Review Article

Circulating and Tissue microRNAs as Biomarkers for Ovarian Cancer Prognosis

Author(s): Seyed Mostafa Parizadeh, Reza Jafarzadeh-Esfehani, Maryam Ghandehari, Malihe Hasanzadeh, Seyed Mohammad Reza Parizadeh, Seyed Mahdi Hassanian, Afsaneh Rezaei-Kalat, Amirsaeed Sabeti Aghabozorgi, Rana Rahimi-Kakhki, Bita Zargaran, Gordon A Ferns and Amir Avan*

Volume 20, Issue 14, 2019

Page: [1447 - 1460] Pages: 14

DOI: 10.2174/1389450120666190708100308

Price: $65

Abstract

Ovarian cancer (OC) is one of the most common cancers globally with a high rate of cancer- associated mortality. OC may be classified into epithelial cell neoplasms, germ cell neoplasms and stromal cell neoplasms. The five-year survival in the early and advanced stages of disease is approximately 90% and 15%, respectively. microRNAs are short, single-stranded, non-coding ribonucleic acid (RNA). miRNAs play critical roles in post transcriptionally regulations of gene expression. miRNAs are found in different tissues and body fluids. In carcinogenesis the expression of miRNAs are altered. Recent studies have revealed that there is a relationship between alteration of miRNAs expression and the prognosis of patients with OC. The aim of this review was to summarize the findings of recent studies that have investigated the expression of circulating and tissue miRNAs as novel biomarkers in the prognosis of OC.

Keywords: microRNA, ovarian cancer, biomarker, prognosis, tissue, circulating, ribonucleic.

Graphical Abstract
[1]
Ferlay J. GLOBOCAN 2000.. Cancer incidence, mortality and prevalence worldwide, version 1.0. IARC cancerbase 2001.
[2]
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017; 14(1): 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[3]
Artioli G, Borgato L, Ausoni S, Azzarello G. Ovarian cancer: BRCA genetics reveals targets for new therapies. J Genet Syndr Gene Ther 2014; 5(1): 1.
[4]
Stratton JF, Pharoah P, Smith SK, Easton D, Ponder BA. A systematic review and meta-analysis of family history and risk of ovarian cancer. Br J Obstet Gynaecol 1998; 105(5): 493-9.
[http://dx.doi.org/10.1111/j.1471-0528.1998.tb10148.x] [PMID: 9637117]
[5]
Jessmon P, Boulanger T, Zhou W, Patwardhan P. Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17(5): 427-37.
[http://dx.doi.org/10.1080/14737140.2017.1299575] [PMID: 28277806]
[6]
Agah J, Jafarzadeh Esfehani R, Kamalimanesh B, et al. Mismanagement of a huge ovarian serous cystadenoma in a young girl; a case report. J Midwifery Reproduc Health 2015; 3(1): 315-7.
[7]
Kamalimanesh B, Esfehani RJ, Agah J. Papillary serous cystadenoma of ovary: A huge ovarian cyst complicating the pregnancy. Cases Obstet Gynecol 2016; 3(4): 121-4.
[8]
Kinose Y, Sawada K, Nakamura K, Kimura T. The role of microRNAs in ovarian cancer. BioMed research international 2014 2014.
[http://dx.doi.org/10.1155/2014/249393]
[9]
Homaei-Shandiz F, Jafarzadeh-Esfehani R, Moazzen N, Amirabadi A. Inflammatory myofibroblastic tumor of salpinx: a very rare case treated with a less aggressive method. Iran J Cancer Prev 2014; 7(4): 244-7.
[PMID: 25628846]
[10]
Ledermann J, Raja F, Fotopoulou C, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. IAnnals of oncology 2013; 24(suppl_6): vi24-32.
[11]
McDaniel AS, Stall JN, Hovelson DH, et al. Next-generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol 2015; 1(8): 1128-32.
[http://dx.doi.org/10.1001/jamaoncol.2015.1618] [PMID: 26181193]
[12]
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014; 384(9951): 1376-88.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[13]
Ferlay J, Soerjomataram I, Ervik M, et al. Cancer incidence and mortality worldwide: IARC Cancer Base No 11. France: International Agency for Research on Cancer 2013.
[14]
Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2017; 41: 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[15]
Weiderpass E, Tyczynski JE. Epidemiology of patients with ovarian cancer with and without a BRCA1/2 mutation. Mol Diagn Ther 2015; 19(6): 351-64.
[http://dx.doi.org/10.1007/s40291-015-0168-x] [PMID: 26476542]
[16]
Au KK, Josahkian JA, Francis J-A, Squire JA, Koti M. Current state of biomarkers in ovarian cancer prognosis. Future Oncol 2015; 11(23): 3187-95.
[http://dx.doi.org/10.2217/fon.15.251] [PMID: 26551891]
[17]
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284-96.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[18]
Lee J-Y, Jeon I, Kim JW, et al. Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies. Int J Gynecol Cancer 2013; 23(3): 402-12.
[http://dx.doi.org/10.1097/IGC.0b013e31828189b2] [PMID: 23354371]
[19]
Morgan R, Armstrong D, Alvarez R, et al. NCCN clinical practice guidelines in oncology. ovarian cancer, including fallopian tube cancer and primary peritoneal cancer. Version 22015; 2016
[20]
Heintz A, Odicino F, Maisonneuve P, et al. Carcinoma of the ovary. Int J Gynaecol Obstet 2006; 95: S161-92.
[http://dx.doi.org/10.1016/S0020-7292(06)60033-7]
[21]
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[22]
Parizadeh SM, Jafarzadeh-Esfehani R, Avan A, et al. The prognostic and predictive value of microRNAs in patients with H. pylori-positive gastric cancer. Curr Pharm Des 2018; 24(39): 4639-45.
[http://dx.doi.org/10.2174/1381612825666190110144254] [PMID: 30636577]
[23]
Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2): 647-58.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[24]
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 2010; 39(3): 373-84.
[http://dx.doi.org/10.1016/j.molcel.2010.07.011] [PMID: 20705240]
[25]
Kinose Y, Sawada K, Nakamura K. Kimura TJBri.. The role of microRNAs in ovarian cancer. 2014; 2014.
[26]
Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. 2007; 67(18): 8699-707..
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1936]
[27]
Calura E, Fruscio R, Paracchini L, et al. MiRNA landscape in stage I epithelial ovarian cancer defines the histotype specificities. clincanres 2013; 2013; 0360..
[28]
Wu Q, Guo R, Lin M, et al. MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting Ecadherin repressor ZEB2. 2011;; 122(1): 149-54.
[29]
Liu G, Sun Y, Ji P, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6–FOXM1 axis in ovarian cancer. 2014; 233(3): 308-18.
[30]
He J, Jing Y, Li W, et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. 2013; 8(2)e56647.
[http://dx.doi.org/10.1371/journal.pone.0056647]
[31]
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, et al. Circulating exosomes as potential biomarkers in cardiovascular disease. Curr Pharm Des 2018; 24(37): 4436-44.
[32]
Turchinovich A, Weiz L, Langheinz A. Burwinkel BJNar. Characterization of extracellular circulating. MicroRNA 2011; 39(16): 7223-33.
[PMID: 21609964]
[33]
He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med 2017; 13(4): 1203-8.
[http://dx.doi.org/10.3892/etm.2017.4118] [PMID: 28413458]
[34]
Sun C, Li N, Yang Z, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013; 105(22): 1750-8.
[http://dx.doi.org/10.1093/jnci/djt302] [PMID: 24168967]
[35]
Sun H, Shao Y, Huang J, et al. Prognostic value of microRNA-9 in cancers: a systematic review and meta-analysis. Oncotarget 2016; 7(41): 67020-32.
[http://dx.doi.org/10.18632/oncotarget.11466] [PMID: 27563807]
[36]
Mao L, Liu S, Hu L, et al. miR-30 Family: A promising regulator in development and disease. BioMed Res Int 2018; 20189623412
[http://dx.doi.org/10.1155/2018/9623412] [PMID: 30003109]
[37]
Zhou J, Gong G, Tan H, et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep 2015; 33(6): 2915-23.
[http://dx.doi.org/10.3892/or.2015.3937] [PMID: 25962395]
[38]
Shi M, Mu Y, Zhang H, et al. MicroRNA-200 and microRNA-30 family as prognostic molecular signatures in ovarian cancer: A meta-analysis. Medicine (Baltimore) 2018; 97(32)e11505
[http://dx.doi.org/10.1097/MD.0000000000011505] [PMID: 30095616]
[39]
Xiaohong Z, Lichun F, Na X, et al. MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol 2016; 37(11): 14989-97.
[http://dx.doi.org/10.1007/s13277-016-5415-1] [PMID: 27655286]
[40]
Shao Y, Gu W, Ning Z, et al. Evaluating the Prognostic Value of microRNA-203 in Solid Tumors Based on a Meta-Analysis and the Cancer Genome Atlas (TCGA) Datasets. Cell Physiol Biochem 2017; 41(4): 1468-80.
[http://dx.doi.org/10.1159/000470649] [PMID: 28351024]
[41]
Eitan R, Kushnir M, Lithwick-Yanai G, et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 2009; 114(2): 253-9.
[http://dx.doi.org/10.1016/j.ygyno.2009.04.024] [PMID: 19446316]
[42]
Li W, Liu Z, Chen L, Zhou L, Yao Y. MicroRNA-23b is an independent prognostic marker and suppresses ovarian cancer progression by targeting runt-related transcription factor-2. FEBS Lett 2014; 588(9): 1608-15.
[http://dx.doi.org/10.1016/j.febslet.2014.02.055] [PMID: 24613919]
[43]
Su L, Liu M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol Lett 2018; 16(1): 262-6.
[http://dx.doi.org/10.3892/ol.2018.8669] [PMID: 29928410]
[44]
Calura E, Paracchini L, Fruscio R, et al. A prognostic regulatory pathway in stage I epithelial ovarian cancer: new hints for the poor prognosis assessment. Ann Oncol 2016; 27(8): 1511-9.
[http://dx.doi.org/10.1093/annonc/mdw210] [PMID: 27194815]
[45]
Cha SY, Choi YH, Hwang S, Jeong JY, An HJ. Clinical impact of micrornas associated with cancer stem cells as a prognostic factor in ovarian carcinoma. J Cancer 2017; 8(17): 3538-47.
[http://dx.doi.org/10.7150/jca.20348] [PMID: 29151939]
[46]
Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microRNA-424-5p directly targets CCNE1 as potential prognostic markers in epithelial ovarian cancer. Cell Cycle 2018; 17(3): 309-18.
[http://dx.doi.org/10.1080/15384101.2017.1407894] [PMID: 29228869]
[47]
Lin Y, Xu T, Zhou S, Cui M. MicroRNA-363 inhibits ovarian cancer progression by inhibiting NOB1. Oncotarget 2017; 8(60): 101649-58.
[http://dx.doi.org/10.18632/oncotarget.21417] [PMID: 29254193]
[48]
Shapira I, Oswald M, Lovecchio J, et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br J Cancer 2014; 110(4): 976-83.
[http://dx.doi.org/10.1038/bjc.2013.795] [PMID: 24366298]
[49]
Xu YZ, Xi QH, Ge WL, Zhang XQ. Identification of serum microRNA-21 as a biomarker for early detection and prognosis in human epithelial ovarian cancer. Asian Pac J Cancer Prev 2013; 14(2): 1057-60.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.1057] [PMID: 23621186]
[50]
Wan WN, Zhang YQ, Wang XM, et al. Down-regulated miR-22 as predictive biomarkers for prognosis of epithelial ovarian cancer. Diagn Pathol 2014; 9(178): 014-0178..
[http://dx.doi.org/10.1186/s13000-014-0178-8]
[51]
Wang X, Meng X, Li H, et al. MicroRNA-25 expression level is an independent prognostic factor in epithelial ovarian cancer. Clin Transl Oncol 2014; 16(11): 954-8.
[http://dx.doi.org/10.1007/s12094-014-1178-6] [PMID: 24696291]
[52]
Bagnoli M, Canevari S, Califano D, et al. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncol 2016; 17(8): 1137-46.
[http://dx.doi.org/10.1016/S1470-2045(16)30108-5] [PMID: 27402147]
[53]
Wang Y, Li L, Qu Z, et al. The expression of miR-30a* and miR-30e* is associated with a dualistic model for grading ovarian papillary serious carcinoma. Int J Oncol 2014; 44(6): 1904-14.
[http://dx.doi.org/10.3892/ijo.2014.2359] [PMID: 24676806]
[54]
Sestito R, Cianfrocca R, Rosanò L, et al. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget 2016; 7(4): 4009-23.
[http://dx.doi.org/10.18632/oncotarget.6546] [PMID: 26675258]
[55]
Zhao H, Ding Y, Tie B, et al. miRNA expression pattern associated with prognosis in elderly patients with advanced OPSC and OCC. Int J Oncol 2013; 43(3): 839-49.
[http://dx.doi.org/10.3892/ijo.2013.1988] [PMID: 23787480]
[56]
Lee H, Park CS, Deftereos G, et al. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 2012; 10(1): 174.
[http://dx.doi.org/10.1186/1477-7819-10-174] [PMID: 22925189]
[57]
Wang J, Yu M, Guan S, et al. Prognostic significance of microRNA-100 in solid tumors: an updated meta-analysis. OncoTargets Ther 2017; 10: 493-502.
[http://dx.doi.org/10.2147/OTT.S122774] [PMID: 28176958]
[58]
Zuberi M, Khan I, Mir R, et al. Utility of serum mir-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One 2016; 11(4)e0153902
[http://dx.doi.org/10.1371/journal.pone.0153902] [PMID: 27092777]
[59]
Zhu T, Gao W, Chen X, et al. A Pilot study of circulating microrna-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer 2017; 27(1): 3-10.
[http://dx.doi.org/10.1097/IGC.0000000000000846] [PMID: 27636713]
[60]
Fukagawa S, Miyata K, Yotsumoto F, et al. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci 2017; 108(5): 886-96.
[http://dx.doi.org/10.1111/cas.13210] [PMID: 28231414]
[61]
Gao YC, Wu J. MicroRNA-200c and microRNA-141 as potential diagnostic and prognostic biomarkers for ovarian cancer. Tumour Biol 2015; 36(6): 4843-50.
[http://dx.doi.org/10.1007/s13277-015-3138-3] [PMID: 25636451]
[62]
Kim TH, Song JY, Park H, et al. miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett 2015; 356(2 Pt B): 937-45.
[http://dx.doi.org/10.1016/j.canlet.2014.11.011] [PMID: 25444913]
[63]
Liang H, Jiang Z, Xie G, Lu Y. Serum microRNA-145 as a novel biomarker in human ovarian cancer. Tumour Biol 2015; 36(7): 5305-13.
[http://dx.doi.org/10.1007/s13277-015-3191-y] [PMID: 25722112]
[64]
Gong L, Wang C, Gao Y, Wang J. Decreased expression of microRNA-148a predicts poor prognosis in ovarian cancer and associates with tumor growth and metastasis. Biomed Pharmacother 2016; 83: 58-63.
[http://dx.doi.org/10.1016/j.biopha.2016.05.049] [PMID: 27470550]
[65]
Sun L, Zhai R, Zhang L, Zhao S. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett 2018; 15(5): 7328-34.
[http://dx.doi.org/10.3892/ol.2018.8240] [PMID: 29731888]
[66]
Jin M, Yang Z, Ye W, Xu H, Hua X. MicroRNA-150 predicts a favorable prognosis in patients with epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor ZEB1. PLoS One 2014; 9(8)e103965
[http://dx.doi.org/10.1371/journal.pone.0103965] [PMID: 25090005]
[67]
Chen H, Zhang L, Zhang L, Du J, Wang H, Wang B. MicroRNA-183 correlates cancer prognosis, regulates cancer proliferation and bufalin sensitivity in epithelial ovarian caner. Am J Transl Res 2016; 8(4): 1748-55.
[PMID: 27186298]
[68]
Cheng WT, Rosario R, Muthukaruppan A, et al. MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers. Clin Epigenetics 2017; 9(72): 017-0372..
[http://dx.doi.org/10.1186/s13148-017-0372-0]
[69]
Qin CZ, Lou XY, Lv QL, et al. MicroRNA-184 acts as a potential diagnostic and prognostic marker in epithelial ovarian cancer and regulates cell proliferation, apoptosis and inflammation. Pharmazie 2015; 70(10): 668-73.
[PMID: 26601424]
[70]
Fan Y, Fan J, Huang L, et al. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol 2015; 8(4): 4132-7.
[PMID: 26097603]
[71]
Zuberi M, Khan I, Gandhi G, Ray PC, Saxena A. The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol 2016; 37(8): 11259-66.
[http://dx.doi.org/10.1007/s13277-016-4993-2] [PMID: 26951510]
[72]
Hu X, Macdonald DM, Huettner PC, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009; 114(3): 457-64.
[http://dx.doi.org/10.1016/j.ygyno.2009.05.022] [PMID: 19501389]
[73]
Cao Q, Lu K, Dai S, Hu Y, Fan W. Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int J Clin Exp Pathol 2014; 7(5): 2392-401.
[PMID: 24966949]
[74]
Meng X, Müller V, Milde-Langosch K, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016; 7(13): 16923-35.
[http://dx.doi.org/10.18632/oncotarget.7850] [PMID: 26943577]
[75]
Marchini S, Cavalieri D, Fruscio R, et al. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol 2011; 12(3): 273-85.
[http://dx.doi.org/10.1016/S1470-2045(11)70012-2] [PMID: 21345725]
[76]
Vilming Elgaaen B, Olstad OK, Haug KBF, et al. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer 2014; 14(1): 80.
[http://dx.doi.org/10.1186/1471-2407-14-80] [PMID: 24512620]
[77]
Hong F, Li Y, Xu Y, Zhu L. Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J Int Med Res 2013; 41(1): 64-71.
[http://dx.doi.org/10.1177/0300060513475759] [PMID: 23569131]
[78]
Li J, Li Q, Huang H, et al. Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer. Int J Oncol 2017; 7(10)
[http://dx.doi.org/10.3892/ijo.2017.3898] [PMID: 28350128]
[79]
Wang S, Zhao X, Wang J, et al. Upregulation of microRNA-203 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. Med Oncol 2013;; 30(3): 013-0681..
[http://dx.doi.org/10.1007/s12032-013-0681-x]
[80]
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15(5): 7571-8.
[http://dx.doi.org/10.3892/ol.2018.8313] [PMID: 29725462]
[81]
Dai C, Xie Y, Zhuang X, Yuan Z. MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother 2018; 104: 763-70.
[http://dx.doi.org/10.1016/j.biopha.2018.05.077] [PMID: 29807226]
[82]
Cao J, Cai J, Huang D, et al. miR-335 represents an independent prognostic marker in epithelial ovarian cancer. Am J Clin Pathol 2014; 141(3): 437-42.
[http://dx.doi.org/10.1309/AJCPLYTZGB54ISZC] [PMID: 24515774]
[83]
Meng X, Joosse SA, Müller V, et al. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients. Br J Cancer 2015; 113(9): 1358-66.
[http://dx.doi.org/10.1038/bjc.2015.340] [PMID: 26393886]
[84]
Ling S, Ruiqin M, Guohong Z, Ying W. Expression and prognostic significance of microRNA-451 in human epithelial ovarian cancer. Eur J Gynaecol Oncol 2015; 36(4): 463-8.
[PMID: 26390704]
[85]
Yang A, Wang X, Yu C, et al. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer. Oncol Lett 2017; 14(3): 3177-84.
[http://dx.doi.org/10.3892/ol.2017.6501] [PMID: 28927063]
[86]
Wang W, Ren F, Wu Q, et al. MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun 2014; 449(4): 432-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.053] [PMID: 24858688]
[87]
Cong J, Liu R, Wang X, et al. Low miR-498 expression levels are associated with poor prognosis in ovarian cancer. Eur Rev Med Pharmacol Sci 2015; 19(24): 4762-5.
[PMID: 26744867]
[88]
Yu X, Zhang X, Bi T, et al. MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol 2013; 34(6): 3501-8.
[http://dx.doi.org/10.1007/s13277-013-0928-3] [PMID: 23836287]
[89]
Zhang J, Liu W, Shen F, et al. The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis 2018; 9(9): 884.
[http://dx.doi.org/10.1038/s41419-018-0946-6] [PMID: 30158641]
[90]
Chen Z, Zhu J, Zhu Y, Wang J. MicroRNA-616 promotes the progression of ovarian cancer by targeting TIMP2. Oncol Rep 2018; 39(6): 2960-8.
[http://dx.doi.org/10.3892/or.2018.6368] [PMID: 29658596]
[91]
Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor prognosis for patients with ovarian cancer. Oncol Lett 2017; 14(4): 4277-81.
[http://dx.doi.org/10.3892/ol.2017.6714] [PMID: 28943939]
[92]
Su J-L, Chen PB, Chen Y-H, et al. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 2010; 70(12): 5096-108.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4148] [PMID: 20501832]
[93]
Moazzeni H, Najafi A, Khani MJM. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. 2017 2010; 34: 45-52..
[94]
Wang C, Ouyang Y, Lu M, Wei J, Zhang H. [miR-141-3p regulates the expression of androgen receptor by targeting its 3'UTR in prostate cancer LNCaP cells] J Mole Immunol 2015; 31(6): 736-9.
[95]
Yang D, Zhan M, Chen T, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 2017; 7: 43109.
[http://dx.doi.org/10.1038/srep43109] [PMID: 28256505]
[96]
Zhang H, Zuo Z, Lu X, Wang L, Wang H. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. 2012; 27(2): 594-8..
[97]
Cao J, Cai J, Huang D, Han Q, Yang Q, Li T, et al. miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. 2013; 30(2): 701-6..
[98]
Wang B, Li X, Zhao G, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J Exp Clin Cancer Res 2018; 37(1): 235.
[http://dx.doi.org/10.1186/s13046-018-0906-0] [PMID: 30241553]
[99]
Wang J. Role of miR-193a-5p in the proliferation and apoptosis of hepatocellular carcinoma. Erfm, sciences 2018; 22 (21): 7233-9..
[100]
Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, et al. MicroRNA-195- 5p is a potential diagnostic and therapeutic target for breast cancer. 2014; 31(3): 1096-2..
[101]
Yan J, Jiang J-y, Meng X-N, Xiu Y-L. MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. 2016; 35(1): 31..
[102]
Duan S, Dong X, Hai J, et al. MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. 2018; 107: 712-20..
[103]
Sun T-Y, Xie H-J, He H, Li Z, Kong L-F. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am J Transl Res 2016; 8(2): 1037-46.
[PMID: 27158389]
[104]
Corney DC, Hwang C-I, Matoso A, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 2010; 16(4): 1119-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2642] [PMID: 20145172]
[105]
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2016; 7(38): 62778-88.
[http://dx.doi.org/10.18632/oncotarget.11294] [PMID: 27542202]
[106]
Wurz K, Garcia RL, Goff BA, et al. MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 2010; 49(7): 577-84.
[http://dx.doi.org/10.1002/gcc.20768] [PMID: 20461750]
[107]
Li L, Gao R, Yu Y, et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep 2018; 8(1): 375.
[http://dx.doi.org/10.1038/s41598-017-18559-5] [PMID: 29321561]
[108]
Yuan J, Wang K, Xi M. MiR-494 Inhibits Epithelial Ovarian Cancer Growth by Targeting c-Myc. Med Sci Monit 2016; 22: 617-24.
[http://dx.doi.org/10.12659/MSM.897288] [PMID: 26908019]
[109]
Hang W, Feng Y, Sang Z, et al. Downregulation of miR-145-5p in cancer cells and their derived exosomes may contribute to the development of ovarian cancer by targeting CT. Int J Mol Med 2019; 43(1): 256-66.
[PMID: 30365097]
[110]
Chen D, Wu D, Shao K, et al. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. jotr 2017; 9(9): 4308..
[111]
Wang L, Wu X, Wang B, Wang Q, Han L. Mechanisms of miR-145 regulating invasion and metastasis of ovarian carcinoma. Am J Transl Res 2017; 9(7): 3443-51.
[PMID: 28804560]
[112]
Liu J, Zhang X, Huang Y, et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. 2019; 17(2): 1453-60..
[113]
Ibrahim FF, Jamal R, Syafruddin SE, et al. MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J Ovarian Res 2015; 12(8): 56.
[114]
Lee H, Kim C, Kang H, et al. microRNA-200a-3p increases 5- fluorouracil resistance by regulating dual specificity phosphatase 6 expression. 2017; 49(5)e327.
[115]
Lee M, Kim EJ, Jeon MJ. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2016; 7(8): 8726-42.
[http://dx.doi.org/10.18632/oncotarget.6474] [PMID: 26646586]
[116]
Li Y, Deng X, Zeng X, Peng X. The Role of Mir-148a in Cancer. J Cancer 2016; 7(10): 1233-41.
[http://dx.doi.org/10.7150/jca.14616] [PMID: 27390598]
[117]
Li S, Li Y, Wen Z, et al. microRNA-206 overexpression inhibits cellular proliferation and invasion of estrogen receptor α-positive ovarian cancer cells. Mol Med Rep 2014; 9(5): 1703-8.
[http://dx.doi.org/10.3892/mmr.2014.2021] [PMID: 24604205]
[118]
Wang J, Li Y, Ding M, et al. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer. (Review) Int J Oncol 2017; 50(2): 345-55.
[http://dx.doi.org/10.3892/ijo.2016.3811] [PMID: 28000852]
[119]
Jiang L-h, Zhang H-d. MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol 2018; 65167829
[120]
Nagaraja AK, Creighton CJ, Yu Z, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24(2): 447-63.
[http://dx.doi.org/10.1210/me.2009-0295] [PMID: 20081105]
[121]
Wei K, Pan C, Yao G, et al. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer. 2017; 44(4): 1545-58..
[122]
Feng X, Liu N, Deng S, et al. miR-199a modulates cisplatin resistance in ovarian cancer by targeting Hif1α. OncoTargets Ther 2017; 10: 5899-906.
[http://dx.doi.org/10.2147/OTT.S145833] [PMID: 29276393]
[123]
Yang B, Li S-Z, Ma L, et al. Expression and mechanism of action of miR-196a in epithelial ovarian cancer. APjotm 2016; 9(11): 1105-0.
[124]
Wang X, Liu S, Cao L, et al. miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget 2017; 8(49): 86592-603.
[http://dx.doi.org/10.18632/oncotarget.21246] [PMID: 29156819]
[125]
Wu G, Liu J, Wu Z, et al. MicroRNA-184 inhibits cell proliferation and metastasis in human colorectal cancer by directly targeting IGF-1R. Oncol Lett 2017; 14(3): 3215-22.
[http://dx.doi.org/10.3892/ol.2017.6499] [PMID: 28927068]
[126]
Chen H, Xia B, Liu T, Lin M, Lou GJCCI. KIAA0101, a target gene of miR-429, enhances migration and chemoresistance of epithelial ovarian cancer cells. 2016; 16(14): 7..
[127]
Song J, Luo S, Li S-w. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. 2015; 15(4): 229-37. 2015
[128]
Li D, Wang H, Song H, et al. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget 2017; 8(49): 85276-89.
[http://dx.doi.org/10.18632/oncotarget.19205] [PMID: 29156719]
[129]
Zhao L, Wang W, Xu L, et al. Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer 2019; 38(13): 2305.. [http://10.1038/s41388-018-0577-5]
[130]
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR-505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT-NFκB pathway in NSCLC cells. JIjomm 2019; 43(3): 1203-643. 2019
[131]
Koutsaki M, Libra M, Spandidos DA, Zaravinos A. The miR-200 family in ovarian cancer. Oncotarget 2017; 8(39): 66629-40.
[http://dx.doi.org/10.18632/oncotarget.18343] [PMID: 29029543]
[132]
Suo H, Zhang K. MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. JErfm, sciences 2018; 22(13): 4080-9..
[133]
Kong X, Xu X, Yan Y, et al. Estrogen regulates the tumour suppressor MiRNA-30c and its target gene, MTA-1, in endometrial cancer. PLoS One 2014; 9(3)e90810
[134]
Yang C-L, Zheng X-L, Ye K, et al. MicroRNA-183 acts as a tumor suppressor in human non-small cell lung cancer by downregulating MTA1. 2018; 46(1): 93-106..
[135]
Xu S, Fu G-B, Tao Z, et al. MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget 2015; 6(28): 26457-71.
[http://dx.doi.org/10.18632/oncotarget.4762] [PMID: 26238185]
[136]
Kim TH, Jeong J-Y, Park J-Y, et al. miR-150 enhances apoptotic and anti-tumor effects of paclitaxel in paclitaxel-resistant ovarian cancer cells by targeting Notch3. Oncotarget 2017; 8(42): 72788-800.
[http://dx.doi.org/10.18632/oncotarget.20348] [PMID: 29069826]
[137]
Buscaglia LEB, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30(6): 371-80.
[http://dx.doi.org/10.5732/cjc.30.0371] [PMID: 21627859]
[138]
Muti P, Donzelli S, Sacconi A, et al. MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis 2018; 39(2): 98-108.
[http://dx.doi.org/10.1093/carcin/bgx126] [PMID: 29126102]
[139]
Ding D, Li C, Zhao T, et al. LncRNA H19/miR-29b-3p/PGRN Axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling. Mol Cells 2018; 41(5): 423-35.
[PMID: 29754471]
[140]
Higuchi T, Todaka H, Sugiyama Y, et al. Suppression of microRNA- 7 (miR-7) biogenesis by nuclear factor 90-nuclear factor 45 complex (NF90-NF45) controls cell proliferation in hepatocellular carcinoma. 2016; 291(40): 21074-84..
[141]
Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 2018; 18(3): 218-24.
[http://dx.doi.org/10.1016/j.repbio.2018.07.005] [PMID: 30054097]
[142]
Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor prognosis for patients with ovarian cancer. Oncol Lett 2017; 14(4): 4277-81.
[http://dx.doi.org/10.3892/ol.2017.6714] [PMID: 28943939]
[143]
Martin EC, Elliott S, Rhodes LV, et al. Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog 2014; 53(1): 38-48.
[http://dx.doi.org/10.1002/mc.21946] [PMID: 22911661]
[144]
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 2018; 39(9): 1185-96.
[http://dx.doi.org/10.1093/carcin/bgy092] [PMID: 29985991]
[145]
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15(5): 7571-8.
[http://dx.doi.org/10.3892/ol.2018.8313] [PMID: 29725462]
[146]
Zhang Y, Zhao F-J, Chen L-L, et al. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer. Oncotarget 2014; 5(23): 12291-303.
[http://dx.doi.org/10.18632/oncotarget.2577] [PMID: 25460499]
[147]
Zhao F, Pu Y, Cui M, Wang H, Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int 2017; 17: 100.
[http://dx.doi.org/10.1186/s12935-017-0470-2] [PMID: 29118673]
[148]
Cai B, Ma M, Chen B, et al. MiR-16-5p targets SESN1 to regulate the p53 signaling pathway, affecting myoblast proliferation and apoptosis, and is involved in myoblast differentiation. 2018; 9(3): 367..
[149]
Ye Z, Zhao L, Li J, Chen W, Li X. miR-30d blocked transforming growth factor beta1-induced epithelial-mesenchymal transition by targeting snail in ovarian cancer cells. Int J Gynecol Cancer 2015; 25(9): 1574-81.
[150]
Fang G, Liu J, Wang Q, et al. MicroRNA-223-3p regulates ovarian cancer cell proliferation and invasion by targeting sox11 expression. Int J Mol Sci 2017; 18(6): 1208.
[http://dx.doi.org/10.3390/ijms18061208] [PMID: 28587313]
[151]
Xu L, Xiang J, Shen J, et al. Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer Agents Med Chem 2013; 13(7): 1126-32.
[http://dx.doi.org/10.2174/18715206113139990006] [PMID: 23438830]
[152]
Zhang S, Zhang X, Fu X, et al. Identification of common differentially-expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett 2018; 16(2): 2391-401.
[http://dx.doi.org/10.3892/ol.2018.8954] [PMID: 30013629]
[153]
Choi P-W, Ng S-W. The Functions of MicroRNA-200 family in ovarian cancer: beyond epithelial-mesenchymal transition. Int J Mol Sci 2017; 18(6): 1207.
[http://dx.doi.org/10.3390/ijms18061207] [PMID: 28587302]
[154]
Zhang G, Xu Z, Wang N. Network of microRNA, transcription factors, target genes and host genes in human mesothelioma. Exp Ther Med 2017; 13(6): 3039-46.
[http://dx.doi.org/10.3892/etm.2017.4296] [PMID: 28587377]
[155]
Chen Z, Zhu J, Zhu Y, Wang J. MicroRNA-616 promotes the progression of ovarian cancer by targeting TIMP2. Oncol Rep 2018; 39(6): 2960-8.
[http://dx.doi.org/10.3892/or.2018.6368] [PMID: 29658596]
[156]
Kobayashi M, Sawada K, Nakamura K, et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res 2018; 11(1): 81.
[http://dx.doi.org/10.1186/s13048-018-0458-0] [PMID: 30219071]
[157]
Li LZ, Zhang CZ, Liu LL, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis 2014; 35(2): 469-78.
[http://dx.doi.org/10.1093/carcin/bgt330] [PMID: 24085799]
[158]
Sun L, Zhai R, Zhang L, Zhao S. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett 2018; 15(5): 7328-34.
[http://dx.doi.org/10.3892/ol.2018.8240] [PMID: 29731888]
[159]
Pan Y, Robertson G, Pedersen L, et al. miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. Oncotarget 2016; 7(18): 25930-48.
[http://dx.doi.org/10.18632/oncotarget.8412] [PMID: 27036018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy