Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Structural and Functional Analysis of Mutated Human Pyrin B30.2 Domain

Author(s): Sepideh Parvizpour, Ashraf Fadhil Jomah and Jafar Razmara*

Volume 17, Issue 1, 2020

Page: [78 - 85] Pages: 8

DOI: 10.2174/1570164616666190628165835

Price: $65

Abstract

Background: Familial Mediterranean Fever (FMF) is a prototypical hereditary autoinflammatory disease affecting principally Mediterranean populations and characterized by recurrent frequent fever and inflammation. The disease is essentially caused by inherited mutations in the MEFV gene which encodes pyrin protein. The reported mutations are mostly located on the B30.2 domain in the C-terminal end of the protein.

Objective: The present study reports a structural comparison of the five most common mutated structures including M694V, V726A, M694I, R761H, and M680I. The aim of this study was to determine the structural and functional disorders caused by the mutations in the human pyrin protein.

Results: The comparison revealed that all mutations make overall changes in the structure of the domain. Further, the effects of these mutations on structural and molecular behavior of the B30.2 domain were compared with the native structure using MD simulation by GROMACS software. The results revealed that all the studied mutants have a destabilizing effect on the protein structure. Additionally, analyzing the projection of the motions of the proteins in phase space demonstrates high rigidity of the mutated structures in comparison with the native protein.

Conclusion: The results of simulations elucidate how the mutations affect the physiological functioning of the pyrin B30.2 domain and cause the occurrence of the FMF disease.

Keywords: Familial Mediterranean Fever (FMF), Human Pyrin B30.2 domain, MD simulation, principal component analysis (PCA).

Graphical Abstract
[1]
Alzyoud, R.; Alsweiti, M.; Maittah, H.; Adayleh, B.; Alnobani, M.; Alwahadneh, A.; Abu-Shukair, M. Genotype Pattern of Pediatric Familial Mediterranean Fever in Jordan: A Single Center Experience. Int. J. Pediatr., 2019, 7(2), 8935-8940.
[2]
Chae, J.J.; Aksentijevich, I.; Kastner, D.L. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. British journal of hematology, 2009, 146(5), 467-478.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07733.x]
[3]
Mansour, A.R.; El-Shayeb, A.; El Habachi, N.; Khodair, M.A.; Elwazzan, D.; Abdeen, N.; Said, M.; Ebaid, R.; ElShahawy, N.; Seif, A. Molecular Patterns of MEFV Gene Mutations in Egyptian Patients with Familial Mediterranean Fever: A Retrospective Cohort Study. International journal of inflammation, 2019.
[http://dx.doi.org/10.1155/2019/2578760]
[4]
Janeway, T.C.; Mosenthal, H. An unusual paroxysmal syndrome, probably allied to recurrent vomiting: with a study of the nitrogen metabolism. Arch. Intern. Med., 1908, 2(3), 214-225.
[http://dx.doi.org/10.1001/archinte.1908.00050080016002]
[5]
Siegal, S. Benign paroxysmal peritonitis. Ann. Intern. Med., 1945, 23(1), 1-21.
[http://dx.doi.org/10.7326/0003-4819-23-1-1]
[6]
Guinet, A.; Grateau, G.; Nifle, C.; Rozier, A.; Pico, F. [Multiple sclerosis and familial Mediterranean fever: a case report] Rev. Neurol. (Paris), 2008, 164(11), 943-947.
[http://dx.doi.org/10.1016/j.neurol.2008.04.004] [PMID: 18808786]
[7]
Ben-Chetrit, E.; Friedman, L. S. Clinical manifestations and diagnosis of familial Mediterranean fever. Retrieved from uptodate.com, 2017.
[8]
Tunca, M.; Akar, S.; Onen, F.; Ozdogan, H.; Kasapcopur, O.; Yalcinkaya, F.; Tutar, E.; Ozen, S.; Topaloglu, R.; Yilmaz, E.; Arici, M.; Bakkaloglu, A.; Besbas, N.; Akpolat, T.; Dinc, A.; Erken, E.; Turkish, F.M.F.S.G. Familial Mediterranean fever (FMF) in Turkey: results of a nationwide multicenter study. Medicine (Baltimore), 2005, 84(1), 1-11.
[http://dx.doi.org/10.1097/01.md.0000152370.84628.0c] [PMID: 15643295]
[9]
Pras, M. Familial Mediterranean fever: from the clinical syndrome to the cloning of the pyrin gene. Scand. J. Rheumatol., 1998, 27(2), 92-97.
[http://dx.doi.org/10.1080/030097498440949] [PMID: 9572633]
[10]
Sahakyan, H.; Arakelov, G.; Nazaryan, K. Effect of mutations and phosphorylation on pyrin structure. Journal of Armenia, 2016, 68(3), 76-80.
[11]
Manukyan, G.; Aminov, R. Update on Pyrin Functions and Mechanisms of Familial Mediterranean Fever. Front. Microbiol., 2016, 7, 456.
[http://dx.doi.org/10.3389/fmicb.2016.00456] [PMID: 27066000]
[12]
Chae, J.J.; Wood, G.; Masters, S.L.; Richard, K.; Park, G.; Smith, B.J.; Kastner, D.L. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc. Natl. Acad. Sci. USA, 2006, 103(26), 9982-9987.
[http://dx.doi.org/10.1073/pnas.0602081103] [PMID: 16785446]
[13]
Chae, J.J.; Aksentijevich, I.; Kastner, D.L. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br. J. Haematol., 2009, 146(5), 467-478.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07733.x] [PMID: 19466978]
[14]
Vajjhala, P.R.; Mirams, R.E.; Hill, J.M. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J. Biol. Chem., 2012, 287(50), 41732-41743.
[http://dx.doi.org/10.1074/jbc.M112.381228] [PMID: 23066025]
[15]
Chae, J.J.; Wood, G.; Richard, K.; Jaffe, H.; Colburn, N.T.; Masters, S.L.; Gumucio, D.L.; Shoham, N.G.; Kastner, D.L. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood, 2008, 112(5), 1794-1803.
[http://dx.doi.org/10.1182/blood-2008-01-134932] [PMID: 18577712]
[16]
Vajjhala, P.R.; Kaiser, S.; Smith, S.J.; Ong, Q-R.; Soh, S.L.; Stacey, K.J.; Hill, J.M. Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly. J. Biol. Chem., 2014, 289(34), 23504-23519.
[http://dx.doi.org/10.1074/jbc.M114.553305] [PMID: 25006247]
[17]
Bonyadi, M.J.; Somi, M.H.; Khoshknab, M.M.; Eslami, F.; Montazam, M.; Gerami, S.M. FMF Genotype-phenotype correlation in Iranian Azeri Turks: Association between M694V/R761H mutation and amyloidosis. Iran. J. Basic Med. Sci., 2015, 18(7), 659-663.
[PMID: 26351556]
[18]
Ben-Chetrit, E.; Touitou, I. Familial mediterranean Fever in the world. Arthritis Rheum., 2009, 61(10), 1447-1453.
[http://dx.doi.org/10.1002/art.24458] [PMID: 19790133]
[19]
(a)Akpolat, T.; Özkaya, O.; Özen, S. Homozygous M694V as a risk factor for amyloidosis in Turkish FMF patients. Gene, 2012, 492(1), 285-289.
[http://dx.doi.org/10.1016/j.gene.2011.10.012] [PMID: 22037353]
(b)Grossman, C.; Kassel, Y.; Livneh, A.; Ben-Zvi, I. Familial Mediterranean fever (FMF) phenotype in patients homozygous to the MEFV M694V mutation. Eur. J. Med. Genet., 2018.
[PMID: 30171907]
[20]
Bonyadi, M.; Esmaeili, M.; Jalali, H.; Somi, M.H.; Ghaffari, A.; Rafeey, M.; Sakha, K.; Lotfalizadeh, N.; Pourhassan, A.; Khoshbaten, M.; Ardalan, M.R.; Laghaeian, N. MEFV mutations in Iranian Azeri Turkish patients with familial Mediterranean fever. Clin. Genet., 2009, 76(5), 477-480.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01270.x] [PMID: 19863562]
[21]
Bordoli, L.; Kiefer, F.; Arnold, K.; Benkert, P.; Battey, J.; Schwede, T. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc., 2009, 4(1), 1-13.
[http://dx.doi.org/10.1038/nprot.2008.197] [PMID: 19131951]
[22]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[23]
Li, B.; Krishnan, V.G.; Mort, M.E.; Xin, F.; Kamati, K.K.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics, 2009, 25(21), 2744-2750.
[http://dx.doi.org/10.1093/bioinformatics/btp528] [PMID: 19734154]
[24]
Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res., 2005, 33(suppl_2), W306-W310.
[25]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[26]
Parvizpour, S.; Razmara, J.; Shamsir, M.S.; Illias, R.M.; Abdul Murad, A.M. The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. J. Biomol. Struct. Dyn., 2017, 35(8), 1685-1692.
[http://dx.doi.org/10.1080/07391102.2016.1191043] [PMID: 27206405]
[27]
Mohajer, F.S.; Parvizpour, S.; Razmara, J.; Khoshkhooy Yazdi, M.; Shamsir, M.S. Structural, functional and molecular dynamics analysis of the native and mutated actin to study its effect on congenital myopathy. J. Biomol. Struct. Dyn., 2017, 35(7), 1608-1614.
[http://dx.doi.org/10.1080/07391102.2016.1190299] [PMID: 27448459]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy