Generic placeholder image

Current Graphene Science (Discontinued)

Editor-in-Chief

ISSN (Print): 2452-2732
ISSN (Online): 2452-2740

Review Article

Strategies for Development of High-Performance Graphene-Based Supercapacitor

Author(s): Mário César Albuquerque de Oliveira and Helinando Pequeno de Oliveira*

Volume 3, Issue 1, 2020

Page: [2 - 10] Pages: 9

DOI: 10.2174/2452273203666190612122535

Abstract

The development of high-performance supercapacitors requires efforts in materials design and nanotechnology to provide more efficient electrodes with higher electrochemical window, capacitance, energy and power density. In terms of candidates for electrodes, the high surface area of graphene (2630 m2g-1) makes this carbon derivative a widely explored building block for supercapacitor electrodes. Herein, it is presented a review about the state-of-art in surface modification of graphene derivatives with the aim of avoiding restacking processes in nanosheets. It allows that Faradaic and non-Faradaic mechanisms can be synergically explored to reach not only superior results in power density but in energy density, a typical drawback in supercapacitors (by comparison with conventional batteries), introducing graphene-based supercapacitors as promising candidates for energy storage devices.

Keywords: Conducting polymers, electrochemical window, graphene, metal oxide, MXene, supercapacitors.

Graphical Abstract
[1]
Edwards PP, Kuznetsov VL, David WI, Brandon NP. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008; 36(12): 4356-62.
[http://dx.doi.org/10.1016/j.enpol.2008.09.036]
[2]
Lethien C, Le Bideau J, Brousse T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ Sci 2019; 12(1): 96-115.
[http://dx.doi.org/10.1039/C8EE02029A]
[3]
Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 2018; 47(6): 2065-129.
[http://dx.doi.org/10.1039/C7CS00505A ] [PMID: 29399689]
[4]
Faggioli E, Rena P, Danel V, Andrieu X, Mallant R, Kahlen H. Supercapacitors for the energy management of electric vehicles. J Power Sources 1999; 84(2): 261-9.
[http://dx.doi.org/10.1016/S0378-7753(99)00326-2]
[5]
Thounthong P, Raël S, Davat B. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 2006; 158(1): 806-14.
[http://dx.doi.org/10.1016/j.jpowsour.2005.09.014]
[6]
Wu Y, Gao H. Optimization of fuel cell and supercapacitor for fuel-cell electric vehicles. IEEE T Veh Technol 2006; 55(6): 1748-55.
[http://dx.doi.org/10.1109/TVT.2006.883764]
[7]
El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 2013; 4: 1475.
[http://dx.doi.org/10.1038/ncomms2446 ] [PMID: 23403576]
[8]
Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 2010; 5(9): 651-4.
[http://dx.doi.org/10.1038/nnano.2010.162 ] [PMID: 20711179]
[9]
Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 2011; 6(8): 496-500.
[http://dx.doi.org/10.1038/nnano.2011.110 ] [PMID: 21804554]
[10]
Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev 2004; 104(10): 4245-69.
[http://dx.doi.org/10.1021/cr020730k ] [PMID: 15669155]
[11]
Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin? Science 2014; 343(6176): 1210-1.
[http://dx.doi.org/10.1126/science.1249625 ] [PMID: 24626920]
[12]
Zhao Y, Liu J, Wang B, et al. Supercapacitor electrodes with remarkable specific capacitance converted from hybrid graphene Oxide/NaCl/Urea Films. ACS Appl Mater Interfaces 2017; 9(27): 22588-96.
[http://dx.doi.org/10.1021/acsami.7b05965 ] [PMID: 28609091]
[13]
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 2015; 8(3): 702-30.
[http://dx.doi.org/10.1039/C4EE03229B]
[14]
Lekakou C, Moudam O, Markoulidis F, Andrews T, Watts J, Reed G. Carbon-based fibrous EDLC capacitors and supercapacitors. J Nanotechnol 2011.2011409382
[http://dx.doi.org/10.1155/2011/409382]
[15]
Lu Q, Chen JG, Xiao JQ. Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed Engl 2013; 52(7): 1882-9.
[http://dx.doi.org/10.1002/anie.201203201 ] [PMID: 23307657]
[16]
Lee SH, Park C, Park JW, Kim SJ, Im SS, Ahn H. Synthesis of conducting polymer-intercalated vanadate nanofiber composites using a sonochemical method for high performance pseudocapacitor applications. J Power Sources 2019; 414: 460-9.
[http://dx.doi.org/10.1016/j.jpowsour.2019.01.031]
[17]
Lima RMAP, Alcaraz-Espinoza JJ, da Silva FAG Jr, de Oliveira HP. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl Mater Interfaces 2018; 10(16): 13783-95.
[http://dx.doi.org/10.1021/acsami.8b04695 ] [PMID: 29620858]
[18]
Alcaraz-Espinoza JJ, de Oliveira HP. Flexible supercapacitors based on a ternary composite of polyaniline/polypyrrole/graphite on gold coated sandpaper. Electrochim Acta 2018; 274: 200-7.
[http://dx.doi.org/10.1016/j.electacta.2018.04.063]
[19]
Alcaraz-Espinoza JJ, de Melo CP, de Oliveira HP. Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega 2017; 2: 2866-77.
[http://dx.doi.org/10.1021/acsomega.7b00329]
[20]
de Oliveira HP, Sydlik SA, Swager TM. Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J Phys Chem C 2013; 117: 10270-6.
[http://dx.doi.org/10.1021/jp400344u]
[21]
de Oliveira AHP, de Oliveira HP. Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J Power Sources 2014; 268: 45-9.
[http://dx.doi.org/10.1016/j.jpowsour.2014.06.027]
[22]
Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 2001; 347: 36-40.
[http://dx.doi.org/10.1016/S0009-2614(01)01037-5]
[23]
Zhou C, Zhang Y, Li Y, Liu J. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 2013; 13(5): 2078-85.
[http://dx.doi.org/10.1021/nl400378j ] [PMID: 23570565]
[24]
Zhao Y, Liu J, Hu Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 2013; 25(4): 591-5.
[http://dx.doi.org/10.1002/adma.201203578 ] [PMID: 23081662]
[25]
Biswas S, Drzal LT. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 2010; 22: 5667-71.
[http://dx.doi.org/10.1021/cm101132g]
[26]
Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 2011; 196: 5990-6.
[http://dx.doi.org/10.1016/j.jpowsour.2011.02.090]
[27]
Vonlanthen D, Lazarev P, See KA, Wudl F, Heeger AJ. A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv Mater 2014; 26(30): 5095-100.
[http://dx.doi.org/10.1002/adma.201400966 ] [PMID: 24923597]
[28]
Wu Q, Xu Y, Yao Z, Liu A, Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010; 4(4): 1963-70.
[http://dx.doi.org/10.1021/nn1000035 ] [PMID: 20355733]
[29]
Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 2009; 11: 1158-61.
[http://dx.doi.org/10.1016/j.elecom.2009.03.036]
[30]
Wang K, Huang J, Wei Z. Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 2010; 114: 8062-7.
[http://dx.doi.org/10.1021/jp9113255]
[31]
Yasoda KY, Mikhaylov AA, Medvedev AG, et al. Brush like polyaniline on vanadium oxide decorated reduced graphene oxide: Efficient electrode materials for supercapacitor. J Energy Storage 2019; 22: 188-93.
[http://dx.doi.org/10.1016/j.est.2019.02.010]
[32]
Purkait T, Singh G, Kamboj N, Das M, Dey RS. All-porous heterostructure of reduced graphene oxide-polypyrrole-nanoporous gold for a planar flexible supercapacitor showing outstanding volumetric capacitance and energy density. J Mater Chem A Mater Energy Sustain 2018; 6: 22858-69.
[http://dx.doi.org/10.1039/C8TA07627H]
[33]
Purkait T, Singh G, Kumar D, Singh M, Dey RS. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 2018; 8(1): 640.
[http://dx.doi.org/10.1038/s41598-017-18593-3 ] [PMID: 29330476]
[34]
Li H, Hou Y, Wang F, et al. Flexible all‐solid‐state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater 2017.71601847
[http://dx.doi.org/10.1002/aenm.201601847]
[35]
Cakici M, Kakarla RR, Alonso-Marroquin F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 2017; 309: 151-8.
[http://dx.doi.org/10.1016/j.cej.2016.10.012]
[36]
Sivachidambaram M, Vijaya JJ, Niketha K, Kennedy LJ, Elanthamilan E, Merlin JP. Electrochemical Studies on Tamarindus indica fruit shell bio-waste derived nanoporous activated carbons for supercapacitor applications. J Nanosci Nanotechnol 2019; 19(6): 3388-97.
[http://dx.doi.org/10.1166/jnn.2019.16115 ] [PMID: 30744766]
[37]
Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013; 5(1): 72-88.
[http://dx.doi.org/10.1039/C2NR32040A ] [PMID: 23151936]
[38]
Wang B, Qin Y, Tan W, Tao Y, Kong Y. Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim Acta 2017; 241: 1-9.
[http://dx.doi.org/10.1016/j.electacta.2017.04.120]
[39]
Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010; 10(12): 4863-8.
[http://dx.doi.org/10.1021/nl102661q ] [PMID: 21058713]
[40]
Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958; 80: 1339-9.
[http://dx.doi.org/10.1021/ja01539a017]
[41]
Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials. J Phys Chem C 2009; 113(30): 13103-7.
[http://dx.doi.org/10.1021/jp902214f]
[42]
Chang HW, Lu YR, Chen JL, et al. Electrochemically activated reduced graphene oxide used as solid-state symmetric supercapacitor: An x-ray absorption spectroscopic investigation. J Phys Chem C 2016; 120: 22134-41.
[http://dx.doi.org/10.1021/acs.jpcc.6b04936]
[43]
Zhang LL, Zhou R, Zhao X. Graphene-based materials as supercapacitor electrodes. J Mater Chem 2010; 20: 5983-92.
[http://dx.doi.org/10.1039/c000417k]
[44]
Cao X, Shi Y, Shi W, et al. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011; 7(22): 3163-8.
[http://dx.doi.org/10.1002/smll.201100990 ] [PMID: 21932252]
[45]
Cong H-P, Ren X-C, Wang P, Yu S-H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 2013; 6: 1185-91.
[http://dx.doi.org/10.1039/c2ee24203f]
[46]
He Y, Chen W, Li X, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013; 7(1): 174-82.
[http://dx.doi.org/10.1021/nn304833s ] [PMID: 23249211]
[47]
Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 2011; 13: 355-8.
[http://dx.doi.org/10.1016/j.elecom.2011.01.023]
[48]
Yu A, Roes I, Davies A, Chen Z. Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 2010.96253105
[http://dx.doi.org/10.1063/1.3455879]
[49]
Gao H, Xiao F, Ching CB, Duan H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 2012; 4(5): 2801-10.
[http://dx.doi.org/10.1021/am300455d ] [PMID: 22545683]
[50]
Tan YB, Lee J-M. Graphene for supercapacitor applications. J Mater Chem A Mater Energy Sustain 2013; 1: 14814-43.
[http://dx.doi.org/10.1039/c3ta12193c]
[51]
Yoo JJ, Balakrishnan K, Huang J, et al. Ultrathin planar graphene supercapacitors. Nano Lett 2011; 11(4): 1423-7.
[http://dx.doi.org/10.1021/nl200225j ] [PMID: 21381713]
[52]
Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011; 332(6037): 1537-41.
[http://dx.doi.org/10.1126/science.1200770 ] [PMID: 21566159]
[53]
Zhang CJ, Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Stor Mater 2018; 16: 102-25.
[http://dx.doi.org/10.1016/j.ensm.2018.05.003]
[54]
Fan Z, Wang Y, Xie Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci (Weinh) 2018; 5(10)1800750
[http://dx.doi.org/10.1002/advs.201800750 ] [PMID: 30356956]
[55]
Yang Q, Xu Z, Fang B, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A Mater Energy Sustain 2017; 5(42): 22113-9.
[http://dx.doi.org/10.1039/C7TA07999K]
[56]
Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010; 328(5977): 480-3.
[http://dx.doi.org/10.1126/science.1184126 ] [PMID: 20413497]
[57]
Xia Y, Mathis TS, Zhao M-Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018; 557(7705): 409-12.
[http://dx.doi.org/10.1038/s41586-018-0109-z ] [PMID: 29769673]
[58]
Fan Z, Wang Y, Xie Z, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 2018; 10(20): 9642-52.
[http://dx.doi.org/10.1039/C8NR01550C ] [PMID: 29756628]
[59]
Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A Mater Energy Sustain 2019; 7(1): 269-77.
[http://dx.doi.org/10.1039/C8TA09810G]
[60]
Hu M, Li Z, Li G, Hu T, Zhang C, Wang X. All‐Solid‐State Flexible Fiber‐Based MXene Supercapacitors. Adv Mater Technol 2017; 2(10)1700143
[http://dx.doi.org/10.1002/admt.201700143]
[61]
Ambade SB, Ambade RB, Eom W, Noh SH, Kim SH, Han TH. 2D Ti3C2 MXene/WO3 hybrid architectures for high‐rate supercapacitors. Adv Mater Interfaces 2018; 5(24)1801361
[http://dx.doi.org/10.1002/admi.201801361]
[62]
Melchior SA, Raju K, Ike IS, et al. High-voltage symmetric supercapacitor based on 2d titanium carbide (mxene, ti2ctx)/carbon nanosphere composites in a neutral aqueous electrolyte. J Electrochem Soc 2018; 165(3): A501-11.
[http://dx.doi.org/10.1149/2.0401803jes]
[63]
Chang T-H, Zhang T, Yang H, et al. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018; 12(8): 8048-59.
[http://dx.doi.org/10.1021/acsnano.8b02908 ] [PMID: 30067908]
[64]
Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2017; 2(8): 17105.
[http://dx.doi.org/10.1038/nenergy.2017.105]
[65]
Huang Y, Zhuo G, Han L, Wang Y, Kang S, Lu J. Facile Synthesis and Application of V2O5/MXene Nanocomposites as Electrode Materials for Supercapacitors. Nanosci Nanotechnol Lett 2018; 10(12): 1633-43.
[http://dx.doi.org/10.1166/nnl.2018.2842]
[66]
Yu L, Hu L, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett 2018; 3(7): 1597-603.
[http://dx.doi.org/10.1021/acsenergylett.8b00718]
[67]
Baby RR, Ahmed B, Anjum DH, Alshareef HN. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications. ACS Appl Mater Interfaces 2016; 8(29): 18806-14.
[http://dx.doi.org/10.1021/acsami.6b04481 ] [PMID: 27377125]
[68]
Kurra N, Ahmed B, Gogotsi Y, Alshareef HN. MXene‐on‐paper coplanar microsupercapacitors. Adv Energy Mater 2016; 6(24)1601372
[http://dx.doi.org/10.1002/aenm.201601372]
[69]
Yan J, Ren CE, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017; 27(30)1701264
[http://dx.doi.org/10.1002/adfm.201701264]
[70]
Yang Y, Huang Q, Niu L, et al. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 2017; 29(19)1606679
[http://dx.doi.org/10.1002/adma.201606679 ] [PMID: 28234421]
[71]
Xiao H, Wu Z-S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 2017; 11(7): 7284-92.
[http://dx.doi.org/10.1021/acsnano.7b03288 ] [PMID: 28628293]
[72]
Couly C, Alhabeb M, Van Aken KL, et al. Asymmetric flexible MXene‐reduced graphene oxide micro‐supercapacitor. Adv Electron Mater 2018; 4(1)1700339
[http://dx.doi.org/10.1002/aelm.201700339]
[73]
Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications. Chem Mater 2015; 27(15): 5314-23.
[http://dx.doi.org/10.1021/acs.chemmater.5b01623]
[74]
Xu Y, Tao Y, Zheng X, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm(-3). Adv Mater 2015; 27(48): 8082-7.
[http://dx.doi.org/10.1002/adma.201504151 ] [PMID: 26540013]
[75]
Wang D-W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009; 3(7): 1745-52.
[http://dx.doi.org/10.1021/nn900297m ] [PMID: 19489559]
[76]
Zhang K, Zhang LL, Zhao X, Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 2010; 22(4): 1392-401.
[http://dx.doi.org/10.1021/cm902876u]
[77]
Bai Y, Liu R, Li E, Li X, Liu Y, Yuan G. Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloys Compd 2019; 777: 524-30.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.376]
[78]
Alshahrie A, Ansari MO. High performance supercapacitor applications and dc electrical conductivity retention on surfactant immobilized macroporous ternary polypyrrole/graphitic-C3N4@ Graphene Nanocomposite. Electron Mater Lett 2019; 15: 238-46.
[http://dx.doi.org/10.1007/s13391-018-00107-6]
[79]
Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 2016.61600969
[http://dx.doi.org/10.1002/aenm.201600969]
[80]
Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012; 1(1): 107-31.
[http://dx.doi.org/10.1016/j.nanoen.2011.11.001]
[81]
Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 2010; 48: 3825-33.
[http://dx.doi.org/10.1016/j.carbon.2010.06.047]
[82]
Wang Y, Lai W, Wang N, et al. A reduced graphene oxide/mixedvalence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energ Environ Sci 201 10: 941-9.
[83]
Wu ZS, Wang DW, Ren W, et al. Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Adv Funct Mater 2010; 20: 3595-602.
[http://dx.doi.org/10.1002/adfm.201001054]
[84]
Ma H, Kong D, Xu Y, et al. Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 2017; 13(30)1701026
[http://dx.doi.org/10.1002/smll.201701026 ] [PMID: 28650519]
[85]
Yu G, Hu L, Liu N, et al. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 2011; 11(10): 4438-42.
[http://dx.doi.org/10.1021/nl2026635 ] [PMID: 21942427]
[86]
Yan J, Fan Z, Sun W, et al. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 2012; 22: 2632-41.
[http://dx.doi.org/10.1002/adfm.201102839]
[87]
Fan Z, Yan J, Wei T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 2011; 21: 2366-75.
[http://dx.doi.org/10.1002/adfm.201100058]
[88]
Shi X, Zheng S, Wu Z-S, Bao X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J Energ Chem 2018; 27: 25-42.
[http://dx.doi.org/10.1016/j.jechem.2017.09.034]
[89]
Liang J, Mondal AK, Wang DW, Iacopi F. Graphene‐based planar microsupercapacitors: recent advances and future challenges. Adv Mater Technol 2019; p. 41800200.
[http://dx.doi.org/10.1002/admt.201800200]
[90]
Li K, Zhang J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci Chin Mater 2018; 61: 210-32.
[http://dx.doi.org/10.1007/s40843-017-9154-2]
[91]
Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B. Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. J Power Sources 2018; 396: 182-206.
[http://dx.doi.org/10.1016/j.jpowsour.2018.06.004]

© 2024 Bentham Science Publishers | Privacy Policy