Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Ni/x%Nb2O5/Al2O3 Catalysts Prepared via Coprecipitation-Wet Impregnation Method for Methane Steam Reforming

Author(s): Juliana F. Gonçalves and Mariana M.V.M. Souza*

Volume 9, Issue 1, 2020

Page: [80 - 89] Pages: 10

DOI: 10.2174/2211544708666190423130340

Abstract

Background: Hydrogen has been considered the energy source of the future and one of the processes for its production is the methane steam reforming. The catalyst used industrially is Ni/Al2O3 and the addition of promoter oxides can be an alternative to improve the performance of this catalyst, which suffers from coke formation and sintering.

Objective: Evaluate the role of niobia on catalytic activity and stability.

Methods: Ni/x%Nb2O5/Al2O3 (x = 5, 10 and 20) catalysts were synthesized via coprecipitation-wet impregnation method and characterized by X-ray fluorescence (XRF), N2 adsorption-desorption, X-ray diffraction (XRD), temperature- programmed reduction (TPR), temperature-programmed desorption of ammonia (TPD-NH3), etc. Finally, the catalysts were tested for methane steam reforming reaction.

Results: All niobia-doped catalysts presented similar values of methane conversion and when comparing with Ni-Al, the addition of niobia slightly improved the methane conversion. In the stability test at 800oC, all doped and non-doped catalysts did not deactivate during the 24 h of reaction.

Conclusion: The addition of 10 and 20 wt.% of niobia had a significant promoter effect over Ni/Al2O3 catalyst in terms of activity and stability at 800 oC and the sample with 20 wt.% of niobia presented lower coke formation.

Keywords: Methane, steam reforming, nickel, alumina, niobia, coprecipitation, wet impregnation.

« Previous
Graphical Abstract
[1]
British Petroleum. BP Statistical Review of World Energy - 67 Edition 2018.
[2]
Ashraf, M.A.; Sanz, O.; Italiano, C.; Vita, A.; Montes, M.; Specchia, S. Analysis of Ru/La-Al2O3 catalyst loading on alumina monoliths and controlling regimes in methane steam reforming. Chem. Eng. J., 2018, 334, 1792-1807.
[3]
Akbari-Emadabadi, S.; Rahimpour, M.R.; Hafizi, A.; Keshavarz, P. Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming. Appl. Energy, 2017, 206, 51-62.
[4]
Balat, M.; Balat, M. Political, economic and environmental impacts of biomass-based hydrogen. Int. J. Hydrogen Energy, 2009, 34(9), 3589-3603.
[5]
Karimipourfard, D.; Kabiri, S.; Rahimpour, M.R. A novel integrated thermally double coupled configuration for methane steam reforming, methane oxidation and dehydrogenation of propane. J. Nat. Gas Sci. Eng., 2014, 21, 134-146.
[6]
Lertwittayanon, K.; Atong, D.; Aungkavattana, P.; Wasanapiarnpong, T.; Wada, S.; Sricharoenchaikul, V. Effect of CaO-ZrO2 addition to Ni supported on γ-Al2O3 by sequential impregnation in steam methane reforming. Int. J. Hydrogen Energy, 2010, 35(22), 12277-12285.
[7]
Albarazi, A.; Beaunier, P.; Da Costa, P. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: On the effect of promotion by Ce0.75Zr0.25O2 mixed oxide. Int. J. Hydrogen Energy, 2013, 38, 127-139.
[8]
Jaiswar, V.K.; Katheria, S.; Deo, G.; Kunzru, D. Effect of Pt doping on activity and stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and high pressure condition. Int. J. Hydrogen Energy, 2017, 42(30), 18968-18976.
[9]
Shanmugam, V.; Zapf, R.; Neuberg, S.; Hessel, V.; Kolb, G. Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl. Catal. B Environ, 2017, 203, 859-869.
[10]
Li, D.; Zeng, L.; Li, X.; Wang, X.; Ma, H.; Assabumrungrat, S.; Gong, J. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B Environ, 2015, 176-177, 532-541.
[11]
Craciun, R.; Daniell, W.; Knözinger, H. The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming. Appl. Catal. A Gen., 2002, 230(1-2), 153-168.
[12]
Meshksar, M.; Daneshmand-Jahromi, S.; Rahimpour, M.R. Synthesis and characterization of cerium promoted Ni/SBA-16 oxygen carrier in cyclic chemical looping steam methane reforming. J. Taiwan Inst. Chem. Eng., 2017, 76, 73-82.
[13]
Duarte, R.B.; Nachtegaal, M.; Bueno, J.M.C.; Van Bokhoven, J.A. Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming. J. Catal., 2012, 296, 86-98.
[14]
Dewoolkar, K.D.; Vaidya, P.D. Tailored Ce- and Zr-doped Ni/hydrotalcite materials for superior sorption-enhanced steam methane reforming. Int. J. Hydrogen Energy, 2017, 42(34), 21762-21774.
[15]
Marin-Astorga, N.; Martinez, J.; Suarez, D.; Cubillos, J.; Rojas, H.; Ortiz, C. Nb2O5 as heterogeneous catalysts for the selective oxidation of geraniol. Curr. Org. Chem., 2012, 16(23), 2797-2801.
[16]
Tanabe, K. Catalytic application of niobium compounds. Catal. Today, 2003, 78, 65-77.
[17]
Hoffer, T.; Guczi, L. Promoter effect of niobia on Pt/Al2O3 catalysts, Part I. Methanol-deuterium exchange on samples containing 5% Nb2O5. J. Mol. Catal., 1991, 70(1), 85-98.
[18]
Xie, T.; Zhao, X.; Zhang, J.; Shi, L.; Zhang, D. Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int. J. Hydrogen Energy, 2015, 40(31), 9685-9695.
[19]
Ramírez-Cabrera, E.; Laosiripojana, N.; Atkinson, A.; Chadwick, D. Methane conversion over Nb-doped ceria. Catal. Today, 2003, 78, 433-438.
[20]
Yan, L.; Liu, Y.; Zha, K.; Li, H.; Shi, L.; Zhang, D. Deep insight into the structure-activity relationship of Nb modified SnO2-CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Catal. Sci. Technol., 2017, 7(2), 502-514.
[21]
Martínez, R.; Romero, E.; Guimon, C.; Bilbao, R. CO2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum. Appl. Catal. A Gen., 2004, 274(1-2), 139-149.
[22]
Rocha, A.S.; Faro, A.C.; Oliviero, L.; Van Gestel, J.; Maugé, F. Alumina-, niobia-, and niobia/alumina-supported NiMoS catalysts: Surface properties and activities in the hydrodesulfurization of thiophene and hydrodenitrogenation of 2,6-dimethylaniline. J. Catal., 2007, 252(2), 321-334.
[23]
Chary, K.V.R.; Lakshmi, K.S.; Rao, P.V.R.; Rao, K.S.R.; Papadaki, M. Characterization and catalytic properties of niobia supported nickel catalysts in the hydrodechlorination of 1,2,4-trichlorobenzene. J. Mol. Catal. Chem., 2004, 223(1-2), 353-361.
[24]
Chai, S.H.; Wang, H.P.; Liang, Y.; Xu, B.Q. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst. J. Catal., 2007, 250(2), 342-349.
[25]
Ko, E.I.; Hupp, J.M.; Rogan, F.H.; Wagner, N.J. Preparation, reduction, and chemisorption behavior of niobia-supported nickel catalysts. J. Catal., 1983, 84(1), 85-94.
[26]
Rocha, A.S.; Aline, A.M.; Lachter, E.R.; Sousa-Aguiar, E.F.; Faro, A.C. Niobia-modified aluminas prepared by impregnation with niobium peroxo complexes for dimethyl ether production. Catal. Today, 2012, 192(1), 104-111.
[27]
Lima, S.H.; Forrester, A.M.S.; Palacio, L.A.; Faro, A.C. Niobia-alumina as methanol dehydration component in mixed catalyst systems for dimethyl ether production from syngas. Appl. Catal. A Gen., 2014, 488, 19-27.
[28]
Mendes, F.M.T.; Perez, C.A.; Soares, R.R.; Noronha, F.B.; Schmal, M. Ammonium complex of niobium as a precursor for the preparation of Nb2O5/Al2O3 catalysts. Catal. Today, 2003, 78, 449-458.
[29]
Jung, Y-S.; Yoon, W-L.; Seo, Y-S.; Rhee, Y-W. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells. Catal. Commun., 2012, 26, 103-111.
[30]
Li, G.; Hu, L.; Hill, J.M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Appl. Catal. A Gen., 2006, 301(1), 16-24.
[31]
Pereira, E.B.; Pereira, M.M.; Lam, Y.L.; Perez, C.C.; Schmal, M. Synthesis and characterization of niobium oxide layers on silica and the interaction with nickel. Appl. Catal. A Gen., 2000, 197(1), 99-106.
[32]
Kunimori, K.; Shindo, H.; Oyanagi, H.; Uchijima, T. Preparation of niobates of rhodium and nickel and their catalytic behaviors during calcunation and reduction treatments. Catal. Today, 1993, 16, 387-395.
[33]
Mendes, F.T.; Noronha, F.B.; Schmal, M. Effect of Nb2O5 addition to Co/Al2O3 catalyst on CO hydrogenation reaction. Stud. Surf. Sci. Catal., 2000, 130, 3717-3722.
[34]
Wojcieszak, R.; Jasik, A.; Monteverdi, S.; Ziolek, M.; Bettahar, M.M. Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J. Mol. Catal. Chem., 2006, 256(1-2), 225-233.
[35]
Elias, K.F.M.; Lucrédio, A.F.; Assaf, E.M. Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming. Int. J. Hydrogen Energy, 2013, 38(11), 4407-4417.
[36]
Védrine, J.C.; Coudurier, G.; Ouqour, A.; Pries de Oliveira, P.G.; Volta, J.C. Niobium oxide based materials as catalysts for acidic and partial oxidation type reactions. Catal. Today, 1996, 28(1-2), 3-15.
[37]
Hu, Z.; Nakamura, H.; Kunimori, K.; Yokoyama, Y.; Asano, H.; Soma, M.; Uchijima, T. Structural Transformation Calcination in Nb2O5-Promoted Rh Catalysts and Reduction Treatments during. J. Catal., 1989, 119, 33-46.
[38]
Schmal, M.; Aranda, D.A.; Soares, R.; Noronha, F.; Frydman, A. A study of the promoting effect of noble metal addition on niobia and niobia alumina catalysts. Catal. Today, 2000, 57(3-4), 169-176.
[39]
Guczi, L.; Hoffer, T.; Zsoldos, Z. Promoter effect of niobia on Pt/Al2O3 catalysts. Part II. Effect of chlorine and Nb2O5 content on the structure and reactivity in CH3OH/D2 exchange. J. Mol. Catal., 1994, 92(2), 167-186.
[40]
Noronha, F.B.; Aranda, D.G.; Ordine, A.P.; Schmal, M. The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catal. Today, 2000, 57, 275-282.
[41]
Santander, J.; López, E.; Diez, A.; Dennehy, M.; Pedernera, M.; Tonetto, G. Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane. Chem. Eng. J., 2014, 255, 185-194.
[42]
Heracleous, E.; Lemonidou, A.A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I : Characterization and catalytic performance. J. Catal., 2006, 237, 162-174.
[43]
Chary, K.V.R.; Kumar, C.P.; Murali, A.; Tripathi, A.; Clearfield, A. Studies on catalytic functionality of V2O5/Nb 2O5 catalysts. J. Mol. Catal. Chem., 2004, 216(1), 139-146.
[44]
Nowak, I.; Ziolek, M. Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chem. Rev., 1999, 99(12), 3603-3624.
[45]
da Silva, C.L.T.; Camorim, V.L.L.; Zotin, J.L.; Pereira, M.L.R.D.; Faro Jr, A., da C. Surface acidic properties of alumina supported niobia prepared by chemical vapour deposition and hydrolysis of niobium pentachloride. Catal. Today, 2000, 57(3), 209-217.
[46]
Rodrigues, R.; Isoda, N.; Gonçalves, M.; Figueiredo, F.C.A.; Mandelli, D.; Carvalho, W.A. Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol. Chem. Eng. J., 2012, 198-199, 457-467.
[47]
Gonçalves, J.F.; Souza, M.M.V.M. Effect of Doping Niobia over Ni/Al2O3 Catalysts for Methane Steam Reforming. Catal. Lett., 2018, 148, 1478-1489.
[48]
Lertwittayanon, K.; Youravong, W.; Lau, W.J. Enhanced catalytic performance of Ni/Al2O3 catalyst modified with CaZrO3 nanoparticles in steam-methane reforming. Int. J. Hydrogen Energy, 2017, 42(47), 28254-28265.
[49]
Wang, K.; Li, X.; Ji, S.; Shi, X.; Tang, J. Effect of CexZr1- xO2 Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane. Energy Fuels, 2009, 23, 25-31.
[50]
Bengaard, H.S.; Nørskov, J.K.; Sehested, J.; Clausen, B.S.; Nielsen, L.P.; Molenbroek, A.M.; Rostrup-Nielsen, J.R. Steam Reforming and Graphite Formation on Ni Catalysts. J. Catal., 2002, 209(2), 365-384.
[51]
Guisnet, M.; Cerqueira, H.S.; Figueiredo, J.L.; Ribeiro, F.R. Desactivação e regeneração de catalisadores; Fundação Calouste Gulbenkian: Lisboa, 2008.
[52]
Sánchez-Sánchez, M.C.; Navarro, R.M.; Fierro, J.L.G. Ethanol steam reforming over Ni/La-Al2O3 catalysts : Influence of lanthanum loading. Catal. Today, 2007, 129, 336-345.
[53]
Quitete, C.P.B.; Bittencourt, R.C.P.; Souza, M.M.V.M. Coking resistance evaluation of tar removal catalysts. Catal. Commun., 2015, 71, 79-83.
[54]
Trimm, D. Catalysts for the control of coking during steam reforming. Catal. Today, 1999, 49(1-3), 3-10.

© 2024 Bentham Science Publishers | Privacy Policy