Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives

Author(s): Pattnaik Subhaswaraj, Asad Syed and Busi Siddhardha*

Volume 17, Issue 4, 2020

Page: [457 - 468] Pages: 12

DOI: 10.2174/1570163816666190715120708

Price: $65

Abstract

With the ever-increasing population and improvement in the healthcare system in the 21st century, the incidence of chronic microbial infections and associated health disorders has also increased at a striking pace. The ability of pathogenic microorganisms to form biofilm matrix aggravates the situation due to antibiotic resistance phenomenon resulting in resistance against conventional antibiotic therapy which has become a public health concern. The canonical Quorum Sensing (QS) signaling system hierarchically regulates the expression of an array of virulence phenotypes and controls the development of biofilm dynamics. It is imperative to develop an alternative, yet effective and non-conventional therapeutic approach, popularly known as “anti-infective therapy” which seems to be interesting. In this regard, targeting microbial QS associated virulence and biofilm development proves to be a quite astonishing approach in counteracting the paucity of traditional antibiotics. A number of synthetic and natural compounds are exploited for their efficacy in combating QS associated microbial infections but the bioavailability and biocompatibility limit their widespread applications. In this context, the nanotechnological intervention offers a new paradigm for widespread biomedical applications starting from targeted drug delivery to diagnostics for the diagnosis and treatment of infectious diseases, particularly to fight against microbial infections and antibiotics resistance in biofilms. A wide range of nanomaterials ranging from metallic nanoparticles to polymeric nanoparticles and recent advances in the development of carbon-based nanomaterials such as Carbon Nanotubes (CNTs), Graphene Oxide (GO) also immensely exhibited intrinsic antiinfective properties when targeted towards microbial infections and associated MDR phenomenon. In addition, the use of nano-based platforms as carriers emphatically increases the efficacy of targeted and sitespecific delivery of potential drug candidates for preventing microbial infections.

Keywords: Antimicrobials, anti-infectives, biofilm, MDR, nanotechnology, quorum sensing.

Graphical Abstract
[1]
Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 2015; 5: 30048.
[http://dx.doi.org/10.3402/iee.v5.30048] [PMID: 26615822]
[2]
Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014; 2: 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[3]
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[4]
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[5]
Ashkenazi S. Beginning and possibly the end of the antibiotic era. J Paediatr Child Health 2013; 49(3): E179-82.
[http://dx.doi.org/10.1111/jpc.12032] [PMID: 23252836]
[6]
Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health 2017; 10(4): 369-78.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[7]
Roca I, Akova M, Baquero F, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015; 6: 22-9.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[8]
Tacconelli E, Carrara E, Savoldi A, et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18(3): 318-27.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[9]
Rello J, Eshwara VK, Lagunes L, Alves J, Wunderink RG, Conway-Morris A, et al. A global priority list of the TOp TEn resistant Microorganisms (TOTEM) study at intensive care: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis 2018.
[PMID: 30426331]
[10]
Lai CC, Lee K, Xiao Y, et al. High burden of antimicrobial drug resistance in Asia. J Glob Antimicrob Resist 2014; 2(3): 141-7.
[http://dx.doi.org/10.1016/j.jgar.2014.02.007] [PMID: 27873720]
[11]
Chaudhary AS. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery. Acta Pharm Sin B 2016; 6(6): 552-6.
[http://dx.doi.org/10.1016/j.apsb.2016.06.004] [PMID: 27818921]
[12]
Yan YG, Peng QL, Gurunathan S. Effect of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int J Mol Sci 2017; 18: 569.
[http://dx.doi.org/10.3390/ijms18030569]
[13]
Rather IA, Kim BC, Bajpai VK, Park YH. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J Biol Sci 2017; 24(4): 808-12.
[http://dx.doi.org/10.1016/j.sjbs.2017.01.004] [PMID: 28490950]
[14]
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27(18): 4221-8.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.027] [PMID: 28827113]
[15]
Courvalin P. Why is antibiotic resistance a deadly emerging disease? Clin Microbiol Infect 2016; 22(5): 405-7.
[http://dx.doi.org/10.1016/j.cmi.2016.01.012] [PMID: 26806259]
[16]
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 2017; 8(4): 266-75.
[http://dx.doi.org/10.1016/j.jaim.2017.05.004] [PMID: 28869082]
[17]
Guan Y, Tsao CY, Quan DN, et al. Focusing quorum sensing signalling by nano-magnetic assembly. Environ Microbiol 2018; 20(7): 2585-97.
[http://dx.doi.org/10.1111/1462-2920.14284] [PMID: 29806719]
[18]
Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 2017; 10(8): 729-43.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.021] [PMID: 28942821]
[19]
Galloway WRJD, Hodgkinson JT, Bowden S, Welch M, Spring DR. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 2012; 20(9): 449-58.
[http://dx.doi.org/10.1016/j.tim.2012.06.003] [PMID: 22771187]
[20]
Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB. Quorum sensing in bacterial virulence. Microbiology 2010; 156(Pt 8): 2271-82.
[http://dx.doi.org/10.1099/mic.0.038794-0] [PMID: 20488878]
[21]
Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 2013; 67: 43-63.
[http://dx.doi.org/10.1146/annurev-micro-092412-155635] [PMID: 23682605]
[22]
Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv 2013; 31(2): 224-45.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.004] [PMID: 23142623]
[23]
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2(11) a012427
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[24]
Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 2012; 12(3): 2519-38.
[http://dx.doi.org/10.3390/s120302519] [PMID: 22736963]
[25]
Jolivet-Gougeon A, Bonnaure-Mallet M. Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol 2014; 11: 49-56.
[http://dx.doi.org/10.1016/j.ddtec.2014.02.003] [PMID: 24847653]
[26]
Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307(8): 481-9.
[http://dx.doi.org/10.1016/j.ijmm.2017.09.016] [PMID: 28950999]
[27]
Wilkins M, Hall-Stoodley L, Allan RN, Faust SN. New approaches to the treatment of biofilm-related infections. J Infect 2014; 69(Suppl. 1): S47-52.
[http://dx.doi.org/10.1016/j.jinf.2014.07.014] [PMID: 25240819]
[28]
Taylor PW. Alternative natural sources for a new generation of antibacterial agents. Int J Antimicrob Agents 2013; 42(3): 195-201.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.05.004] [PMID: 23796893]
[29]
Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 2014; 46: 412-29.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.047]
[30]
Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306(1): 48-58.
[http://dx.doi.org/10.1016/j.ijmm.2015.11.004] [PMID: 26687205]
[31]
Hauser AR, Mecsas J, Moir DT. Beyond antibiotics: New therapeutic approaches for bacterial infections. Clin Infect Dis 2016; 63(1): 89-95.
[http://dx.doi.org/10.1093/cid/ciw200] [PMID: 27025826]
[32]
Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the management of microbial infection-Overview and perspectives. Nano Today 2014; 9(4): 478-98.
[http://dx.doi.org/10.1016/j.nantod.2014.06.003] [PMID: 25267927]
[33]
Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, et al. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 2017; 10: 862-76.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.008]
[34]
Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine (Lond) 2017; 13(7): 2281-301.
[http://dx.doi.org/10.1016/j.nano.2017.06.015] [PMID: 28673854]
[35]
Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014; 43(6): 485-96.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.02.009] [PMID: 24721232]
[36]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[37]
Kumar MS, Das AP. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Adv Colloid Interface Sci 2017; 249: 53-65.
[http://dx.doi.org/10.1016/j.cis.2017.06.010] [PMID: 28668171]
[38]
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP nanoparticles loaded with quercetin as novel bacterial quorum sensing inhibitors. Molecules 2017; 22(11): 1975.
[http://dx.doi.org/10.3390/molecules22111975] [PMID: 29140285]
[39]
Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 2015; 5: 13719.
[http://dx.doi.org/10.1038/srep13719] [PMID: 26347993]
[40]
Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. J Basic Microbiol 2017; 57(3): 193-203.
[http://dx.doi.org/10.1002/jobm.201600175] [PMID: 27874198]
[41]
Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 2014; 169(12): 888-96.
[http://dx.doi.org/10.1016/j.micres.2014.05.005] [PMID: 24958247]
[42]
Al-Shabib NA, Husain FM, Ahmed F, et al. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 2016; 6: 36761.
[http://dx.doi.org/10.1038/srep36761] [PMID: 27917856]
[43]
Akyuz L, Kaya M, Mujtaba M, et al. Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int J Biol Macromol 2018; 115: 438-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.040] [PMID: 29680504]
[44]
Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven polymer nanofiber coatings that inhibit quorum sensing in Staphylococcus aureus: Toward new nonbactericidal approaches to infection control. ACS Infect Dis 2017; 3(4): 271-80.
[http://dx.doi.org/10.1021/acsinfecdis.6b00173] [PMID: 28118541]
[45]
Pattnaik S, Barik S, Muralitharan G, Busi S. Ferulic acid encapsulated chitosan-tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol 2018; 12(8): 1056-61.
[http://dx.doi.org/10.1049/iet-nbt.2018.5114] [PMID: 30964013]
[46]
Gupta D, Singh A, Khan AU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 2017; 12(1): 454.
[http://dx.doi.org/10.1186/s11671-017-2222-6] [PMID: 28709374]
[47]
Suchyta DJ, Schoenfisch MH. Controlled release of nitric oxide from liposomes. ACS Biomater Sci Eng 2017; 3(9): 2136-43.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00255] [PMID: 32309633]
[48]
Ding T, Li T, Li J. Impact of curcumin liposomes with anti-quorum sensing properties against foodborne pathogens Aeromonas hydrophila and Serratia grimesii. Microb Pathog 2018; 122: 137-43.
[http://dx.doi.org/10.1016/j.micpath.2018.06.009] [PMID: 29885365]
[49]
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15(12): 740-55.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[50]
Kalishwaralal K. Silver nanoparticles impede the biofilm formation by Pseu-domonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2010; 79(2): 340-4.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[51]
Lotha R, Shamprasad BR, Sundaramoorthy NS, Ganapathy R, Nagarajan S, Sivasubramanian A. Zero valent silver nanoparticles capped with capsaicinoids containing Capsicum annuum extract, exert potent anti-biofilm effect on food borne pathogen Staphylococcus aureus and curtail planktonic growth on a zebrafish infection model. Microb Pathog 2018; 124: 291-300.
[http://dx.doi.org/10.1016/j.micpath.2018.08.053] [PMID: 30149130]
[52]
Kalishwaralal K, Deepak V, Ram Kumar Pandian S, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 2010; 77(2): 257-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[53]
Manju S, Malaikozhundan B, Vijayakumar S, et al. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 2016; 91: 129-35.
[http://dx.doi.org/10.1016/j.micpath.2015.11.021] [PMID: 26703114]
[54]
Rajkumari J, Busi S, Vasu AC, Reddy P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb Pathog 2017; 107: 261-9.
[http://dx.doi.org/10.1016/j.micpath.2017.03.044] [PMID: 28377235]
[55]
Ramasamy M, Lee JH, Lee J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int J Nanomedicine 2017; 12: 2813-28.
[http://dx.doi.org/10.2147/IJN.S132784] [PMID: 28435260]
[56]
Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 2015; 29: 235-41.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.020] [PMID: 25175509]
[57]
Khiralla GM, El-Deeb BA. Antimicrobial and anti-biofilm effects of selenium nanoparticles on some foodborne pathogens. Lebensm Wiss Technol 2015; 63: 1001-7.
[http://dx.doi.org/10.1016/j.lwt.2015.03.086]
[58]
Prateeksha, Singh BR, Shoeb M, Sharma S, et al. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation Front Cell Infect Microbiol 2017; 7: 93.
[59]
Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater 2011; 7(6): 2579-84.
[http://dx.doi.org/10.1016/j.actbio.2011.03.018] [PMID: 21421087]
[60]
Divya M, Vaseeharan B, Abinaya M, et al. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J Photochem Photobiol B 2018; 178: 211-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.008] [PMID: 29156349]
[61]
Ishwarya R, Vaseeharan B, Kalyani S, et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 2018; 178: 249-58.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.006] [PMID: 29169140]
[62]
Liakos I, Grumezescu AM, Holban AM. Magnetite nanostructures as novel strategies for anti-infectious therapy. Molecules 2014; 19(8): 12710-26.
[http://dx.doi.org/10.3390/molecules190812710] [PMID: 25140449]
[63]
Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E. Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 2012; 7: 209.
[http://dx.doi.org/10.1186/1556-276X-7-209] [PMID: 22490675]
[64]
Grumezescu AM, Cotar AI, Andronescu E, Ficai A, Ghitulica CD, Grumezescu V, et al. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells. J Nanopart Res 2013; 15: 1766.
[http://dx.doi.org/10.1007/s11051-013-1766-3]
[65]
Kim MH, Yamayoshi I, Mathew S, Lin H, Nayfach J, Simon SI. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 2013; 41(3): 598-609.
[http://dx.doi.org/10.1007/s10439-012-0698-x] [PMID: 23149904]
[66]
Bilcu M, Grumezescu AM, Oprea AE, et al. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules 2014; 19(11): 17943-56.
[http://dx.doi.org/10.3390/molecules191117943] [PMID: 25375335]
[67]
Omwenga EO, Hensel A, Shitandi A, Goycoolea FM. Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E.coli Top 10 biosensor. Colloids Surf B Biointerfaces 2018; 164: 125-33.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.019] [PMID: 29413589]
[68]
Qin X, Kräft T, Goycoolea FM. Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids Surf B Biointerfaces 2018; 169: 453-61.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.054] [PMID: 29852434]
[69]
Subhaswaraj P, Barik S, Macha C, Chiranjeevi PV, Siddhardha B. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Lebensm Wiss Technol 2018; 97: 752-9.
[http://dx.doi.org/10.1016/j.lwt.2018.08.011]
[70]
Crucho CIC, Barros MT. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer (Guildf) 2015; 68: 41-6.
[http://dx.doi.org/10.1016/j.polymer.2015.04.083]
[71]
Sajid M, Khan MSA, Cameotra SS, Ahmad I. Drug delivery systems that eradicate and/or prevent biofilm formationAnti-biofilm Agents. Berlin: Springer-Verlag Inc. 2014; pp. 407-24.
[72]
Tan SY, Chew SC, Tan SYY, Givskov M, Yang L. Emerging frontiers in detection and control of bacterial biofilms. Curr Opin Biotechnol 2014; 26: 1-6.
[http://dx.doi.org/10.1016/j.copbio.2013.08.002] [PMID: 24679251]
[73]
Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 2015; 209: 150-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.028] [PMID: 25913364]
[74]
Dos Santos Ramos MA, Da Silva PB, Spósito L, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 2018; 13: 1179-213.
[http://dx.doi.org/10.2147/IJN.S146195] [PMID: 29520143]
[75]
Cui H, Zhou H, Lin L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control 2016; 61: 92-8.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.034]
[76]
Cui H, Li W, Li C, Vittayapadung S, Lin L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016; 32(2): 215-25.
[http://dx.doi.org/10.1080/08927014.2015.1134516] [PMID: 26838161]
[77]
Moghadas-Sharif N, Fazly Bazzaz BS, Khameneh B, Malaekeh-Nikouei B. The effect of nanoliposomal formulations on Staphylococcus epidermidis biofilm. Drug Dev Ind Pharm 2015; 41(3): 445-50.
[http://dx.doi.org/10.3109/03639045.2013.877483] [PMID: 24405445]
[78]
Khan SN, Khan S, Iqbal J, Khan R, Khan AU. Enhanced killing and anti-biofilm activity of encapsulated cinnamaldehyde against Candida albicans. Front Microbiol 2017; 8: 1641.
[http://dx.doi.org/10.3389/fmicb.2017.01641] [PMID: 28900419]
[79]
Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald PJ. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One 2015; 10(6) e0131806
[http://dx.doi.org/10.1371/journal.pone.0131806]] [PMID: 26125555]
[80]
Hou Y, Wang Z, Zhang P, et al. Lysozyme associated liposomal gentamicin inhibits bacterial biofilm. Int J Mol Sci 2017; 18(4): 784.
[http://dx.doi.org/10.3390/ijms18040784] [PMID: 28397768]
[81]
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013; 65(15): 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[82]
Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 2017; 12: 2957-78.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[83]
Qi X, Gunawan P, Xu R, Chang MW. Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chem Eng Sci 2012; 84: 552-6.
[http://dx.doi.org/10.1016/j.ces.2012.08.054]
[84]
Qi X, Poernomo G, Wang K, et al. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 2011; 3(4): 1874-80.
[http://dx.doi.org/10.1039/c1nr10024f] [PMID: 21431164]
[85]
Pistone A, Visco AM, Galtieri G, Iannazzo D, Espro C, Mero FM, et al. Polyester resin and carbon nanotubes based nanocomposite as new-generation coating to prevent biofilm formation. Int J Polymer Anal Charact 2016; 21(4): 327-36.
[http://dx.doi.org/10.1080/1023666X.2016.1155826]
[86]
Dong X, Yang L. Inhibitory effects of single-walled carbon nanotubes on biofilm formation from Bacillus anthracis spores. Biofouling 2014; 30(10): 1165-74.
[http://dx.doi.org/10.1080/08927014.2014.975797] [PMID: 25389559]
[87]
Rodrigues DF, Elimelech M. Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 2010; 44(12): 4583-9.
[http://dx.doi.org/10.1021/es1005785] [PMID: 20465305]
[88]
Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 2014; 30(10): 1281-94.
[http://dx.doi.org/10.1080/08927014.2014.983093] [PMID: 25431994]
[89]
de Faria AF, de Moraes ACM, Marcato PD, Martinez DST, Duran N, Filho AGS, et al. Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and anti-biofilm activity. J Nanopart Res 2014; 16: 2110.
[http://dx.doi.org/10.1007/s11051-013-2110-7]
[90]
de Faria AF, Martinez DST, Meira SMM, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces 2014; 113: 115-24.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.006] [PMID: 24060936]
[91]
Mejías Carpio IE, Santos CM, Wei X, Rodrigues DF. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012; 4(15): 4746-56.
[http://dx.doi.org/10.1039/c2nr30774j] [PMID: 22751735]
[92]
Baker S, Pasha A, Satish S. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens. Saudi Pharm J 2017; 25(1): 44-51.
[http://dx.doi.org/10.1016/j.jsps.2015.06.011] [PMID: 28223861]
[93]
Lee ALZ, Ng VWL, Wang W, Hedrick JL, Yang YY. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 2013; 34(38): 10278-86.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.029] [PMID: 24090835]
[94]
Ng VWL, Chan JMW, Sardon H, et al. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 2014; 78: 46-62.
[http://dx.doi.org/10.1016/j.addr.2014.10.028] [PMID: 25450263]
[95]
Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 2012; 7: 1805-18.
[PMID: 22619529]
[96]
Biel MA, Sievert C, Usacheva M, et al. Reduction of Endotracheal Tube Biofilms Using Antimicrobial Photodynamic Therapy. Lasers Surg Med 2011; 43(7): 586-90.
[http://dx.doi.org/10.1002/lsm.21103] [PMID: 21987599]
[97]
Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 2014; 42(1): 1-7.
[http://dx.doi.org/10.1016/j.biologicals.2013.11.001] [PMID: 24309094]
[98]
Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomedicine 2015; 10: 1953-60.
[http://dx.doi.org/10.2147/IJN.S76150] [PMID: 25834427]
[99]
Vyshnava SS, Kanderi DK, Panjala SP, et al. Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an In silico approach. Appl Biochem Biotechnol 2016; 180(3): 426-37.
[http://dx.doi.org/10.1007/s12010-016-2107-7] [PMID: 27209601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy