [PMID: 28916455]
[98]
Hajaji, S.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Jiménez, I.A.; Bazzocchi, I.L.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Correlation of radical-scavenging capacity and amoebicidal activity of Matricaria recutita L. (Asteraceae). Exp. Parasitol., 2017, 183, 212-217.
[http://dx.doi.org/10.1016/j.exppara.2017.09.011] [PMID: 28919332]
[99]
Sifaoui, I.; López-Arencibia, A.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Wagner, C.; Chiboub, O.; Mejri, M.; Valladares, B.; Abderrabba, M.; Piñero, J.E.; Lorenzo-Morales, J. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One, 2017, 12(8)e0183795
[http://dx.doi.org/10.1371/journal.pone.0183795] [PMID: 28859105]
[100]
Mahboob, T.; Azlan, A.M.; Shipton, F.N.; Boonroumkaew, P.; Nor Azman, N.S.; Sekaran, S.D.; Ithoi, I.; Tan, T.C.; Samudi, C.; Wiart, C.; Nissapatorn, V. Acanthamoebicidal activity of periglaucine A and betulinic acid from Pericampylus glaucus (Lam.) Merr. in vitro. Exp. Parasitol., 2017, 183, 160-166.
[http://dx.doi.org/10.1016/j.exppara.2017.09.002] [PMID: 28916456]
[101]
Anacarso, I.; Sabia, C.; de Niederhäusern, S.; Iseppi, R.; Condò, C.; Bondi, M.; Messi, P. In vitro evaluation of the amoebicidal activity of rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry) essential oils against Acanthamoeba polyphaga trophozoites. Nat. Prod. Res., 2017, 9, 1-6.
[PMID: 29117746]
[102]
Hadas, E.; Ozarowski, M.; Derda, M.; Thiem, B.; Cholewinski, M.; Skrzypczak, L.; Gryszczynska, A.; Piasecka, A. The use of extracts from Passiflora Spp. in helping the treatment of Acanthamoebiasis. Acta Pol. Pharm., 2017, 74(3), 921-928.
[PMID: 29513962]
[103]
Nayeri Chegeni, T.; Ghaffarifar, F.; Khoshzaban, F.; Asl, A.D. Evaluation of Anti-amoebic Activity of Peganum harmala Ethanolic Extract on Acanthamoeba In vitro. J. Arak Univ. Med. Sci., 2018, 20(12), 74-82.
[104]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M.; Lorenzo-Morales, J.; Moshfe, A.; Haghighi, A.; Azargashb, E. In-vitro Activity of Trigonella foenum graecum Seeds Against a Clinical Strain of Acanthamoeba Genotype T4. Iran. J. Pharm. Res., 2018, 17(2), 661-667.
[PMID: 29881423]
[105]
Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother. Res., 2016, 30(5), 691-700.
[http://dx.doi.org/10.1002/ptr.5591] [PMID: 26887532]
[106]
Minissale, M.G.; Soresi, M.; Galia, M.; Agnello, F.; Giannitrapani, L.; Midiri, M.; Licata, A. Optimizing diagnostic approach to drug-induced liver injury. ITJM, 2018, 12(3), 180-189.
[http://dx.doi.org/10.4081/itjm.2018.1023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy