Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Solid State Kinetics, Spectroscopic, Thermal Degradation and Fungicidal Studies of Biodegradable Copper Surfactants Derived from Lauric Acid

Author(s): Shilpa Jain, Rashmi Sharma and Arun K. Sharma*

Volume 18, Issue 1, 2020

Page: [59 - 71] Pages: 13

DOI: 10.2174/2211352517666190514074750

Abstract

Introduction: The synthesis of copper soap (laurate), and its complex with 2-amino 6- methylbenzothiazole and their elemental and spectral analysis have been done for comparative studies using IR, NMR, Mass and ESR spectra.

Methods: The fungicidal activities, with reference to Alternaria alternata and Aspergillus niger at different concentrations by P.D.A. technique were also studied.

Results and Conclusion: The present research work comprises detailed thermal analysis using TGA technique to determine their kinetic and thermodynamic parameters by applying various equations like Freeman Carroll, Coats-Redfern equation, Horowitz-Metzger equation, Broido equation, Piloyan–Novikova equation.

Keywords: Copper surfactants, 2-amino 6- methylbenzothiazole, anti-fungal studies, lauric acid, thermodynamic parameters, horowitz-metzger.

Graphical Abstract
[1]
Joram, A.; Sharma, R.; Sharma, A.K. Spectral & TGA Studies of Cu Soaps of various oils & Their Complexes LAP Lambert Academic Publishing; Germany, 2017.
[2]
Sharma, A.K.; Saxena, M.; Sharma, R. Ultrasonic studies of Cu (II) soaps derived from groundnut and sesame oils. Tenside. Surf. Det., 2018, 55(2), 127-134.
[http://dx.doi.org/10.3139/113.110544]
[3]
Bhati, S.K.; Kumar, A. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents. Eur. J. Med. Chem., 2008, 43(11), 2323-2330.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.012] [PMID: 18063224]
[4]
Kumar, A.; Rajput, C.S. Synthesis and anti-inflammatory activity of newer quinazolin-4-one derivatives. Eur. J. Med. Chem., 2009, 44(1), 83-90.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.018] [PMID: 18501478]
[5]
Mahajan, K.; Swami, M.; Singh, R.V. Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazoline. Russ. J. Coord. Chem., 2009, 35, 179-180.
[http://dx.doi.org/10.1134/S1070328409030038]
[6]
Bakr, F.A.W.; Mohamed, H.N.; Awad, G.A.E. Synthesis and biological activity of some new 1,2,3- triazole hydrazone derivatives. Eur. Chem. Bull., 2015, 4(2), 106-109.
[7]
Tank, P.; Sharma, R.; Sharma, A.K. Micellar features and various interactions of copper soap complexes derived from edible mustard oil in benzene at 303.15 K. Curr. Phys. Chem., 2018, 8(1), 46-57.
[http://dx.doi.org/10.2174/1877946808666180102152443]
[8]
Khan, S.; Sharma, R.; Sharma, A.K. Viscometric evaluation and micellar properties of Cu (II) Soap derived from neem oil in non-aqueous media. Curr. Phys. Chem., 2018, 8(3), 164-174.
[http://dx.doi.org/10.2174/1877946808666181102151911]
[9]
Sharma, S.; Sharma, R.; Sharma, A.K. Photo catalytic and kinetic study of ZnO catalyzed degradation of copper stearate surfactant. Curr. Environ. Eng., 2018, 5, 1-9.
[http://dx.doi.org/10.2174/2212717805666180801143324]
[10]
Sharma, A.K.; Sharma, R.; Gangwal, A. Comparative critical micellar concentration parameters of biopotent metal - benzothiazole chelates in different chemical compositions. Curr. Phys. Chem., 2018, 8(4), 253-262.
[11]
Garg, B.S.; Kumar, D.N. Spectral studies of complexes of nickel (II) with tetradentateschiff bases having N2O2 donor groups. Spectrochim. Acta, 2003, 59A, 229-234.
[12]
Mishra, A.P.; Mishra, R.K.; Shrivastava, S.P. Structural and antimicrobial studies of coordination compounds of VO(II), Co(II), Ni(II) and Cu(II) with some Schiff bases in-volving 2-amino-4-chlorophenol. J. Serb. Chem. Soc., 2009, 74, 523-535.
[http://dx.doi.org/10.2298/JSC0905523M]
[13]
Sharma, A.K.; Saxena, M.; Sharma, R. Ultrasonic studies of copper soaps urea complexes derived from mustard and soyabean oils. J. Phy. Sciences (New York), 2018, 29(3), 67-82.
[14]
Putta, R.R.; Sawmya, D.V.; Guda, D.R. Synthesis and Anti-allergic Activity of Bis-heteroaryl Hydrazines. J. Heterocycl. Chem., 2017, 4(54), 2216-2222.
[http://dx.doi.org/10.1002/jhet.2808]
[15]
Tank, P. Sharma, R.; and Sharma, A.K.; Viscometric Studies of Cu (II) surfactants derived from mustard oil in benzene at 303.15K. Tenside Surf. Det., 2019, 56(2), 158-163.
[http://dx.doi.org/10.3139/113.110601]
[16]
Khan, S.; Sharma, R.; Sharma, A.K. Acoustic studies and other acoustic parameters of Cu(II) Soap derived from nonedible neem oil (Azadirectaindica), Non-aqueous media at 298.15. Acta Acustica united with Acustica, 2018, 104, 277-283.
[17]
Mehrotra, K.N.; Varma, R.P. Studies on surface tension of the system: barium soap-water and propanol-1. J. Am. Chem. Soc., 1969, 46(3), 152-154.
[18]
Mehrotra, K.N.; Chauhan, M.; Shukla, R.K. Surfactants & detergents: influence of alkanols on the micellar behavior of samarium soaps. J. Am. Oil Chem. Soc., 1990, 67(7), 446-450.
[http://dx.doi.org/10.1007/BF02638959]
[19]
Mehrotra, K.N.; Jain, M. Viscometric and spectrophotometric studies of chromium soaps in a benzene-dimethylformamide mixture. Colloids Surf. A Physicochem. Eng. Asp., 1994, 85, 75-80.
[http://dx.doi.org/10.1016/0927-7757(93)02728-W]
[20]
Mehrotra, K.N.; Varma, R.P. Studies on the physical proper-ties of the system: barium caproate*-water and propanol-1. J. Am. Oil Chem. Soc., 1969, 46, 568-592.
[21]
Mehrotra, K.N.; Tonton, K.; Rawat, M.K. Conductivity, viscosity and spectral studies on manganese caprylate in alkanols. Colloids Surf., 1991, 57(1), 125-138.
[http://dx.doi.org/10.1016/0166-6622(91)80185-Q]
[22]
Millard, E.B. Surface tension of alkaline soap solutions. Ind. Eng. Chem., 1923, 15(8), 810-811.
[http://dx.doi.org/10.1021/ie50164a016]
[23]
Mathur, N.; Jain, N.; Sharma, A.K. Biocidal activities of substituted benzothiazole of copper surfactants over Candida albicans & trichoderma harzianumon muller hinton agar. Open Pharm. Sci. J., 2018, 5, 24-35.
[http://dx.doi.org/10.2174/1874844901805010024]
[24]
Sharma, A.K.; Sharma, R.; Gangwal, A. Surface tension studies of ternary system: Cu (II) Surfactants-2-amino-6-methyl Benzothiazole complex plus methanol plus benzene at 311 K. Curr. Phys. Chem., 2018, 8(2), 151-161.
[http://dx.doi.org/10.2174/1877946808666180914164134]
[25]
Raval, J.P.; Desai, K.G.; Desai, K.R. Microwave synthesis, characterization and antimicrobial study of new pyrazolyl-oxopropyl-quinazolin-4(3H)-one derivatives. J. Saudi Chem. Soc., 2011, 16(4), 387-393.
[http://dx.doi.org/10.1016/j.jscs.2011.02.003]
[26]
Chandra, S.; Jain, D.; Sharma, A.K.; Sharma, P. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules, 2009, 14(1), 174-190.
[http://dx.doi.org/10.3390/molecules14010174] [PMID: 19127246]
[27]
Bhutra, R. Sharma, R.; and Sharma, A.K. Fungicidal activities of Cu (II) soaps derived from various oils treated at high temperature for biomedical use. SAJ Biotechnol., 2018, 5, 1-6.
[28]
Siddique, J.A.; Sharma, S.; Naqvi, S. Viscometric study of lysozyme solution with sugar and urea at various temperatures. Arab. J. Chem., 2016, 9(2), 1040-1043.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.006]
[29]
Joram, A.; Sharma, R.; Sharma, A.K. Thermal degradation of complexes derived from Cu (II) groundnut soap (Arachishypogaea) and Cu (II) sesame soap (Sesamumindicum). Z. Phys. Chem. (N F), 2018, 232(4), 459-470.
[30]
Sharma, A.K.; Saxena, M.; Sharma, R. Fungicidal activities and characterization of novel biodegradable Cu (II) surfactants derived from lauric acid. Open Chem. J., 2018, 5, 89-105.
[http://dx.doi.org/10.2174/1874842201805010089]
[31]
Mehta, V.P.; Hasan, M.; Heda, L.C. Solid-State kinetics and infrared spectra of cadmium soaps. J. Macromol. Sci. Chem., 1982, A17(3), 513-521.
[http://dx.doi.org/10.1080/00222338208056488]
[32]
Mathur, N.; Jain, N.; Sharma, A.K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem. J., 2018, 5, 3-12.
[http://dx.doi.org/10.2174/1874842201805010182]
[33]
Joram, A.; Sharma, R.; Sharma, A.K. Synthesis, spectral and thermos gravimetric analysis of novel macromolecular organo copper surfactants. Open Chem. J., 2018, 5, 3-15.
[http://dx.doi.org/10.2174/1874842201805010145]
[34]
Freeman, E.S.; Carroll, B. The Application of thermos analytical techniques to reaction kinetics: the thermos gravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem., 1958, 62, 394-397.
[http://dx.doi.org/10.1021/j150562a003]
[35]
Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201, 68-69.
[http://dx.doi.org/10.1038/201068a0]
[36]
Horowitz, H.H.; Gershon, M. New analysis of thermogravimetric traces. G. Anal. Chem., 1963, 35(10), 1464-1468.
[http://dx.doi.org/10.1021/ac60203a013]
[37]
Broido, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Poly. Sci., 1969, 7(7), 1761-1773.
[http://dx.doi.org/10.1002/pol.1969.160071012]
[38]
Piloyan, G.O.; Novikova, O.S. Determination of activation energies of chemical reactions by differential thermal analysis. Nature, 1966, 5067, 1229-1230.
[http://dx.doi.org/10.1038/2121229a0]
[39]
Bhutra, R.; Sharma, R.; Sharma, A.K. Antimicrobial studies and characterization of copper surfactants derived from various oils treated at high temperatures by P.D.A. technique. Open Pharm. Sci. J., 2018, 5, 36-40.
[http://dx.doi.org/10.2174/1874844901805010036]
[40]
Sharma, A.K.; Sharma, R.; Gangwal, A. Antifungal activities and characterization of some new environmentally safe Cu (II) surfactants substituted 2-amino-6-methyl benzothiazole. Open Pharm. Sci. J., 2018, 5, 1-11.
[http://dx.doi.org/10.2174/1874844901805010001]

© 2024 Bentham Science Publishers | Privacy Policy