Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis and Evaluation of 8-Thiosubstituted 1,3,7- Trimethylxanthine Hydrazones with In-vitro Neuroprotective and MAO-B Inhibitory Activities

Author(s): Javor Mitkov, Alexandra Kasabova-Angelova, Magdalena Kondeva-Burdina, Virginia Tzankova, Diana Tzankova, Maya Georgieva and Alexander Zlatkov*

Volume 16, Issue 3, 2020

Page: [326 - 339] Pages: 14

DOI: 10.2174/1573406415666190531121927

Price: $65

Abstract

Objective: The syntheses and biological activities of 8-thiosubstituted-1,3,7- trimethylxanthine derivatives bearing an aromatic hydrazide-hydrazone fragment in the side chain at C8 are described.

Methods: The chemical structures of the synthesized compounds 6a-m were confirmed based on their MS, FTIR, 1H NMR and 13C NMR analyses.

Results: The in vitro investigations of neuroprotective effects manifested on cellular (human neuroblastoma cell line SH-SY5Y) and sub-cellular (isolated rat brain synaptosomes) levels show that compounds 6g and 6i demonstrate statistically significant activity. The performed monoamine oxidase B (MAO-B) inhibition study in vitro show that compounds 6g and 6i possess a significant MAO-B inhibition activity close to L-deprenyl.

Conclusion: These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for the treatment of Parkinson’s disease.

Keywords: Alzheimer's disease, xanthine, aromatic hydrazide-hydrazones, SH-SY5Y, monoamine oxidase B, Parkinson’s disease.

Graphical Abstract
[1]
Wurster, I.; Abaza, A.; Brockmann, K.; Liepelt-Scarfone, I.; Berg, D. Parkinson’s disease with and without preceding essential tremor-similar phenotypes: a pilot study. J. Neurol., 2014, 261(5), 884-888.
[http://dx.doi.org/10.1007/s00415-014-7285-z] [PMID: 24590404]
[2]
Braak, H.; Braak, E.; Yilmazer, D.; Schultz, C.; de Vos, R.A.; Jansen, E.N. Nigral and extranigral pathology in Parkinson’s disease. J. Neural Transm. Suppl., 1995, 46, 15-31.
[PMID: 8821039]
[3]
Alexander, G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci., 2004, 6(3), 259-280.
[PMID: 22033559]
[4]
Werner, P. Nonmotor symptoms in parkinson’s diseaseParkinson’s Disease and Movement Disorders; 5th ed.; Jancovic, J.; Tolosa, E., Eds.; Lippincott, Williams and Wilkins, 2007, pp. 67-76.
[5]
Patil, P.O.; Bari, S.B. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects. Arab. J. Chem., 2014, 7, 857-884.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.034]
[6]
Guay, D.R. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson’s disease. Am. J. Geriatr. Pharmacother., 2006, 4(4), 330-346.
[http://dx.doi.org/10.1016/j.amjopharm.2006.12.001] [PMID: 17296539]
[7]
Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(Suppl. 1), S287-S296.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[8]
Fredholm, B.B.; Abbracchio, M.P.; Burnstock, G.; Daly, J.W.; Harden, T.K.; Jacobson, K.A.; Leff, P.; Williams, M. Nomenclature and classification of purinoceptors. Pharmacol. Rev., 1994, 46(2), 143-156.
[PMID: 7938164]
[9]
Petzer, A.; Pienaar, A.; Petzer, J.P. The interactions of caffeine with monoamine oxidase. Life Sci., 2013, 93(7), 283-287.
[http://dx.doi.org/10.1016/j.lfs.2013.06.020] [PMID: 23850513]
[10]
Vlok, N.; Malan, S.F.; Castagnoli, N., Jr; Bergh, J.J.; Petzer, J.P. Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorg. Med. Chem., 2006, 14(10), 3512-3521.
[http://dx.doi.org/10.1016/j.bmc.2006.01.011] [PMID: 16442801]
[11]
Strydom, B.; Bergh, J.J.; Petzer, J.P. The inhibition of monoamine oxidase by 8-(2-phenoxyethoxy)caffeine analogues. Arzneimittelforschung, 2012, 62(11), 513-518.
[http://dx.doi.org/10.1055/s-0032-1323662] [PMID: 22941808]
[12]
Strydom, B.; Malan, S.F.; Castagnoli, N., Jr; Bergh, J.J.; Petzer, J.P. Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues. Bioorg. Med. Chem., 2010, 18(3), 1018-1028.
[http://dx.doi.org/10.1016/j.bmc.2009.12.064] [PMID: 20093036]
[13]
Petzer, J.P.; Castagnoli, N., Jr; Schwarzschild, M.A.; Chen, J-F.; Van der Schyf, C.J. Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson’s disease. Neurotherapeutics, 2009, 6(1), 141-151.
[http://dx.doi.org/10.1016/j.nurt.2008.10.035] [PMID: 19110205]
[14]
Armentero, M.T.; Pinna, A.; Ferré, S.; Lanciego, J.L.; Müller, C.E.; Franco, R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol. Ther., 2011, 132(3), 280-299.
[http://dx.doi.org/10.1016/j.pharmthera.2011.07.004] [PMID: 21810444]
[15]
Pisani, L.; Catto, M.; Leonetti, F.; Nicolotti, O.; Stefanachi, A.; Campagna, F.; Carotti, A. Targeting monoamine oxidases with multipotent ligands: An emerging strategy in the search of new drugs against neurodegenerative diseases. Curr. Med. Chem., 2011, 18(30), 4568-4587.
[http://dx.doi.org/10.2174/092986711797379302] [PMID: 21864289]
[16]
Rivara, S.; Piersanti, G.; Bartoccini, F.; Diamantini, G.; Pala, D.; Riccioni, T.; Stasi, M.A.; Cabri, W.; Borsini, F.; Mor, M.; Tarzia, G.; Minetti, P. Synthesis of (E)-8-(3-chlorostyryl)caffeine analogues leading to 9-deazaxanthine derivatives as dual A(2A) antagonists/MAO-B inhibitors. J. Med. Chem., 2013, 56(3), 1247-1261.
[http://dx.doi.org/10.1021/jm301686s] [PMID: 23281824]
[17]
Mishina, M.; Ishiwata, K.; Naganawa, M.; Kimura, Y.; Kitamura, S.; Suzuki, M.; Hashimoto, M.; Ishibashi, K.; Oda, K.; Sakata, M.; Hamamoto, M.; Kobayashi, S.; Katayama, Y.; Ishii, K. Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson’s disease patients. PLoS One, 2011, 6(2) e17338
[http://dx.doi.org/10.1371/journal.pone.0017338] [PMID: 21386999]
[18]
Gohil, V.M.; Agrawal, S.K.; Saxena, A.K.; Garg, D.; Gopimohan, C.; Bhutani, K.K. Synthesis, biological evaluation and molecular docking of aryl hydrazines and hydrazides for anticancer activity. Indian J. Exp. Biol., 2010, 48(3), 265-268.
[PMID: 21046979]
[19]
Timson, J. The effect of caffeine on the mitosis of human lymphocytes in culture. Br. J. Pharmacol., 1970, 38(4), 731-734.
[http://dx.doi.org/10.1111/j.1476-5381.1970.tb09881.x] [PMID: 5445691]
[20]
Stokes, A.H.; Freeman, W.M.; Mitchell, S.G.; Burnette, T.A.; Hellmann, G.M.; Vrana, K.E. Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology, 2002, 23(6), 675-684.
[http://dx.doi.org/10.1016/S0161-813X(02)00093-1] [PMID: 12520757]
[21]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[22]
Taupin, P.; Zini, S.; Cesselin, F.; Ben-Ari, Y.; Roisin, M.P. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: morphological and biochemical characterization in control and degranulated rat hippocampus. J. Neurochem., 1994, 62(4), 1586-1595.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62041586.x] [PMID: 7907653]
[23]
Mungarro-Menchaca, X.; Ferrera, P.; Morán, J.; Arias, C. beta-Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J. Neurosci. Res., 2002, 68(1), 89-96.
[http://dx.doi.org/10.1002/jnr.10193] [PMID: 11933053]
[24]
Robyt, J.F.; Ackerman, R.J.; Chittenden, C.G. Reaction of protein disulfide groups with Ellman’s reagent: a case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. Arch. Biochem. Biophys., 1971, 147(1), 262-269.
[http://dx.doi.org/10.1016/0003-9861(71)90334-1] [PMID: 5114933]
[25]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 75, 82-95.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.028] [PMID: 24530494]
[26]
Mitkov, J.; Georgieva, M.; Zlatkov, Al. Development of an optimized synthetic approach for synthesis of caffeine-8-thioglycolic acid and its ester derivatives. Pharmacia, 2012, 59(1-4), 17-23.
[27]
Mason, S.F. Purine studies. Part II. The ultra-violet absorption spectra of some mono- and poly-substituted purines. J. Chem. Soc., 1954, 2071-2081.
[http://dx.doi.org/10.1039/jr9540002071]
[28]
Issa, R.M.; Khedr, A.M.; Rizk, H. 1-H NMR, IR and UV/VIS Spectroscopic Studies of Some Schiff Bases Derived From 2-Aminobenzothiazole and 2-Amino-3-hydroxypyridine. J. Chin. Chem. Soc. (Taipei), 2008, 55, 875-884.
[http://dx.doi.org/10.1002/jccs.200800131]
[29]
Karaer, H.; Gumrukcuoglu, I.E. Synthesis and spectral characterisation of novel azo-azomethine Dyes. Turk. J. Chem., 1999, 23, 67-71.
[30]
Banfi, D.; Patiny, L. Resurrecting and processing NMR spectra on-line. Chimia (Aarau), 2008, 62(4), 280-281.
[http://dx.doi.org/10.2533/chimia.2008.280]
[31]
Castillo, A.M.; Patiny, L.; Wist, J. Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J. Magn. Reson., 2011, 209(2), 123-130.
[http://dx.doi.org/10.1016/j.jmr.2010.12.008] [PMID: 21316274]
[32]
Aires-de-Sousa, J.; Hemmer, M.C.; Gasteiger, J. Prediction of 1H NMR chemical shifts using neural networks. Anal. Chem., 2002, 74(1), 80-90.
[http://dx.doi.org/10.1021/ac010737m] [PMID: 11795822]
[33]
Galindo, M.F.; Jordán, J.; González-García, C.; Ceña, V. Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. J. Neurochem., 2003, 84(5), 1066-1073.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01592.x] [PMID: 12603830]
[34]
Woodgate, A.; MacGibbon, G.; Walton, M.; Dragunow, M. The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res. Mol. Brain Res., 1999, 69(1), 84-92.
[http://dx.doi.org/10.1016/S0169-328X(99)00103-5] [PMID: 10350640]
[35]
Jia, Z.; Misra, H.P. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFkappaB and caspase-3. Free Radic. Biol. Med., 2007, 42(2), 288-298.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.10.047] [PMID: 17189834]
[36]
Blandini, F.; Armentero, M.T.; Martignoni, E. The 6-hydroxy-dopamine model: news from the past. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S124-S129.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.015] [PMID: 18595767]
[37]
Rodriguez-Pallares, J.; Parga, J.A.; Muñoz, A.; Rey, P.; Guerra, M.J.; Labandeira-Garcia, J.L. Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J. Neurochem., 2007, 103(1), 145-156.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04699.x] [PMID: 17573824]
[38]
Timbrell, J. Principles of Biochemical Toxicology, 3rd ed; Taylor & Francis: London, 2003.
[39]
Ross, G.W.; Petrovitch, H. Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease. Drugs Aging, 2001, 18(11), 797-806.
[http://dx.doi.org/10.2165/00002512-200118110-00001] [PMID: 11772120]
[40]
Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290.
[http://dx.doi.org/10.1111/cns.12684] [PMID: 28317317]
[41]
Madeira, M.H.; Boia, R.; Ambrósio, A.F.; Santiago, A.R. Having a coffee break: The impact of caffeine consumption on microgliamediated inflammation in neurodegenerative diseases. Mediators Inflamm., 2017. id 4761081, 1-12.
[42]
Chen, J.-F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y.-H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K., Jr; Castagnoli, N.; Schwarzschild, M.A. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of parkinson’s disease. J. Neurosci., 2001, 21(10) RC143, 1-6.
[43]
Rivera-Oliver, M.; Díaz-Ríos, M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci., 2014, 101(1-2), 1-9.
[http://dx.doi.org/10.1016/j.lfs.2014.01.083] [PMID: 24530739]
[44]
Xu, K.; Xu, Y-H.; Chen, J-F.; Schwarzschild, M.A. Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience, 2010, 167(2), 475-481.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.020] [PMID: 20167258]
[45]
Xu, K.; Di Luca, D.G.; Orrú, M.; Xu, Y.; Chen, J-F.; Schwarzschild, M.A. Neuroprotection by caffeine in the MPTP model of parkinson’s disease and its dependence on adenosine A2A receptors. Neuroscience, 2016, 322, 129-137.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.035] [PMID: 26905951]
[46]
Fathalla, A.M.; Soliman, A.M.; Moustafa, A.A. Selective A2A receptors blockade reduces degeneration of substantia nigra dopamine neurons in a rotenone-induced rat model of Parkinson’s disease: A histological study. Neurosci. Lett., 2017, 643, 89-96.
[http://dx.doi.org/10.1016/j.neulet.2017.02.036] [PMID: 28213070]
[47]
Van der Walt, E.M.; Milczek, E.M.; Malan, S.F.; Edmondson, D.E.; Castagnoli, N., Jr; Bergh, J.J.; Petzer, J.P. Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorg. Med. Chem. Lett., 2009, 19(9), 2509-2513.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.030] [PMID: 19342233]
[48]
Strydom, B.; Bergh, J.J.; Petzer, J.P. 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase. Eur. J. Med. Chem., 2011, 46(8), 3474-3485.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.014] [PMID: 21621312]
[49]
Azam, F.; Madi, A.M.; Ali, H.I. Molecular docking and prediction of pharmacokinetic properties of dual mechanism drugs that block MAO-B and adenosine A(2A) receptors for the treatment of parkinson’s disease. J. Young Pharm., 2012, 4(3), 184-192.
[http://dx.doi.org/10.4103/0975-1483.100027] [PMID: 23112538]
[50]
Booysen, H.P.; Moraal, C. Terre’Blanche, G.; Petzer, A.; Bergh, J.J.; Petzer, J.P. Thio- and aminocaffeine analogues as inhibitors of human monoamine oxidase. Bioorg. Med. Chem., 2011, 19(24), 7507-7518.
[http://dx.doi.org/10.1016/j.bmc.2011.10.036] [PMID: 22055712]
[51]
Kasabova-Angelova, Al.; Kondeva-Burdina, M.; Mitkov, J.; Georgieva, M.; Tzankova, V.; Zlatkov, Al. Neuroprotective and MAOB inhibitory effects of a series of caffeine-8-thioglycolic acid amides. Braz. J. Pharm. Sci., 2019, 55(3) e18255
[http://dx.doi.org/10.1590/s2175-97902019000318255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy