Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Active Subfractions, Phytochemical Constituents, Dipeptidyl Peptidase-IV Inhibitory Activity and Antioxidant of Leaf Extract from Hibiscus surattensis L.

Author(s): Yuliet*, Elin Y. Sukandar and I.K. Adnyana

Volume 10, Issue 4, 2020

Page: [400 - 410] Pages: 11

DOI: 10.2174/2210315509666190626125330

Price: $65

Abstract

Objective: This research aimed to investigate the mechanism of action of leaf extract and active subfraction from English wild sour or Hibiscus surattensis L., evaluating antioxidant activity, and determining phytochemical constituents potential for treating various ailments such as diabetes and hepatitis.

Background: Antioxidant potential of ethanolic extracts of leaf and active subfractions (ethyl acetate and water fraction) were evaluated using 2,2-diphenyl-1-picrylhydrazyl, Ferric Reducing Ability of Plasma and Cupric Reducing Antioxidant Capacity assays.

Methods: Analysis of total flavonoid and phenolic contents were expressed as Quercetin Equivalent and Gallic Acid Equivalent through spectrophotometric technique. Liquid Chromatography-Mass Spectrophotometry/Mass Spectrophotometry was used to identify phytochemical constituents.

Results: The results showed that the ethyl acetate fraction was potentially inhibitory against dipeptidyl peptidase IV (IC50 17.947 ± 4.842μg/mL) and had a high free radical scavenging capacity (IC50 value of 44.10 ± 0.243μg/mL; Ferric Reducing Ability of Plasma and Cupric Reducing Antioxidant Capacity values were found to be 639.70 ± 0.3mg ascorbic acid equivalent/g and 174.89 ± 0.58mg ascorbic acid equivalent/100 g respectively). Ethyl acetate fraction showed high flavonoid and phenolic content with 684.67 ± 0.83mg Quercetin Equivalent/g and 329.23 ± 0.82mg Gallic Acid Equivalent/g. Liquid Chromatography-Mass Spectrophotometry/ Mass Spectrophotometry analysis showed the presence of major compounds, including kaempferol, morin, quercetin, and trifolin.

Conclusion: These results may explain the use of these leaves in folk medicine in the control of diabetes through a new mechanism and by preventing diabetic complications by means of their antioxidant properties.

Keywords: Antioxidant activity, diabetes mellitus, dipeptidyl peptidase IV inhibitor, Hibiscus surattensis, phytochemistry, flavonoid.

Graphical Abstract
[1]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[2]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[3]
Sarian, M.N.; Ahmed, Q.U.; Mat So’ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A.; Latip, J.; Khatib, A.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res. Int., 2017, 2017, 8386065.
[http://dx.doi.org/10.1155/2017/8386065] [PMID: 29318154]
[4]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[5]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[6]
Ghasemzadeh, A. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res., 2011, 5(31), 6697-6703.
[http://dx.doi.org/10.5897/JMPR11.1404]
[7]
Rachpirom, M.; Ovatlarnporn, C.; Thengyai, S.; Sontimuang, C.; Puttarak, P. Dipeptidyl peptidase-IV (DPP-IV) inhibitory activity, antioxidant property and phytochemical composition studies of herbal constituents of Thai folk anti-diabetes remedy. Walailak J. Sci. Technol., 2016, 13(10), 803-814.
[8]
McIntosh, C.H.S.; Demuth, H.U.; Kim, S.J.; Pospisilik, J.A.; Pederson, R.A. Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus. Int. J. Biochem. Cell Biol., 2006, 38(5-6), 860-872.
[http://dx.doi.org/10.1016/j.biocel.2005.12.013] [PMID: 16442340]
[9]
Filippatos, T.D.; Athyros, V.G.; Elisaf, M.S. The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors. Expert Opin. Drug Metab. Toxicol., 2014, 10(6), 787-812.
[http://dx.doi.org/10.1517/17425255.2014.907274] [PMID: 24746233]
[10]
Vasudeva, N.; Sharma, S.K. Biologically active compounds from the genus Hibiscus. Pharm. Biol., 2008, 46(3), 145-153.
[http://dx.doi.org/10.1080/13880200701575320]
[11]
Salem, M.Z.M. Olivares-Pérez.; Salem, A.Z.M. Studies on biological activities and phytochemicals composition of Hibiscus species- A review. Life Sci. J., 2014, 11(5), 1-8.
[12]
Maganha, E.G.; Halmenschlager, R.C.; Rosa, R.M.; Henriques, J.A.P.; Ramos, A.L.L.P.; Saffi, J. Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem., 2010, 118(1), 1-10.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.005]
[13]
Fajrin, M.; Ibrahim, N.; Nugrahani, A. Ethnomedicinal study on Dondo tribe of Dondo subdistrict Tolitoli Regeny, Central Sulawesi. GALENIKA J. Pharm., 2015, 1(2), 92-98.
[14]
Triani, R.; Pitopang, R. Yuliet. Antidiabetic effect of Hibiscus surattensis L. leaf extract with glucose tolerance test and alloxan induced diabetic mice (Mus musculus). Biocelebes, 2015, 9(1), 28-33.
[15]
Mabona, U.; Viljoen, A.; Shikanga, E.; Marston, A.; Van Vuuren, S. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol., 2013, 148(1), 45-55.
[http://dx.doi.org/10.1016/j.jep.2013.03.056] [PMID: 23545456]
[16]
Yetein, M.H.; Houessou, L.G.; Lougbégnon, T.O.; Teka, O.; Tente, B. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). J. Ethnopharmacol., 2013, 146(1), 154-163.
[http://dx.doi.org/10.1016/j.jep.2012.12.022] [PMID: 23266332]
[17]
Gbolade, A. Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria. J. Ethnopharmacol., 2012, 144(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.07.018] [PMID: 22975417]
[18]
Sharma, H.K.; Chhangte, L.; Dolui, A.K. Traditional medicinal plants in Mizoram, India. Fitoterapia, 2001, 72(2), 146-161.
[http://dx.doi.org/10.1016/S0367-326X(00)00278-1] [PMID: 11223224]
[19]
Amri, E.; Kisangau, D.P. Ethnomedicinal study of plants used in villages around Kimboza forest reserve in Morogoro, Tanzania. J. Ethnobiol. Ethnomed., 2012, 8, 1-9.
[http://dx.doi.org/10.1186/1746-4269-8-1] [PMID: 22221935]
[20]
Bassey, M.E.; Effiong, E.O. Preliminary investigation of herbs used in paediatric care among the people of Akwa Ibom State, Nigeria. J. Nat. Prod. Plant Resour., 2011, 1(3), 33-42.
[21]
Raghu, K. The leaf secretory apparatus of Hibiscus surattensis and Hibiscus sabdariffa (Malvaceae): Micromorphology, histo-phytochemistry and ultrastructure. Jurnal Ilmiah, 2015, 1(1), 3-7.
[22]
Sultana, S.; Al-Faruq, A.; Al-Rashid, N.; Nasim, T.; Ahsan, M.Q. In-vitro anti-inflammatory, anti-oxidant and in-vivo analgesic, antidiarrheal activities of fractional leaf extracts of Hibiscus surattensis. Eur. J. Pharm. Med. Res., 2018, 5(4), 167-173.
[23]
Yuliet, Y.; Sukandar, E.Y.; Adnyana, I.K. In vitro and in vivo antidiabetic activity of ethanol extract and fractions of Hibiscus surattensis L. leaves. Indonesian J. Pharm. Sci. Technol, 2018, 1(1), 25-30.
[24]
Al-masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1061-1066.
[http://dx.doi.org/10.1080/14756360802610761] [PMID: 19640223]
[25]
Riyanti, S.; Suganda, A.G.; Sukandar, E.Y. Dipeptidyl peptidase-IV inhibitory activity of some Indonesian medicinal plants. Asian J. Pharm. Clin. Res., 2016, 9(2), 375-377.
[26]
Blois, M. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[27]
Molyneux, P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 2004, 26(2), 211-219.
[28]
Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, 12(7), 1496-1547.
[http://dx.doi.org/10.3390/12071496] [PMID: 17909504]
[29]
Benzie, I.F.F. Strain, J.J. Ferric reducing (antioxidant) power as a measure of antioxidant capacity: The FRAP assay. Methods Enzymol., 1999, 299, 15-36.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[30]
Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(98), 555-559.
[31]
Al-Rimawi, F.; Abu-Lafi, S.; Abbadi, J.; Alamarneh, A.A.A.; Sawahreh, R.A.; Odeh, I. Analysis of phenolic and flavonoids of wild Ephedra alata plant extracts by LC/PDA and LC/MS and their antioxidant activity. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 130-141.
[http://dx.doi.org/10.21010/ajtcam.v14i2.14] [PMID: 28573229]
[32]
Gouthamchandra, K.; Mahmood, R.; Manjunatha, H. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L. Environ. Toxicol. Pharmacol., 2010, 30(1), 11-18.
[http://dx.doi.org/10.1016/j.etap.2010.03.005] [PMID: 21787623]
[33]
Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 2005, 53(6), 1841-1856.
[http://dx.doi.org/10.1021/jf030723c] [PMID: 15769103]
[34]
Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem., 2009, 112(3), 654-658.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.026]
[35]
Buyukokuroglu, M.E.; Gulcin, I. In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Pharmacogn. Mag., 2009, 5(19), 189-195.
[36]
Pereira, D.M.; Valentão, P.; Pereira, J.A. Andrade, P.B. Phenolics: From chemistry to biology. Molecules, 2009, 14(6), 2202-2211.
[http://dx.doi.org/10.3390/molecules14062202]
[37]
Tapas, A.; Sakarkar, D.; Kakde, R. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res., 2008, 7(3), 1089-1099.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[38]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5e47.
[http://dx.doi.org/10.1017/jns.2016.41]
[39]
Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; El Hady, S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds’. Ann. Agric. Sci., 2013, 58(2), 173-181.
[http://dx.doi.org/10.1016/j.aoas.2013.07.002]
[40]
Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah., 2016, 10(6), 805-812.
[http://dx.doi.org/10.1016/j.jtusci.2014.09.003]
[41]
Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry, 2006, 67(18), 2058-2070.
[http://dx.doi.org/10.1016/j.phytochem.2006.07.002] [PMID: 16919302]
[42]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[43]
Ahmad, R.; Ahmad, N.; Naqvi, A.A.; Exarchou, V.; Upadhyay, A.; Tuenter, E.; Foubert, K.; Apers, S.; Hermans, N.; Pieters, L. Antioxidant and antiglycating constituents from leaves of Ziziphus oxyphylla and Cedrela serrata. Antioxidants, 2016, 5(1), 9.
[http://dx.doi.org/10.3390/antiox5010009] [PMID: 26999227]
[44]
Alkhamees, O.A. Morin a flavonoid exerts antioxidant potential in streptozotocin-induced hepatotoxicity. Br. J. Pharm. Res., 2003, 4(1), 10-17.
[45]
Wu, G.; Dai, X.; Li, X.; Jiang, H. Antioxidant and anti-inflammatory effects of rhamnazin on lipopolysaccharide-induced acute lung injury and inflammation in rats. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 201-212.
[http://dx.doi.org/10.21010/ajtcam.v14i4.23] [PMID: 28638883]
[46]
Gao, Y.; Zhang, Y.; Zhu, J.; Li, B.; Li, Z.; Zhu, W.; Shi, J.; Jia, Q.; Li, Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem., 2015, 7(8), 1079-1089.
[http://dx.doi.org/10.4155/fmc.15.49] [PMID: 26062402]
[47]
Hajiaghaalipour, F.; Khalilpourfarshbafi, M.; Arya, A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci., 2015, 11(5), 508-524.
[http://dx.doi.org/10.7150/ijbs.11241] [PMID: 25892959]
[48]
Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab. J. Chem., 2013, 10, S2675-S2684.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy