Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Anticancer Triazenes: from Bioprecursors to Hybrid Molecules

Author(s): Ana P. Francisco, Eduarda Mendes*, Ana R. Santos and Maria J. Perry

Volume 25, Issue 14, 2019

Page: [1623 - 1642] Pages: 20

DOI: 10.2174/1381612825666190617155749

Price: $65

Abstract

Triazenes are a very useful and diverse class of compounds that have been studied for their potential in the treatment of many tumors including brain tumor, leukemia and melanoma. Novel compounds of this class continue to be developed as either anticancer compounds or even with other therapeutic applications. This review focused on several types of triazenes from the simplest ones like 1,3-dialkyl-3-acyltriazenes to the more complex ones like combi-triazenes with an emphasis on how triazenes have been developed as effective antitumor agents.

Keywords: Triazenes, alkylating agents, anticancer activity, prodrugs, aryltriazenes, combi-triazenes, hybrid molecules.

[1]
Francisco AP, Perry MJ, Moreira R, Mendes E. Alkylating Agents in Anticancer Therapeutics Edited by Sotiris Missailidis© John Wiley and Sons, Ltd. Chapter 9, 331-345 2008.
[2]
Gregorić T, Sedić M, Grbčić P, et al. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation. Eur J Med Chem 2017; 125: 1247-67. [http://dx.doi.org/10.1016/j.ejmech.2016.11.028]. [PMID: 27875779].
[3]
Matos AM, Francisco AP. Targets, structures, and recent approaches in malignant melanoma chemotherapy. ChemMedChem 2013; 8(11): 1751-65. [http://dx.doi.org/10.1002/cmdc.201300248]. [PMID: 23956078].
[4]
Singh RK, Kumar S, Prasad DN, Bhardwaj TR. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur J Med Chem 2018; 151: 401-33. [http://dx.doi.org/10.1016/j.ejmech.2018.04.001]. [PMID: 29649739].
[5]
Chabner BA, Roberts TG Jr. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 2005; 5(1): 65-72. [http://dx.doi.org/10.1038/nrc1529]. [PMID: 15630416].
[7]
Kimball DB, Haley MM. Triazenes: a versatile tool in organic synthesis. Angew Chem Int Ed Engl 2002; 41(18): 3338-51. [http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3338:AID-ANIE3338>3.0.CO;2-7]. [PMID: 12298030].
[8]
Bonmassar L, Marchesi F, Pascale E, et al. Triazene compounds in the treatment of acute myeloid leukemia: A short review and a case report. Curr Med Chem 2013; 20(19): 2389-401. [http://dx.doi.org/10.2174/0929867311320190001]. [PMID: 23521681].
[9]
Carvalho E, Francisco AP, Iley J, Rosa E. Triazene drug metabolites. Part 17: Synthesis and plasma hydrolysis of acyloxymethyl carbamate derivatives of antitumour triazenes. Bioorg Med Chem 2000; 8(7): 1719-25. [http://dx.doi.org/10.1016/S0968-0896(00)00100-0]. [PMID: 10976519].
[10]
Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 2007; 56(4): 275-87. [http://dx.doi.org/10.1016/j.phrs.2007.08.003]. [PMID: 17897837].
[11]
Iradyan MA, Iradyan NS, Stepanyan GM, Arsenyan FG. Antitumor activity of imidazole derivates: Dacarbazine and the new alkylating agent imidazene. Pharm Chem J 2010; 44: 175-82. [http://dx.doi.org/10.1007/s11094-010-0425-6].
[12]
Jiang G, Li RH, Sun C, Liu YQ, Zheng JN. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS One 2014; 9(12)e111920 [http://dx.doi.org/10.1371/journal.pone.0111920]. [PMID: 25502446].
[13]
Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: An overview. Oncology (Williston Park) 2009; 23(6): 488-96. [PMID: 19544689].
[14]
Tatar Z, Thivat E, Planchat E, et al. Temozolomide and unusual indications: Review of literature. Cancer Treat Rev 2013; 39(2): 125-35. [http://dx.doi.org/10.1016/j.ctrv.2012.06.002]. [PMID: 22818211].
[15]
Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 2000; 5(2): 144-51. [http://dx.doi.org/10.1634/theoncologist.5-2-144]. [PMID: 10794805].
[16]
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer 2013; 13(10): 714-26. [http://dx.doi.org/10.1038/nrc3599]. [PMID: 24060863].
[17]
Dimroth O. Ueber das Diazoamino-methan (dimethyltriazen). Ber Dtsch Chem Ges 1906; 39: 3905-12. [http://dx.doi.org/10.1002/cber.19060390470].
[18]
Kroeger-Koepke MB, Smith RH Jr, Goodnow EA, et al. 1,3-Dialkyltriazenes: Reactive intermediates and DNA alkylation. Chem Res Toxicol 1991; 4(3): 334-40. [http://dx.doi.org/10.1021/tx00021a013]. [PMID: 1912317].
[19]
Smith RH, Denlinger CL, Kupper R, Koepke SR, Michejda CJ. Specific Acid Catalysis in the Decomposition of Trialkyltriazenes. J Am Chem Soc 1984; 106: 1056-9. [http://dx.doi.org/10.1021/ja00316a040].
[20]
Rouzer CA, Thompson EJ, Skinner TL, et al. An unexpected pathway for the metabolic degradation of 1,3-dialkyl-3-acyltriazenes. Biochem Pharmacol 1993; 46(1): 165-73. [http://dx.doi.org/10.1016/0006-2952(93)90361-Y]. [PMID: 8347127].
[21]
Andrews AW, Michejda CJ. 1,3-Dimethyl-3-acyltriazenes: Synthesis and Chemistry of a Novel Class of Biological Methylating Agents. J Org Chem 1986; 51: 3751-7. [http://dx.doi.org/10.1021/jo00370a002].
[22]
Smith RH Jr, Scudiero DA, Michejda CJ. 1,3-Dialkyl-3-acyltriazenes, a novel class of antineoplastic alkylating agents. J Med Chem 1990; 33(9): 2579-83. [http://dx.doi.org/10.1021/jm00171a036]. [PMID: 2391696].
[23]
Smith RH, et al. 1,3-Dialkyl-3-acyltriazenes: Products and rates of decomposition in acidic and neutral aqueous solutions. J Org Chem 1992; 57: 654-61. [http://dx.doi.org/10.1021/jo00028a047].
[24]
Kroeger Smith MB, Taneyhill LA, Michejda CJ, Smith RH Jr. Base sequence selectivity in the alkylation of DNA by 1,3-dialkyl-3-acyltriazenes. Chem Res Toxicol 1996; 9(1): 341-8. [http://dx.doi.org/10.1021/tx9500742]. [PMID: 8924614].
[25]
Smith RH, Wladkowski BD, Herling JA, et al. Novel triazenes and triazolines from the base-catalyzed hydrolysis of 1,3-dialkyl-3-acyltriazenes. J Org Chem 1992; 57: 6448-54. [http://dx.doi.org/10.1021/jo00050a016].
[26]
Rouzer CA, Sabourin M, Skinner TL, et al. Oxidative metabolism of 1-(2-chloroethyl)-3-alkyl-3- (methylcarbamoyl)triazenes: Formation of chloroacetaldehyde and relevance to biological activity. Chem Res Toxicol 1996; 9(1): 172-8. [http://dx.doi.org/10.1021/tx9500639]. [PMID: 8924588].
[27]
Kroeger-Koepke MB, Michejda CJ, Smith RH Jr. Alkylation of DNA by 1,3-dialkyl-3-acyltriazenes: correlation of biological activity with chemical behavior. Chem Res Toxicol 1992; 5(4): 541-7. [http://dx.doi.org/10.1021/tx00028a013]. [PMID: 1391620].
[28]
Manning HW, Hemens CM, LaFrance RJ, Tang Y, Vaughan K. Open-chain nitrogen compounds. Part VI. The formation of bis(l-aryl-3- methyltriazen-3-ylmethyl) methylamines in the reaction of diazonium ions with mixtures of formaldehyde and methylamine. Can J Chem 1984; 62: 749-54. [http://dx.doi.org/10.1139/v84-126].
[29]
Fernandes L, Francisco AP, Iley J, Rosa E. Triazene drug metabolites. Part 14. Kinetics and mechanism of the acid-catalysed hydrolysis of 3-alkoxymethyl-3-alkyl-1-aryltriazenes. J Chem Soc, Perkin Trans 2 1994; 2313-7. [http://dx.doi.org/10.1039/p29940002313].
[30]
Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res 2000; 6(7): 2585-97. [PMID: 10914698].
[31]
Iley J, Moreira R, Ruecroft G, Rosa E. Synthesis of N-Cysteinyl, S-(N-Acetylcysteinyl) and S-Glutathionyl Conjugates of N-Hydroxymethyl-triazenes. Tetrahedron Lett 1988; 29: 2707-10. [http://dx.doi.org/10.1016/0040-4039(88)85266-3].
[32]
Iley J, Moreira R, Rosa E. Triazene drug metabolites. Part. 11. Synthesis of cysteinyl and related derivatives of N-hydroxymethyltriazenes. J Chem Soc, Perkin Trans 1 1991; 3241-4. [http://dx.doi.org/10.1039/p19910003241].
[33]
Carvalho E, Francisco AP, Iley J, Rosa E. Triazene drug metabolites. Part 17: Synthesis and plasma hydrolysis of acyloxymethyl carbamate derivatives of antitumour triazenes. Bioorg Med Chem 2000; 8(7): 1719-25. [http://dx.doi.org/10.1016/S0968-0896(00)00100-0]. [PMID: 10976519].
[34]
Vig B, Rautio J. Amino acid prodrugs for oral delivery: challenges and opportunities. Ther Deliv 2011; 2(8): 959-62. [http://dx.doi.org/10.4155/tde.11.75]. [PMID: 22826863].
[35]
Carvalho E, Iley J, Perry MJ, Rosa E. Triazene drug metabolites: Part 15. Synthesis and plasma hydrolysis of anticancer triazenes containing amino acid carriers. Pharm Res 1998; 15(6): 931-5. [http://dx.doi.org/10.1023/A:1011988918476]. [PMID: 9647361].
[36]
Carvalho E, Iley J, Perry M, Rosa E. Triazene drug metabolites. Part 16. 1 Kinetics and mechanism of the hydrolysis of aminoacyltriazenes. J Chem Soc, Perkin Trans 2 1998; 2375-80. [http://dx.doi.org/10.1039/a805704d].
[37]
Perry M de J, Carvalho E, Rosa E, Iley J. Towards an efficient prodrug of the alkylating metabolite monomethyltriazene: Synthesis and stability of N-acylamino acid derivatives of triazenes. Eur J Med Chem 2009; 44(3): 1049-56. [http://dx.doi.org/10.1016/j.ejmech.2008.06.022]. [PMID: 18687506].
[38]
Zhang D-C, Fei Z-H, Zhang T-Z, Zhang Y-Q, Yu K-B. 1,3-Bis(3-nitrophenyl)triazene. Acta Crystallogr C 1999; 55: 102-4. [http://dx.doi.org/10.1107/S0108270198010415].
[39]
Payehghadr M, Kazem M, Morsali A. Structural and solution studies of a novel tetranuclear silver(I) cluster of [1,2-di(methoxy)benzene]triazene. Inorg Chim Acta 2007; 360: 1792-8. [http://dx.doi.org/10.1016/j.ica.2006.09.015].
[40]
da Silva Oliveira GL, de Freitas RM. Diminazene aceturate--An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacol Res 2015; 102: 138-57. [http://dx.doi.org/10.1016/j.phrs.2015.10.005]. [PMID: 26470648].
[41]
Kuriakose S, Uzonna JE. Diminazene aceturate (Berenil), a new use for an old compound? Int Immunopharmacol 2014; 21(2): 342-5. [http://dx.doi.org/10.1016/j.intimp.2014.05.027]. [PMID: 24893117].
[42]
Cimbora-Zovko T, Brozovic A, Piantanida I, et al. Synthesis and biological evaluation of 4-nitro-substituted 1,3-diaryltriazenes as a novel class of potent antitumor agents. Eur J Med Chem 2011; 46(7): 2971-83. [http://dx.doi.org/10.1016/j.ejmech.2011.04.024]. [PMID: 21550697].
[43]
Braithwaite AW, Baguley BC. Existence of an Extended Series of Antitumor Compounds Which Bind to Deoxyribonucleic Acid by Nonintercalative Meanst. Biochemistry 1980; 19(6): 1101-6.
[44]
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2012; 36(2): 408-34. [http://dx.doi.org/10.1111/j.1574-6976.2011.00300.x]. [PMID: 22092310].
[45]
Zhou J, Le V, Kalia D, et al. Diminazene or berenil, a classic duplex minor groove binder, binds to G-quadruplexes with low nanomolar dissociation constants and the amidine groups are also critical for G-quadruplex binding. Mol Biosyst 2014; 10(10): 2724-34. [http://dx.doi.org/10.1039/C4MB00359D]. [PMID: 25096593].
[46]
Wang C, Carter-Cooper B, Du Y, et al. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities. Eur J Med Chem 2016; 118: 266-75. [http://dx.doi.org/10.1016/j.ejmech.2016.04.030]. [PMID: 27132164].
[47]
Brito H, Martins AC, Lavrado J, et al. Targeting KRAS oncogene in colon cancer cells with 7-carboxylate Indolo[3,2-b] quinoline tri-alkylamine derivatives. PLoS One 2015; 10(5)e0126891 [http://dx.doi.org/10.1371/journal.pone.0126891]. [PMID: 26024321].
[48]
Osmak M, et al. Analogues of 1,3-bis(4-nitropehyl)triazenes, their pharmaceutically acceptable salts and n-acyl derivates for tumour treatment. 2012; 2: 531.: 537.
[49]
Brozovic A, Stojanović N, Ambriović-Ristov A, Brozović Krijan A, Polanc S, Osmak M. 3-Acetyl-bis(2-chloro-4-nitrophenyl)triazene is a potent antitumor agent that induces oxidative stress and independently activates the stress-activated protein kinase/c-Jun NH2-terminal kinase pathway. Anticancer Drugs 2014; 25(3): 289-95. [PMID: 24322543].
[50]
Cappoen D, Vajs J, Uythethofken C, et al. Anti-mycobacterial activity of 1,3-diaryltriazenes. Eur J Med Chem 2014; 77: 193-203. [http://dx.doi.org/10.1016/j.ejmech.2014.02.065]. [PMID: 24631899].
[51]
Vajs J, Proud C, Brozovic A, et al. Diaryltriazenes as antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA) and Mycobacterium smegmatis. Eur J Med Chem 2017; 127: 223-34. [http://dx.doi.org/10.1016/j.ejmech.2016.12.060]. [PMID: 28063354].
[52]
Wang A, Savas U, Stout CD, Johnson EF. Structural characterization of the complex between α-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 2011; 286(7): 5736-43. [http://dx.doi.org/10.1074/jbc.M110.204420]. [PMID: 21147782].
[53]
Dutour R, Poirier D. Inhibitors of cytochrome P450 (CYP) 1B1. Eur J Med Chem 2017; 135: 296-306. [http://dx.doi.org/10.1016/j.ejmech.2017.04.042]. [PMID: 28458135].
[54]
Shimada T, Oda Y, Gillam EM, Guengerich FP, Inoue K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab Dispos 2001; 29(9): 1176-82. [PMID: 11502724].
[55]
Lee D, Perez P, Jackson W, et al. Aryl morpholino triazenes inhibit cytochrome P450 1A1 and 1B1. Bioorg Med Chem Lett 2016; 26(14): 3243-7. [http://dx.doi.org/10.1016/j.bmcl.2016.05.064]. [PMID: 27265259].
[56]
Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol Appl Pharmacol 2005; 206(1): 73-93. [http://dx.doi.org/10.1016/j.taap.2004.11.006]. [PMID: 15963346].
[57]
Daidone G, Maggio B, Raffa D, Plescia S, Schillaci D, Valeria Raimondi M. Synthesis and in vitro antileukemic activity of new 4-triazenopyrazole derivatives. Farmaco 2004; 59(5): 413-7. [http://dx.doi.org/10.1016/j.farmac.2004.01.016]. [PMID: 15120321].
[58]
Diana P, Stagno A, Barraja P, et al. Synthesis of triazenoazaindoles: A new class of triazenes with antitumor activity. ChemMedChem 2011; 6(7): 1291-9. [http://dx.doi.org/10.1002/cmdc.201100027]. [PMID: 21523910].
[59]
Diana P, Barraja P, Lauria A, et al. 2-Triazenopyrroles: synthesis and biological activity. Eur J Med Chem 1999; 34: 353-60. [http://dx.doi.org/10.1016/S0223-5234(99)80085-3].
[60]
Cirrincione G, Almerico AM, Dattolo G, et al. 3-Triazenoindoles. Synthesis and antileukemic activity. Eur J Med Chem 1994; 29: 889-91. [http://dx.doi.org/10.1016/0223-5234(94)90112-0].
[61]
Abdel-Hakeem M. Triazenoindazoles and triazenopyrazolopyridines: Design, synthesis, and cytotoxic activity. Arch Pharm Res 2010; 33(6): 813-9. [http://dx.doi.org/10.1007/s12272-010-0603-9]. [PMID: 20607485].
[62]
Daidone G, Raffa D, Maggio B, Valeria Raimondi M, Plescia F, Schillaci D. Synthesis and antiproliferative activity of triazenoindazoles and triazenopyrazoles: A comparative study. Eur J Med Chem 2004; 39(3): 219-24. [http://dx.doi.org/10.1016/j.ejmech.2003.11.012]. [PMID: 15051169].
[63]
Dattolo G, Cirrincione G, Almerico AM, et al. 3-Triazenopyrroles: synthesis and antineoplastic activity. Farmaco 1993; 48(2): 191-4. [PMID: 8494597].
[64]
Kreutzer JN, Salvador A, Diana P, et al. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells. Int J Oncol 2012; 40(4): 914-22. [http://dx.doi.org/10.3892/ijo.2011.1272]. [PMID: 22134789].
[65]
Cytarska J, Anisiewicz A, Baranowska-Łączkowska A, et al. Triazene salts: Design, synthesis, ctDNA interaction, lipophilicity determination, DFT calculation, and antiproliferative activity against human cancer cell lines. Saudi Pharm J 2019; 27(3): 303-11. [http://dx.doi.org/10.1016/j.jsps.2018.11.012]. [PMID: 30976172].
[66]
Han H-K, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000; 2(1)E6 [http://dx.doi.org/10.1208/ps020106]. [PMID: 11741222].
[67]
Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004; 56(1): 53-102. [http://dx.doi.org/10.1124/pr.56.1.3]. [PMID: 15001663].
[68]
Mendes E, Perry Mde J, Francisco AP. Design and discovery of mushroom tyrosinase inhibitors and their therapeutic applications. Expert Opin Drug Discov 2014; 9(5): 533-54. [http://dx.doi.org/10.1517/17460441.2014.907789]. [PMID: 24708040].
[69]
Perry MJ, Mendes E, Simplício AL, et al. Dopamine- and tyramine-based derivatives of triazenes: Activation by tyrosinase and implications for prodrug design. Eur J Med Chem 2009; 44(8): 3228-34. [http://dx.doi.org/10.1016/j.ejmech.2009.03.025]. [PMID: 19386398].
[70]
Jordan AM, Khan TH, Malkin H, Osborn HM, Photiou A, Riley PA. Melanocyte-Directed enzyme prodrug therapy (MDEPT): Development of second generation prodrugs for targeted treatment of malignant melanoma. Bioorg Med Chem 2001; 9(6): 1549-58. [http://dx.doi.org/10.1016/S0968-0896(01)00039-6]. [PMID: 11408174].
[71]
Monteiro AS, Almeida J, Cabral G, et al. Synthesis and evaluation of N-acylamino acids derivatives of triazenes. Activation by tyrosinase in human melanoma cell lines. Eur J Med Chem 2013; 70: 1-9. [http://dx.doi.org/10.1016/j.ejmech.2013.09.040]. [PMID: 24125877].
[72]
Capucha V, Mendes E, Francisco AP, Perry MJ. Development of triazene prodrugs for ADEPT strategy: New insights into drug delivery system based on carboxypeptidase G2 activation. Bioorg Med Chem Lett 2012; 22(22): 6903-8. [http://dx.doi.org/10.1016/j.bmcl.2012.09.029]. [PMID: 23041157].
[73]
Sousa A, Santos F, Gaspar MM, et al. The selective cytotoxicity of new triazene compounds to human melanoma cells. Bioorg Med Chem 2017; 25(15): 3900-10. [http://dx.doi.org/10.1016/j.bmc.2017.04.049]. [PMID: 28602669].
[74]
Calado S, Eleutério C, Mendes E, Rocha MJ, Francisco AP, Gaspar MM. Nanoformulations of a Triazene Analogue with Specific Affinity to Human Melanoma. J Nanosci Adv Technol 2016; 1(4): 1-9. [http://dx.doi.org/10.24218/jnat.2016.16].
[75]
Gediya LK, Njar VCO. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin Drug Discov 2009; 4(11): 1099-111. [http://dx.doi.org/10.1517/17460440903341705]. [PMID: 23480431].
[76]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers 2014; 6(3): 1769-92. [http://dx.doi.org/10.3390/cancers6031769]. [PMID: 25198391].
[77]
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210. [http://dx.doi.org/10.1016/j.gendis.2016.04.007]. [PMID: 30258889].
[78]
Wanner MJ, Koch M, Koomen GJ. Synthesis and antitumor activity of methyltriazene prodrugs simultaneously releasing DNA-methylating agents and the antiresistance drug O(6)-benzylguanine. J Med Chem 2004; 47(27): 6875-83. [http://dx.doi.org/10.1021/jm049556d]. [PMID: 15615536].
[79]
Sun G, Fan T, Zhang N, Ren T, Zhao L, Zhong R. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking. Molecules 2016; 21(7): 1-21. [http://dx.doi.org/10.3390/molecules21070823]. [PMID: 27347909].
[80]
Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 2008; 26(25): 4189-99. [http://dx.doi.org/10.1200/JCO.2007.11.5964]. [PMID: 18757334].
[81]
Sun G, Fan T, Zhao L, Zhou Y, Zhong R. The potential of combi-molecules with DNA-damaging function as anticancer agents. Future Med Chem 2017; 9(4): 403-35. [http://dx.doi.org/10.4155/fmc-2016-0229]. [PMID: 28263086].
[82]
Morales J, Li L, Fattah FJ, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 2014; 24(1): 15-28. [http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875]. [PMID: 24579667].
[83]
Perazzoli G, Prados J, Ortiz R, et al. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression. PLoS One 2015; 10(10)e0140131 [http://dx.doi.org/10.1371/journal.pone.0140131]. [PMID: 26447477].
[84]
Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol 2016; 36(4): 716-26. [PMID: 25757878].
[85]
Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 2006; 580(12): 2903-9. [http://dx.doi.org/10.1016/j.febslet.2006.02.020]. [PMID: 16497299].
[86]
Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene 2003; 22(47): 7512-23. [http://dx.doi.org/10.1038/sj.onc.1206951]. [PMID: 14576855].
[87]
Bonavida B. Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy 1, Targeted Therapies to Reverse Resistance. Springer New York 2013.
[88]
Kucuksayan E, Ozben T. Hybrid Compounds as Multitarget Directed Anticancer Agents. Curr Top Med Chem 2017; 17(8): 907-18. [http://dx.doi.org/10.2174/1568026616666160927155515]. [PMID: 27697050].
[89]
Fortin S, Bérubé G, Be G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Discov 2013; 8(8): 1029-47. [http://dx.doi.org/10.1517/17460441.2013.798296]. [PMID: 23646979].
[90]
Matheson SL, McNamee J, Jean-Claude BJ. Design of a chimeric 3-methyl-1,2,3-triazene with mixed receptor tyrosine kinase and DNA damaging properties: A novel tumor targeting strategy. J Pharmacol Exp Ther 2001; 296(3): 832-40. [PMID: 11181914].
[91]
Qiu Q, Dudouit F, Matheson SL, et al. The combi-targeting concept: A novel 3,3-disubstituted nitrosourea with EGFR tyrosine kinase inhibitory properties. Cancer Chemother Pharmacol 2003; 51(1): 1-10. [http://dx.doi.org/10.1007/s00280-002-0524-5]. [PMID: 12497200].
[92]
Matheson SL, McNamee JP, Jean-Claude BJ. Differential responses of EGFR-/AGT-expressing cells to the “combi-triazene” SMA41. Cancer Chemother Pharmacol 2003; 51(1): 11-20. [http://dx.doi.org/10.1007/s00280-002-0525-4]. [PMID: 12497201].
[93]
Matheson SL, McNamee JP, Wang T, Alaoui-Jamali MA, Tari AM, Jean-Claude BJ. The combi-targeting concept: Dissection of the binary mechanism of action of the combi-triazene SMA41 in vitro and antitumor activity in vivo. J Pharmacol Exp Ther 2004; 311(3): 1163-70. [http://dx.doi.org/10.1124/jpet.104.071977]. [PMID: 15358812].
[94]
Matheson SL, Brahimi F, Jean-Claude BJ. The combi-targetinG concept: Intracellular fragmentation of the binary epidermal growth factor (EGFR)/DNA targeting “combi-triazene” SMA41. Biochem Pharmacol 2004; 67(6): 1131-8. [http://dx.doi.org/10.1016/j.bcp.2003.10.035]. [PMID: 15006549].
[95]
Brahimi F, Matheson SL, Dudouit F, McNamee JP, Tari AM, Jean-Claude BJ. Inhibition of epidermal growth factor receptor-mediated signaling by “Combi-triazene” BJ2000, a new probe for Combi-Targeting postulates. J Pharmacol Exp Ther 2002; 303(1): 238-46. [http://dx.doi.org/10.1124/jpet.102.039099]. [PMID: 12235257].
[96]
Brahimi F, Rachid Z, McNamee JP, Alaoui-Jamali MA, Tari AM, Jean-Claude BJ. Mechanism of action of a novel “combi-triazene” engineered to possess a polar functional group on the alkylating moiety: evidence for enhancement of potency. Biochem Pharmacol 2005; 70(4): 511-9. [http://dx.doi.org/10.1016/j.bcp.2005.04.037]. [PMID: 15982640].
[97]
Heravi M, Rachid Z, Goudarzi A, et al. Interaction of ionizing radiation and ZRBA1, a mixed EGFR/DNA-targeting molecule. Anticancer Drugs 2009; 20(8): 659-67. [http://dx.doi.org/10.1097/CAD.0b013e32832cb8bc]. [PMID: 19581798].
[98]
Heravi M, Kumala S, Rachid Z, Jean-Claude BJ, Radzioch D, Muanza TM. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2015; 92(2): 399-406. [http://dx.doi.org/10.1016/j.ijrobp.2015.01.026]. [PMID: 25823448].
[99]
Banerjee R, Rachid Z, McNamee J, Jean-Claude BJ. Synthesis of a prodrug designed to release multiple inhibitors of the epidermal growth factor receptor tyrosine kinase and an alkylating agent: A novel tumor targeting concept. J Med Chem 2003; 46(25): 5546-51. [http://dx.doi.org/10.1021/jm030423m]. [PMID: 14640561].
[100]
Banerjee R, Rachid Z, Qiu Q, McNamee JP, Tari AM, Jean-Claude BJ. Sustained antiproliferative mechanisms by RB24, a targeted precursor of multiple inhibitors of epidermal growth factor receptor and a DNA alkylating agent in the A431 epidermal carcinoma of the vulva cell line. Br J Cancer 2004; 91(6): 1066-73. [http://dx.doi.org/10.1038/sj.bjc.6602098]. [PMID: 15365562].
[101]
Banerjee R, Huang Y, McNamee JP, Todorova M, Jean-Claude BJ. The combi-targeting concept: selective targeting of the epidermal growth factor receptor- and Her2-expressing cancer cells by the complex combi-molecule RB24. J Pharmacol Exp Ther 2010; 334(1): 9-20. [http://dx.doi.org/10.1124/jpet.109.160085]. [PMID: 20348204].
[102]
Banerjee R, Huang Y, Qiu Q, McNamee JP, Belinsky G, Jean-Claude BJ. The combi-targeting concept: Mechanism of action of the pleiotropic combi-molecule RB24 and discovery of a novel cell signaling-based combination principle. Cell Signal 2011; 23(4): 630-40. [http://dx.doi.org/10.1016/j.cellsig.2010.11.014]. [PMID: 21138763].
[103]
Golabi N, Rachid Z, Qiu Q, Huang Y, Jean-Claude BJ. In vitro and in vivo biodistribution of ZRS1, a stabilized type I N-acetoxymethyl carbamate-containing combi-molecule. Drug Metab Lett 2011; 5(2): 141-9. [http://dx.doi.org/10.2174/187231211795305212]. [PMID: 21457144].
[104]
Matheson SL, McNamee JP, Wang T, Alaoui-Jamali MA, Tari AM, Jean-Claude BJ. The combi-targeting concept: dissection of the binary mechanism of action of the combi-triazene SMA41 in vitro and antitumor activity in vivo. J Pharmacol Exp Ther 2004; 311(3): 1163-70. [http://dx.doi.org/10.1124/jpet.104.071977]. [PMID: 15358812].
[105]
Rachid Z, Macphee M, Williams C, Todorova M, Jean-Claude BJ. Design and synthesis of new stabilized combi-triazenes for targeting solid tumors expressing the epidermal growth factor receptor (EGFR) or its closest homologue HER2. Bioorg Med Chem Lett 2009; 19(18): 5505-9. [http://dx.doi.org/10.1016/j.bmcl.2009.05.060]. [PMID: 19665377].
[106]
MacPhee M, Rachid Z, Todorova M, Qiu Q, Belinsky G, Jean-Claude BJ. Characterization of the potency of epidermal growth factor (EGFR)-DNA targeting combi-molecules containing a hydrolabile carbamate at the 3-position of the triazene chain. Invest New Drugs 2011; 29(5): 833-45. [http://dx.doi.org/10.1007/s10637-010-9431-5]. [PMID: 20428924].
[107]
Al-Safadi S, Domarkas J, Han Y, Brahimi F, Jean-Claude BJ. Enhancement of the cytotoxic potential of the mixed EGFR and DNA-targeting ‘combi-molecule’ ZRBA1 against human solid tumour cells by a bis-quinazoline-based drug design approach. Anticancer Drugs 2012; 23(5): 483-93. [http://dx.doi.org/10.1097/CAD.0b013e328351c101]. [PMID: 22421369].
[108]
Katsoulas A, Rachid Z, Brahimi F, McNamee J, Jean-Claude BJ. Engineering 3-alkyltriazenes to block bcr-abl kinase: A novel strategy for the therapy of advanced bcr-abl expressing leukemias. Leuk Res 2005; 29(6): 693-700. [http://dx.doi.org/10.1016/j.leukres.2004.11.012]. [PMID: 15863211].
[109]
Senhaji Mouhri Z, Goodfellow E, Jean-Claude B. A type I combi-targeting approach for the design of molecules with enhanced potency against BRCA1/2 mutant- and O6-methylguanine-DNA methyltransferase (mgmt)- expressing tumour cells. BMC Cancer 2017; 17(1): 540. [http://dx.doi.org/10.1186/s12885-017-3504-1]. [PMID: 28800752].
[110]
Katsoulas A, Rachid Z, McNamee JP, Williams C, Jean-Claude BJ. Combi-targeting concept: An optimized single-molecule dual-targeting model for the treatment of chronic myelogenous leukemia. Mol Cancer Ther 2008; 7(5): 1033-43. [http://dx.doi.org/10.1158/1535-7163.MCT-07-0179]. [PMID: 18483293].
[111]
Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the abl-kinase: Phenylaminopyrimidine (pap) derivatives. Bioorg Med Chem Lett 1997; 7: 187-92. [http://dx.doi.org/10.1016/S0960-894X(96)00601-4].
[112]
Nijman SMB. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett 2011; 585(1): 1-6. [http://dx.doi.org/10.1016/j.febslet.2010.11.024]. [PMID: 21094158].
[113]
O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet 2017; 18(10): 613-23. [http://dx.doi.org/10.1038/nrg.2017.47]. [PMID: 28649135].
[114]
Goodfellow E, Senhaji Mouhri Z, Williams C, Jean-Claude BJ. Design, synthesis and biological activity of novel molecules designed to target PARP and DNA. Bioorg Med Chem Lett 2017; 27(3): 688-94. [http://dx.doi.org/10.1016/j.bmcl.2016.09.054]. [PMID: 28003142].
[115]
Tentori L, Leonetti C, Scarsella M, et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood 2002; 99(6): 2241-4. [http://dx.doi.org/10.1182/blood.V99.6.2241]. [PMID: 11877304].
[116]
Pinheiro R, Braga C, Santos G, et al. Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference? ACS Chem Neurosci 2017; 8(1): 50-9. [http://dx.doi.org/10.1021/acschemneuro.6b00169]. [PMID: 27665765].
[117]
Braga C, Vaz AR, Oliveira MC, et al. Targeting gliomas with triazene-based hybrids: Structure-activity relationship, mechanistic study and stability. Eur J Med Chem 2019; 172: 16-25. [http://dx.doi.org/10.1016/j.ejmech.2019.03.048]. [PMID: 30939350].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy