Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Chemo-catalytic Esterification and Transesterification over Organic Polymer-Based Catalysts for Biodiesel Synthesis

Author(s): Heng Zhang, Chunbao (Charles) Xu, Kaichen Zhou and Song Yang*

Volume 23, Issue 20, 2019

Page: [2190 - 2203] Pages: 14

DOI: 10.2174/1385272823666190715124659

Price: $65

Abstract

The major sources of fuels in today's world predominantly come from traditional fossil resources such as coal, petroleum and natural gas, which are limited and nonrenewable. Meanwhile, their consumption releases large undesirable greenhouse gas and noxious gases. Therefore, the development of renewable and sustainable feedstocks to replace traditional fossil resources has attracted great interest. Biodiesel, mainly produced through esterification and transesterification reaction from renewable oil resources using acids and bases as catalysts, is deemed as a green and renewable biofuel that shows enormous potential to replace fossil diesel. Compared to homogeneous catalytic systems, the development of efficient and stable heterogeneous catalysts is vital to synthesizing biodiesel in an efficient and green manner. Among the developed solid catalysts, organic polymer- based catalytic materials are an extremely important topic, wherein distinct advantages of higher concentration of active sites and better stability of active groups are associated with each other. In this review, effective catalytic valorization of sustainable feedstocks into biodiesel via transesterification and esterification reactions mediated by functionalized organic polymer-based catalysts is discussed. Special emphasis has been given to the synthetic routes to the versatile organic polymers-based catalytic materials, and some other interesting catalytic roles derived from physicochemical property, like adjustable hydrophilicity and hydrophobicity along with swelling property in transesterification and esterification, are also illustrated.

Keywords: Biodiesel, organic polymers, transesterification, esterification, acid-base catalysis, hydrophilicity/hydrophobicity.

Graphical Abstract
[1]
Chang, Y.; Bae, C. Polymer-supported acid catalysis in organic synthesis. Curr. Org. Synth., 2011, 8(2), 208-236.
[http://dx.doi.org/10.2174/157017911794697286]
[2]
Zhang, H.; Pan, H.; Yang, S. Upgrading of cellulose to biofuels and chemicals with acidic nanocatalysts. Curr. Nanosci., 2017, 13(5), 513-527.
[http://dx.doi.org/10.2174/1573413713666170405161546]
[3]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[4]
Zhang, J.; Cui, Y.; Qian, G. Rational designed metal-organic frameworks for storage and separation of hydrogen and methane. Curr. Org. Chem., 2018, 22(18), 1792-1808.
[http://dx.doi.org/10.2174/1385272822666180913112820]
[5]
Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[6]
Huang, S.; Yang, K-L.; Liu, X-F.; Pan, H.; Zhang, H.; Yang, S. MIL-100 (Fe)-catalyzed efficient conversion of hexoses to lactic acid. RSC Adv, 2017, 7(10), 5621-5627.
[http://dx.doi.org/10.1039/C6RA26469G]
[7]
Zhang, H.; Hu, Y.; Qi, L.; He, J.; Li, H.; Yang, S. Chemocatalytic production of lactates from biomass-derived sugars. Intl. J. Chem. Eng., 2018, 2018
[http://dx.doi.org/10.1155/2018/7617685]
[8]
Chen, X.; Fong, J.Z.M.; Xu, J.; Mou, C.; Lu, Y.; Yang, S.; Song, B-A.; Chi, Y.R. Carbene-catalyzed dynamic kinetic resolution of carboxylic esters. J. Am. Chem. Soc., 2016, 138(23), 7212-7215.
[http://dx.doi.org/10.1021/jacs.6b00406] [PMID: 27219078]
[9]
Wu, X.; Hao, L.; Zhang, Y.; Rakesh, M.; Reddi, R.N.; Yang, S.; Song, B.A.; Chi, Y.R. Construction of fused pyrrolidines and β‐lactones by carbene‐catalyzed C-N, C-C, and C-O bond formations. Angew. Chem. Int. Ed. Engl., 2017, 56(15), 4201-4205.
[http://dx.doi.org/10.1002/anie.201700045] [PMID: 28295941]
[10]
Zhu, T.; Zheng, P.; Mou, C.; Yang, S.; Song, B-A.; Chi, Y.R. Benzene construction via organocatalytic formal [3+3] cycloaddition reaction. Nat. Commun., 2014, 5, 5027.
[http://dx.doi.org/10.1038/ncomms6027] [PMID: 25255058]
[11]
Li, H.; Zhang, Q.S.; Bhadury, P.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18(5), 547-597.
[http://dx.doi.org/10.2174/13852728113176660138]
[12]
Nowak, I.; Ziolek, M. Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem. Rev., 1999, 99(12), 3603-3624.
[http://dx.doi.org/10.1021/cr9800208] [PMID: 11849031]
[13]
Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev., 1995, 95(3), 559-614.
[http://dx.doi.org/10.1021/cr00035a006]
[14]
Liu, F.; Willhammar, T.; Wang, L.; Zhu, L.; Sun, Q.; Meng, X.; Carrillo-Cabrera, W.; Zou, X.; Xiao, F-S. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. J. Am. Chem. Soc., 2012, 134(10), 4557-4560.
[http://dx.doi.org/10.1021/ja300078q] [PMID: 22380406]
[15]
Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J., 2006, 116(1), 61-66.
[http://dx.doi.org/10.1016/j.cej.2005.09.025]
[16]
Harmer, M.A.; Farneth, W.E.; Sun, Q. Towards the sulfuric acid of solids. Adv. Mater., 1998, 10(15), 1255-1257.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199810)10:15<1255:AID-ADMA1255>3.0.CO;2-T]
[17]
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97(6), 2373-2420.
[http://dx.doi.org/10.1021/cr960406n] [PMID: 11848903]
[18]
Holm, M.S.; Saravanamurugan, S.; Taarning, E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science, 2010, 328(5978), 602-605.
[http://dx.doi.org/10.1126/science.1183990] [PMID: 20431010]
[19]
Wang, Z.; Wang, L.; Jiang, Y.; Hunger, M.; Huang, J. Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal., 2014, 4(4), 1144-1147.
[http://dx.doi.org/10.1021/cs401225k] [PMID: 24804152]
[20]
Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev., 2016, 45(3), 584-611.
[http://dx.doi.org/10.1039/C5CS00859J] [PMID: 26691750]
[21]
Choi, M.; Cho, H.S.; Srivastava, R.; Venkatesan, C.; Choi, D-H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater., 2006, 5(9), 718-723.
[http://dx.doi.org/10.1038/nmat1705] [PMID: 16892049]
[22]
López, D.E.; Goodwin, J.G., Jr; Bruce, D.A. Transesterification of triacetin with methanol on Nafion® acid resins. J. Catal., 2007, 245(2), 381-391.
[http://dx.doi.org/10.1016/j.jcat.2006.10.027]
[23]
Wang, W.; Zhuang, X.; Zhao, Q.; Wan, Y. Self-assembly synthesis of a high-content sulfonic acid group functionalized ordered mesoporous polymer-based solid as a stable and highly active acid catalyst. J. Mater. Chem., 2012, 22(31), 15874-15886.
[http://dx.doi.org/10.1039/c2jm32894a]
[24]
Zhang, X.; Lu, J.; Zhang, J. Porosity enhancement of carbazolic porous organic frameworks using dendritic building blocks for gas storage and separation. Chem. Mater., 2014, 26(13), 4023-4029.
[http://dx.doi.org/10.1021/cm501717c]
[25]
Martin, R.L.; Simon, C.M.; Smit, B.; Haranczyk, M. In silico design of porous polymer networks: high-throughput screening for methane storage materials. J. Am. Chem. Soc., 2014, 136(13), 5006-5022.
[http://dx.doi.org/10.1021/ja4123939] [PMID: 24611543]
[26]
Modak, A.; Pramanik, M.; Inagaki, S.; Bhaumik, A. A triazine functionalized porous organic polymer: excellent CO2 storage material and support for designing Pd nanocatalyst for C-C cross-coupling reactions. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(30), 11642-11650.
[http://dx.doi.org/10.1039/C4TA02150A]
[27]
Bhunia, S.; Chatterjee, N.; Das, S.; Das Saha, K.; Bhaumik, A. Porous polyurea network showing aggregation induced white light emission, applications as biosensor and scaffold for drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 22569-22576.
[http://dx.doi.org/10.1021/am5066859] [PMID: 25459383]
[28]
Wibowo, S.H.; Sulistio, A.; Wong, E.H.; Blencowe, A.; Qiao, G.G. Functional and well‐defined β‐sheet‐assembled porous spherical shells by surface‐guided peptide formation. Adv. Funct. Mater., 2015, 25(21), 3147-3156.
[http://dx.doi.org/10.1002/adfm.201404091]
[29]
Modak, A.; Mondal, J.; Bhaumik, A. Highly porous organic polymer containing free-CO2H groups: a convenient carbocatalyst for indole C-H activation at room temperature. ChemCatChem, 2013, 5(7), 1749-1753.
[http://dx.doi.org/10.1002/cctc.201300009]
[30]
Modak, A.; Mondal, J.; Bhaumik, A. Porphyrin based porous organic polymer as bi-functional catalyst for selective oxidation and Knoevenagel condensation reactions. Appl. Catal. A, 2013, 459, 41-51.
[http://dx.doi.org/10.1016/j.apcata.2013.03.036]
[31]
Schade, A.; Monnereau, L.; Muller, T.; Bräse, S. Hexaphenyl‐p‐xylene: A rigid pseudo‐octahedral core at the service of three‐dimensional porous frameworks. ChemPlusChem, 2014, 79(8), 1176-1182.
[http://dx.doi.org/10.1002/cplu.201402093]
[32]
Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F-S. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc., 2015, 137(15), 5204-5209.
[http://dx.doi.org/10.1021/jacs.5b02122] [PMID: 25848868]
[33]
Mondal, J.; Nandi, M.; Modak, A.; Bhaumik, A. Functionalized mesoporous materials as efficient organocatalysts for the syntheses of xanthenes. J. Mol. Catal. Chem., 2012, 363, 254-264.
[http://dx.doi.org/10.1016/j.molcata.2012.06.017]
[34]
Borah, P.; Mondal, J.; Zhao, Y. Urea-pyridine bridged periodic mesoporous organosilica: An efficient hydrogen-bond donating heterogeneous organocatalyst for Henry reaction. J. Catal., 2015, 330, 129-134.
[http://dx.doi.org/10.1016/j.jcat.2015.07.011]
[35]
Sun, Q.; Dai, Z.; Meng, X.; Xiao, F-S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev., 2015, 44(17), 6018-6034.
[http://dx.doi.org/10.1039/C5CS00198F] [PMID: 26505055]
[36]
Zhang, H.; Zhou, Q.; Chang, F.; Pan, H.; Liu, X-F.; Li, H.; Hu, D-Y.; Yang, S. Production and fuel properties of biodiesel from Firmiana platanifolia L.f. as a potential non-food oil source. Ind. Crops Prod., 2015, 76, 768-771.
[http://dx.doi.org/10.1016/j.indcrop.2015.08.002]
[37]
Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers. Manage., 2017, 138, 45-53.
[http://dx.doi.org/10.1016/j.enconman.2017.01.060]
[38]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Convers. Manage., 2018, 166, 534-544.
[http://dx.doi.org/10.1016/j.enconman.2018.04.061]
[39]
Koçer, A.T.; Mutlu, B.; Özçimen, D. Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass; Biomass. Convers. Biorefinary, 2019, pp. 1-10.
[40]
Chang, F.; Zhou, Q.; Pan, H.; Liu, X-f.; Zhang, H.; Yang, S. Efficient production of biodiesel from Xanthium sibiricum patr oil via supramolecular catalysis. Renew. Energy, 2017, 111, 556-560.
[http://dx.doi.org/10.1016/j.renene.2017.04.045]
[41]
Pan, H.; Zhang, H.; Yang, S. Production of Biodiesel via Simultaneous Esterification and Transesterification. In: Production of Biofuels and Chemicals with Bifunctional Catalysts; Springer, 2017; pp. 307-326.
[http://dx.doi.org/10.1007/978-981-10-5137-1_10]
[42]
Chang, F.; Zhou, Q.; Pan, H.; Liu, X.F.; Zhang, H.; Xue, W.; Yang, S. Solid mixed‐metal‐oxide catalysts for biodiesel production: A review. Energy Technol. (Weinheim), 2014, 2(11), 865-873.
[http://dx.doi.org/10.1002/ente.201402089]
[43]
Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manage., 2018, 174, 579-614.
[http://dx.doi.org/10.1016/j.enconman.2018.08.050]
[44]
Costa, E.; Almeida, M.; Alvim-Ferraz, C.; Dias, J. The cycle of biodiesel production from Crambe abyssinica in Portugal. Ind. Crops Prod., 2019, 129, 51-58.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.032]
[45]
Alaei, S.; Haghighi, M.; Toghiani, J.; Vahid, B.R. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind. Crops Prod., 2018, 117, 322-332.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.015]
[46]
Karmakar, B.; Halder, G. Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies. Energy Convers. Manage., 2019, 182, 307-339.
[http://dx.doi.org/10.1016/j.enconman.2018.12.066]
[47]
Kamel, D.A.; Farag, H.A.; Amin, N.K.; Zatout, A.A.; Ali, R.M. Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism. Ind. Crops Prod., 2018, 111, 407-413.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.029]
[48]
Salvo, A.M.; Giacalone, F.; Gruttadauria, M. Advances in organic and organic-inorganic hybrid polymeric supports for catalytic applications. Molecules, 2016, 21(10), 1288.
[http://dx.doi.org/10.3390/molecules21101288] [PMID: 27689980]
[49]
Fang, L.; Xing, R.; Wu, H.; Li, X.; Liu, Y.; Wu, P. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Sci. China Chem., 2010, 53(7), 1481-1486.
[http://dx.doi.org/10.1007/s11426-010-3206-x]
[50]
Wang, X.; Liang, X. Highly efficient procedure for biodiesel synthesis using novel resorcinol-furaldehyde based acid catalyst. Fuel, 2012, 97, 891-894.
[http://dx.doi.org/10.1016/j.fuel.2012.02.014]
[51]
Liang, X. A Novel solid acid with both sulfonic and carbonyl acid groups for biodiesel synthesis. Int. J. Green Energy, 2014, 11(9), 954-961.
[http://dx.doi.org/10.1080/15435075.2013.833928]
[52]
Tang, J.; Liang, X. Highly efficient procedure for biodiesel synthesis using polypyrrole functionalized by sulfonic acid. Kinet. Catal., 2015, 56(3), 323-328.
[http://dx.doi.org/10.1134/S002315841503009X]
[53]
Liu, F.; Meng, X.; Zhang, Y.; Ren, L.; Nawaz, F.; Xiao, F-S. Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinyl benzenes. J. Catal., 2010, 271(1), 52-58.
[http://dx.doi.org/10.1016/j.jcat.2010.02.003]
[54]
Xia, P.; Liu, F.; Wang, C.; Zuo, S.; Qi, C. Efficient mesoporous polymer based solid acid with superior catalytic activities towards transesterification to biodiesel. Catal. Commun., 2012, 26, 140-143.
[http://dx.doi.org/10.1016/j.catcom.2012.05.009]
[55]
Noshadi, I.; Kumar, R.K.; Kanjilal, B.; Parnas, R.; Liu, H.; Li, J.; Liu, F. Transesterification catalyzed by superhydrophobic-oleophilic mesoporous polymeric solid acids: an efficient route for production of biodiesel. Catal. Lett., 2013, 143(8), 792-797.
[http://dx.doi.org/10.1007/s10562-013-1030-6]
[56]
Noshadi, I.; Carrie, C.; Borovilas, J.; Kanjilal, B.; Liu, F. Efficient transformation of waste bone oil into high quality biodiesel via a synergistic catalysis of porous organic polymer solid acid and porous γ-AL2O3-K2O solid base. Ind. Eng. Chem. Res., 2017, 56(36), 10009-10017.
[http://dx.doi.org/10.1021/acs.iecr.7b02719]
[57]
Wang, Z.; Liu, H.; Cui, H.; Zhang, M.; Zhang, Z. A cross-linked and swelling polymer as an effective solid acid catalyst. Ind. Eng. Chem. Res., 2015, 54(29), 7219-7225.
[http://dx.doi.org/10.1021/acs.iecr.5b01408]
[58]
Fu, S.; Chu, J.; Chen, X.; Li, W.; Song, Y-F. Well-dispersed H3PW12O40/H4SiW12O40 nanoparticles on mesoporous polymer for highly efficient acid-catalyzed reactions. Ind. Eng. Chem. Res., 2015, 54(46), 11534-11542.
[http://dx.doi.org/10.1021/acs.iecr.5b03385]
[59]
Caputo, H.E.; Straub, J.E.; Grinstaff, M.W. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem. Soc. Rev., 2019, 48(8), 2338-2365.
[http://dx.doi.org/10.1039/C7CS00593H] [PMID: 30742140]
[60]
Caetano, C.; Guerreiro, L.; Fonseca, I.; Ramos, A.; Vital, J.; Castanheiro, J. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Appl. Catal., A, 2009, 359M(1-2), 41-46.
[http://dx.doi.org/10.1016/j.apcata.2009.02.028]
[61]
Andrijanto, E.; Dawson, E.; Brown, D. Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis. Appl. Catal. B, 2012, 115, 261-268.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.040]
[62]
Suresh, R.; Antony, J.V.; Vengalil, R.; Kochimoolayil, G.E.; Joseph, R. Esterification of free fatty acids in non-edible oils using partially sulfonated polystyrene for biodiesel feedstock. Ind. Crops Prod., 2017, 95, 66-74.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.060]
[63]
Chang, Y.; Lee, C.; Bae, C. Polystyrene-based superacidic solid acid catalyst: synthesis and its application in biodiesel production. RSC Adv, 2014, 4(88), 47448-47454.
[http://dx.doi.org/10.1039/C4RA07747D]
[64]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[http://dx.doi.org/10.1021/cr068360d] [PMID: 16967928]
[65]
Kulkarni, M.V.; Viswanath, A.K.; Aiyer, R.; Khanna, P. Synthesis, characterization, and morphology of p‐toluene sulfonic acid‐doped polyaniline: a material for humidity sensing application. J. Polym. Sci., Part B. Polym. Phys., 2005, 43(16), 2161-2169.
[http://dx.doi.org/10.1002/polb.20503]
[66]
Zięba, A.; Drelinkiewicz, A.; Konyushenko, E.; Stejskal, J. Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterification of triglycerides and esterification of fatty acids with methanol. Appl. Catal., A,, 2010, 383(1-2), 169-181.
[http://dx.doi.org/10.1016/j.apcata.2010.05.042]
[67]
Drelinkiewicz, A.; Kalemba-Jaje, Z.; Lalik, E.; Kosydar, R. Organo-sulfonic acids doped polyaniline–based solid acid catalysts for the formation of bio-esters in transesterification and esterification reactions. Fuel, 2014, 116, 760-771.
[http://dx.doi.org/10.1016/j.fuel.2013.08.079]
[68]
Niu, M.; Kong, X. Efficient biodiesel production from waste cooking oil using p-toluenesulfonic acid doped polyaniline as a catalyst. RSC Adv, 2015, 5(35), 27273-27277.
[http://dx.doi.org/10.1039/C4RA16210B]
[69]
Bhunia, S.; Banerjee, B.; Bhaumik, A. A new hypercrosslinked supermicro-porous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature. Chem. Commun. (Camb.), 2015, 51(24), 5020-5023.
[http://dx.doi.org/10.1039/C4CC09872B] [PMID: 25702885]
[70]
Gomes, R.; Bhanja, P.; Bhaumik, A. Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. J. Mol. Catal. Chem., 2016, 411, 110-116.
[http://dx.doi.org/10.1016/j.molcata.2015.10.016]
[71]
Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem., 2014, 16(6), 2934-2957.
[http://dx.doi.org/10.1039/C3GC42333F]
[72]
Lee, D-W.; Lee, K-Y. Heterogeneous solid acid catalysts for esterification of free fatty acids. Catal. Surv. Asia, 2014, 18(2-3), 55-74.
[http://dx.doi.org/10.1007/s10563-014-9166-y]
[73]
Pan, H.; Liu, X.; Zhang, H.; Yang, K.; Huang, S.; Yang, S. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew. Energy, 2017, 107, 245-252.
[http://dx.doi.org/10.1016/j.renene.2017.02.009]
[74]
Varyambath, A.; Kim, M-R.; Kim, I. Sulfonic acid-functionalized organic knitted porous polyaromatic microspheres as heterogeneous catalysts for biodiesel production. New J. Chem., 2018, 42(15), 12745-12753.
[http://dx.doi.org/10.1039/C8NJ02720J]
[75]
Liu, F.; Wu, Q.; Liu, C.; Qi, C.; Huang, K.; Zheng, A.; Dai, S. Ordered mesoporous polymers for biomass conversions and cross-coupling reactions. ChemSusChem, 2016, 9(17), 2496-2504.
[http://dx.doi.org/10.1002/cssc.201600822] [PMID: 27529676]
[76]
Wu, Q.; Liu, F.; Yi, X.; Zou, Y.; Jiang, L. A solvent-free, one-step synthesis of sulfonic acid group-functionalized mesoporous organosilica with ultra-high acid concentrations and excellent catalytic activities. Green Chem., 2018, 20(5), 1020-1030.
[http://dx.doi.org/10.1039/C8GC00002F]
[77]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[78]
Branco, L.C.; Rosa, J.N.; Moura Ramos, J.J.; Afonso, C.A. Preparation and characterization of new room temperature ionic liquids. Chemistry, 2002, 8(16), 3671-3677.
[http://dx.doi.org/10.1002/1521-3765(20020816)8:16<3671:AID-CHEM3671>3.0.CO;2-9] [PMID: 12203294]
[79]
Amarasekara, A.S.; Wiredu, B. Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Ind. Eng. Chem. Res., 2011, 50(21), 12276-12280.
[http://dx.doi.org/10.1021/ie200938h]
[80]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: Evolving structure–property relationships and expanding applications. Chem. Rev., 2015, 115(20), 11379-11448.
[http://dx.doi.org/10.1021/acs.chemrev.5b00158] [PMID: 26426209]
[81]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, (23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[82]
Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
[http://dx.doi.org/10.1016/S0920-5861(01)00541-7]
[83]
Wu, Z.; Li, Z.; Wu, G.; Wang, L.; Lu, S.; Wang, L.; Wan, H.; Guan, G. Brønsted acidic ionic liquid modified magnetic nanoparticle: An efficient and green catalyst for biodiesel production. Ind. Eng. Chem. Res., 2014, 53(8), 3040-3046.
[http://dx.doi.org/10.1021/ie4040016]
[84]
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today, 2013, 200, 117-124.
[http://dx.doi.org/10.1016/j.cattod.2012.10.001]
[85]
Wang, J.; Xie, D.; Zhang, Z.; Yang, Q.; Xing, H.; Yang, Y.; Ren, Q.; Bao, Z. Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework. AlChE J., 2017, 63(6), 2165-2175.
[http://dx.doi.org/10.1002/aic.15561]
[86]
Yang, J.; Zhou, L.; Guo, X.; Li, L.; Zhang, P.; Hong, R.; Qiu, T. Study on the esterification for ethylene glycol diacetate using supported ionic liquids as catalyst: Catalysts preparation, characterization, and reaction kinetics, process. Chem. Eng. J., 2015, 280, 147-157.
[http://dx.doi.org/10.1016/j.cej.2015.05.096]
[87]
Xu, Z.; Wan, H.; Miao, J.; Han, M.; Yang, C.; Guan, G. Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications. J. Mol. Catal. Chem., 2010, 332(1-2), 152-157.
[http://dx.doi.org/10.1016/j.molcata.2010.09.011]
[88]
Yin, S.; Sun, J.; Liu, B.; Zhang, Z. Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(9), 4992-4999.
[http://dx.doi.org/10.1039/C4TA06135G]
[89]
Pourjavadi, A.; Hosseini, S.H.; Doulabi, M.; Fakoorpoor, S.M.; Seidi, F. Multi-layer functionalized poly (ionic liquid) coated magnetic nanoparticles: highly recoverable and magnetically separable Brønsted acid catalyst. ACS Catal., 2012, 2(6), 1259-1266.
[http://dx.doi.org/10.1021/cs300140j]
[90]
Zhang, Y.; Wang, B.; Elageed, E.H.; Qin, L.; Ni, B.; Liu, X.; Gao, G. Swelling poly (ionic liquid) s: Synthesis and application as quasi-homogeneous catalysts in the reaction of ethylene carbonate with aniline. ACS Macro Lett., 2016, 5(4), 435-438.
[http://dx.doi.org/10.1021/acsmacrolett.6b00178]
[91]
Liang, X. Novel acidic ionic liquid polymer for biodiesel synthesis from waste oils. Appl. Catal., A, 2013, 455, 206-210.
[http://dx.doi.org/10.1016/j.apcata.2013.01.036]
[92]
Liang, X.; Xiao, H.; Qi, C. Efficient procedure for biodiesel synthesis from waste oils using novel solid acidic ionic liquid polymer as catalysts. Fuel Process. Technol., 2013, 110, 109-113.
[http://dx.doi.org/10.1016/j. fuproc.2012.12.002]
[93]
Liang, X. Novel efficient procedure for biodiesel synthesis from waste oils using solid acidic ionic liquid polymer as the catalyst. Ind. Eng. Chem. Res., 2013, 52(21), 6894-6900.
[http://dx.doi.org/10.1021/ie303564b]
[94]
Liang, X. Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene. Energy, 2013, 63, 103-108.
[http://dx.doi.org/10.1016/j.energy.2013.10.043]
[95]
Liang, X. Synthesis of a crosslinked polymer with a benzyl (triphenyl) phosphonium ionic liquid moiety and its catalytic activity. RSC Adv, 2015, 5(120), 99448-99453.
[http://dx.doi.org/10.1039/C5RA18507F]
[96]
Bai, F.; Yang, X.; Zhao, Y.; Huang, W. Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization. Polym. Int., 2005, 54(1), 168-174.
[http://dx.doi.org/10.1002/pi.1670]
[97]
Wu, J.; Gao, Y.; Zhang, W.; Tang, A.; Tan, Y.; Men, Y.; Tang, B. New imidazole-type acidic ionic liquid polymer for biodiesel synthesis from vegetable oil. Chem. Eng. Process., 2015, 93, 61-65.
[http://dx.doi.org/10.1016/j.cep.2015.04.005]
[98]
Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F-S. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc., 2012, 134(41), 16948-16950.
[http://dx.doi.org/10.1021/ja307455w] [PMID: 23009896]
[99]
Liu, F.; Li, B.; Liu, C.; Kong, W.; Yi, X.; Zheng, A.; Qi, C. Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catal. Sci. Technol., 2016, 6(9), 2995-3007.
[http://dx.doi.org/10.1039/C5CY01226K]
[100]
Liu, F.; Liu, C.; Kong, W.; Qi, C.; Zheng, A.; Dai, S. Design and synthesis of micro-meso-macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals. Green Chem., 2016, 18(24), 6536-6544.
[http://dx.doi.org/10.1039/C6GC02237E]
[101]
Wu, Z.; Chen, C.; Guo, Q.; Li, B.; Que, Y.; Wang, L.; Wan, H.; Guan, G. Novel approach for preparation of poly (ionic liquid) catalyst with macro-porous structure for biodiesel production. Fuel, 2016, 184, 128-135.
[http://dx.doi.org/10.1016/j.fuel.2016.07.004]
[102]
Feng, Y.; Li, L.; Wang, X.; Yang, J.; Qiu, T. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel. Energy Convers. Manage., 2017, 153, 649-658.
[http://dx.doi.org/10.1016/j.enconman.2017.10.018]
[103]
Pan, H.; Li, H.; Liu, X-F.; Zhang, H.; Yang, K-L.; Huang, S.; Yang, S. Mesoporous polymeric solid acid as efficient catalyst for (trans) esterification of crude Jatropha curcas oil. Fuel Process. Technol., 2016, 150, 50-57.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.035]
[104]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Yang, S. Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production. Fuel, 2019, 239, 886-895.
[http://dx.doi.org/10.1016/j.fuel.2018.11.093]
[105]
Reddy, C.R.V.; Fetterly, B.M.; Verkade, J.G. Polymer-supported azidoproazaphosphatrane: A recyclable catalyst for the room-temperature transformation of triglycerides to biodiesel. Energy Fuels, 2007, 21(4), 2466-2472.
[http://dx.doi.org/10.1021/ef070095r]
[106]
Yang, R.; Su, M.; Zhang, J.; Jin, F.; Zha, C.; Li, M.; Hao, X. Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst. Bioresour. Technol., 2011, 102(3), 2665-2671.
[http://dx.doi.org/10.1016/j.biortech.2010.10.131] [PMID: 21094041]
[107]
Liu, F.; Li, W.; Sun, Q.; Zhu, L.; Meng, X.; Guo, Y.H.; Xiao, F.S. Transesterification to biodiesel with superhydrophobic porous solid base catalysts. ChemSusChem, 2011, 4(8), 1059-1062.
[http://dx.doi.org/10.1002/cssc.201100166] [PMID: 21626710]
[108]
Ueki, Y.; Saiki, S.; Shibata, T.; Hoshina, H.; Kasai, N.; Seko, N. Optimization of grafted fibrous polymer as a solid basic catalyst for biodiesel fuel production. Int. J. Org. Chem. (Irvine), 2014, 4(02), 91.
[http://dx.doi.org/10.4236/ijoc.2014.42011]
[109]
Jiang, B.; Wang, Y.; Zhang, L.; Sun, Y.; Yang, H.; Wang, B.; Yang, N. Biodiesel production via transesterification of soybean oil catalyzed by superhydrophobic porous poly (ionic liquid) solid base. Energy Fuels, 2017, 31(5), 5203-5214.
[http://dx.doi.org/10.1021/acs.energyfuels.7b00443]
[110]
Okuhara, T. Water-tolerant solid acid catalysts. Chem. Rev., 2002, 102(10), 3641-3665.
[http://dx.doi.org/10.1021/cr0103569] [PMID: 12371897]
[111]
Tessonnier, J.P.; Villa, A.; Majoulet, O.; Su, D.S.; Schlögl, R. Defect-mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion. Angew. Chem. Int. Ed. Engl., 2009, 48(35), 6543-6546.
[http://dx.doi.org/10.1002/anie.200901658] [PMID: 19630046]
[112]
Ngaosuwan, K.; Mo, X.; Goodwin, J.G., Jr; Praserthdam, P. Effect of solvent on hydrolysis and transesterification reactions on tungstated zirconia. Appl. Catal., A,, 2010, 380(1-2), 81-86.
[http://dx.doi.org/10.1016/j.apcata.2010.03.030]
[113]
Yuan, J.; Antonietti, M. Poly (ionic liquid) s: Polymers expanding classical property profiles. Polymer (Guildf.), 2011, 52(7), 1469-1482.
[http://dx.doi.org/10.1016/j.polymer.2011.01.043]
[114]
Pereira, M.M.; Kurnia, K.A.; Sousa, F.L.; Silva, N.J.O.; Lopes-da-Silva, J.A.; Coutinho, J.A.P.; Freire, M.G. Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Phys. Chem. Chem. Phys., 2015, 17(47), 31653-31661.
[http://dx.doi.org/10.1039/C5CP05873B] [PMID: 26554705]
[115]
Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev., 2017, 46(4), 1124-1159.
[http://dx.doi.org/10.1039/C6CS00620E] [PMID: 28180218]
[116]
Liang, X. Poly (butanesulfonic acid pyrrole) coated magnetic iron oxide. Mater. Lett., 2014, 137, 447-449.
[http://dx.doi.org/10.1016/j.matlet.2014.09.083]
[117]
Noshadi, I.; Kanjilal, B.; Du, S.; Bollas, G.M.; Suib, S.L.; Provatas, A.; Liu, F.; Parnas, R.S. Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer. Appl. Energy, 2014, 129, 112-122.
[http://dx.doi.org/10.1016/j.apenergy.2014.04.090]
[118]
Wu, Z.; Chen, C.; Wang, L.; Wan, H.; Guan, G. Magnetic material grafted poly (phosphotungstate-based acidic ionic liquid) as efficient and recyclable catalyst for esterification of oleic acid. Ind. Eng. Chem. Res., 2016, 55(7), 1833-1842.
[http://dx.doi.org/10.1021/acs.iecr.5b02906]
[119]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Xu, C.C.; Yang, S. Magnetically recyclable basic polymeric ionic liquids for efficient transesterification of Firmiana platanifolia L.f. oil into biodiesel. Energy Convers. Manage., 2017, 153, 462-472.
[http://dx.doi.org/10.1016/j.enconman.2017.10.023]
[120]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Souzanchi, S.; Xu, C.C.; Yang, S. Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy, 2018, 223, 416-429.
[http://dx.doi.org/10.1016/j.apenergy.2018.04.061]
[121]
Sánchez-Vázquez, R.; Pirez, C.; Iglesias, J.; Wilson, K.; Lee, A.F.; Melero, J.A. Zr-containing hybrid organic–inorganic mesoporous materials: Hydrophobic acid catalysts for biodiesel production. ChemCatChem, 2013, 5(4), 994-1001.
[http://dx.doi.org/10.1002/cctc.201200527]
[122]
Fu, C.C.; Hung, T.C.; Su, C.H.; Suryani, D.; Wu, W.T.; Dai, W.C.; Yeh, Y.T. Immobilization of calcium oxide onto chitosan beads as a heterogeneous catalyst for biodiesel production. Polym. Int., 2011, 60(6), 957-962.
[http://dx.doi.org/10.1002/pi.3031]
[123]
Caetano, C.; Caiado, M.; Farinha, J.; Fonseca, I.; Ramos, A.; Vital, J.; Castanheiro, J. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chem. Eng. J., 2013, 230, 567-572.
[http://dx.doi.org/10.1016/j.cej.2013.06.050]
[124]
Xia, H-F.; Lin, D-Q.; Yao, S-J. Preparation and characterization of macroporous cellulose-tungsten carbide composite beads for expanded bed applications. J. Chromatogr. A, 2007, 1175(1), 55-62.
[http://dx.doi.org/10.1016/j.chroma.2007.10.004] [PMID: 17996880]
[125]
Ruckenstein, E.; Guo, W. Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules. Biotechnol. Prog., 2004, 20(1), 13-25.
[http://dx.doi.org/10.1021/bp030055f] [PMID: 14763818]
[126]
Hermanutz, F.; Gähr, F.; Uerdingen, E.; Meister, F.; Kosan, B. New developments in Dissolving and Processing of Cellulose in Ionic Liquids, Macromolecular Symposia; Wiley Online Library, 2008, pp. 23-27.
[127]
Zhang, D-Y.; Duan, M-H.; Yao, X-H.; Fu, Y-J.; Zu, Y-G. Preparation of a novel cellulose-based immobilized heteropoly acid system and its application on the biodiesel production. Fuel, 2016, 172, 293-300.
[http://dx.doi.org/10.1016/j.fuel.2015.12.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy