Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Catalytic Upgrading of Biomass and its Model Compounds for Fuel Production

Author(s): Aiguo Wang, Danielle Austin and Hua Song*

Volume 23, Issue 5, 2019

Page: [517 - 529] Pages: 13

DOI: 10.2174/1385272823666190416160249

Price: $65

Abstract

The heavy dependence on fossil fuels raises many concerns on unsustainability and negative environmental impact. Biomass valorization to sustainable chemicals and fuels is an attractive strategy to reduce the reliance on fossil fuel sources. Gasification, liquefaction and pyrolysis are the main thermochemical technologies for biomass conversion. Gasification occurs at high temperature and yields the gas (syngas) as the main product. Liquefaction is conducted at low temperature but high pressure, which mainly produces liquid product with high quality. Biomass pyrolysis is performed at a moderate temperature and gives a primarily liquid product (bio-oil). However, the liquid product from biomass conversion is not advantageous for direct use as a fuel. Compared to liquefaction, pyrolysis is favorable when the aim is to produce the maximum amount of the liquid product from the biomass. Hydrotreating for bio-oil upgrading requires a large amount of expensive hydrogen, making this process costly. Catalytic cracking of bio-oil to reduce the oxygen content leads to a low H/C ratio. Methanolysis is a novel process that utilizes methane instead of hydrogen for biomass conversion. The feasibility studies show that this approach is quite promising. The original complexity of biomass and variation in composition make the composition of the product from biomass conversion unpredictable. Model compounds are employed to better understand the reaction mechanism and develop an optimal catalyst for obtaining the desired product. The major thermochemical technologies and the mechanism based on model compound investigations are reviewed in the article.

Keywords: Biomass, model compound, methane, catalysis, reaction pathway, catalytic cracking.

Graphical Abstract
[1]
Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12(9), 1493-1513.
[2]
Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol., 2005, 96(18), 1959-1966.
[3]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[4]
Gilkey, M.J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6(3), 1420-1436.
[5]
Küçük, M.M.; Demirbaş, A. Biomass conversion processes. Energy Convers. Manage., 1997, 38(2), 151-165.
[6]
Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage., 2001, 42(11), 1357-1378.
[7]
Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 2012, 38, 68-94.
[8]
Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem., 2016, 25(1), 10-25.
[9]
Ni, M.; Leung, D.Y.C.; Leung, M.K.H.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol., 2006, 87(5), 461-472.
[10]
de Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chem. Rev., 2011, 111(9), 5404-5433.
[11]
Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An overview of advances in biomass gasification. Energy Environ. Sci., 2016, 9(10), 2939-2977.
[12]
Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A review on gasification of biomass. Renew. Sustain. Energy Rev., 2009, 13(1), 179-186.
[13]
Corte, P.; Lacoste, C.; Traverse, J.P. Gasification and catalytic conversion of biomass by flash pyrolysis. J. Anal. Appl. Pyrolysis, 1985, 7, 323-335.
[14]
Luo, S.; Xiao, B.; Guo, X.; Hu, Z.; Liu, S.; He, M. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance. Int. J. Hydrogen Energy, 2009, 34(3), 1260-1264.
[15]
Lv, P.M.; Xiong, Z.H.; Chang, J.; Wu, C.Z.; Chen, Y.; Zhu, J.X. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour. Technol., 2004, 95(1), 95-101.
[16]
Parthasarathy, P.; Narayanan, K.S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-A review. Renew. Energy, 2014, 66, 570-579.
[17]
Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gärtner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900), 417-421.
[18]
Gunawardena, D.A.; Fernando, S.D. Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energ. Technol., 2017, 5(5), 708-714.
[19]
Morf, P.O. Secondary reactions of tar during thermochemical biomass conversion; Swiss Federal Institute of Technology Zurich: Switzerland, 2001.
[20]
Behrendt, F.; Neubauer, Y.; Oevermann, M.; Wilmes, B.; Zobel, N. Direct Liquefaction of Biomass. Chem. Eng. Technol., 2008, 31(5), 667-677.
[21]
He, B.J.; Zhang, Y.; Funk, T.L.; Riskowski, G.L.; Yin, Y. Thermochemical conversion of swine manure: An alternatice process for waste treatment and renewable energy production. Transactions of the ASAE, 2000, 43(6), 1827-1833.
[22]
Kruse, A.; Maniam, P.; Spieler, F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res., 2007, 46, 87-96.
[23]
Chornet, E.; Overend, R.P. Biomass Liquefaction: An Overview. In: Fundamentals of Thermochemical Biomass Conversion; Mudge, L.; Milne, T., Eds.; Elsevier Applied Science Publishers Ltd: London, 1985; pp. 967-968.
[24]
Bobleter, O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci., 1994, 19, 797-841.
[25]
Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Pd/C-Catalyzed deoxygenation of phenol derivatives using mg metal and MeOH in the Presence of NH4OAc. Org. Lett., 2006, 8(5), 987-990.
[26]
Van de Vyver, S.; Geboers, J.; Jacobs, P.A.; Sels, B.F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1), 82-94.
[27]
Zhang, J.; Liu, X.; Sun, M.; Ma, X.; Han, Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal., 2012, 2(8), 1698-1702.
[28]
Rogalinski, T.; Liu, K.; Albrecht, T.; Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids, 2008, 46(3), 335-341.
[29]
Shu-Lai Mok, W.; Antal, M.J. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res., 1992, 31, 1157-1161.
[30]
Zhang, B.; Huang, H.J.; Ramaswamy, S. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol., 2008, 147(1-3), 119-131.
[31]
dos Santos, J.B.; da Silva, F.L.; Altino, F.M.R.S.; da Silva Moreira, T.; Meneghetti, M.R.; Meneghetti, S.M.P. Cellulose conversion in the presence of catalysts based on Sn(iv). Catal. Sci. Technol., 2013, 3(3), 673-678.
[32]
Liu, A.; Park, Y.; Huang, Z.; Wang, B.; Ankumah, R.; Biswas, P. Product identification and distribution from hydrothermal conversion of walnut shells. Energy Fuels, 2006, 20, 446-454.
[33]
Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to Bio-oil. Energy Fuels, 2010, 24(7), 4054-4061.
[34]
Yin, S.; Dolan, R.; Harris, M.; Tan, Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol., 2010, 101(10), 3657-3664.
[35]
Sugano, M.; Takagi, H.; Hirano, K.; Mashimo, K. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J. Mater. Sci., 2007, 43(7), 2476-2486.
[36]
Qu, Y.; Wei, X.; Zhong, C. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water. Energy, 2003, 28(7), 597-606.
[37]
Shuping, Z.; Yulong, W.; Mingde, Y.; Kaleem, I.; Chun, L.; Tong, J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy, 2010, 35(12), 5406-5411.
[38]
Dutta, S.; De, S.; Alam, M.I.; Abu-Omar, M.M.; Saha, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., 2012, 288, 8-15.
[39]
Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev., 2011, 15(3), 1615-1624.
[40]
Mascal, M.; Nikitin, E.B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. Engl., 2008, 47(41), 7924-7926.
[41]
Tan, X.; Deng, W.; Liu, M.; Zhang, Q.; Wang, Y. Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem. Commun.(Camb) , 2009, (46), 7179-7181.
[42]
Sangon, S.; Ratanavaraha, S.; Ngamprasertsith, S.; Prasassarakich, P. Coal liquefaction using supercritical toluene-tetralin mixture in a semi-continuous reactor. Fuel Process. Technol., 2006, 87(3), 201-207.
[43]
Kabyemela, B.; Takigawa, M.; Adschiri, T.; Malaluan, R.; Arai, K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Ind. Eng. Chem. Res., 1998, 37, 357-361.
[44]
Kabyemela, B.; Adschiri, T.; Malaluan, R.; Arai, K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind. Eng. Chem. Res., 1997, 36, 1552-1558.
[45]
Kersten, S.; Potic, B.; Prins, W.; Van Swaaij, W. Gasification of model compounds and wood in hot compressed water. Ind. Eng. Chem. Res., 2006, 45, 4169-4177.
[46]
Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 2011, 36(5), 2328-2342.
[47]
Boocock, D. Further aspects of powdered poplar wood liquefaction by aqueous pyrolysis. Can. J. Chem. Eng., 1985, 63(4), 627-633.
[48]
Xu, W.; Wang, H.; Liu, X.; Ren, J.; Wang, Y.; Lu, G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/CO2AlO4 catalyst. Chem. Commun.(Camb) , 2011, 47(13), 3924-3926.
[49]
Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem., 2013, 15(7), 1932-1940.
[50]
Bahng, M.K.; Mukarakate, C.; Robichaud, D.J.; Nimlos, M.R. Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta, 2009, 651(2), 117-138.
[51]
Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Pror. Energy Combust. Sci., 2011, 37(5), 611-630.
[52]
Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem., 1999, 30, 1479-1493.
[53]
Mettler, M.S.; Vlachos, D.G.; Dauenhauer, P.J. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci., 2012, 5(7), 77-97.
[54]
French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol., 2010, 91(1), 25-32.
[55]
Su-Ping, Z. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. Energy Sources, 2003, 25(1), 57-65.
[56]
Elliott, D. Historical developments in hydroprocessing bio-oils. Energy Fuels, 2007, 21, 1792-1815.
[57]
Corma, A.; Huber, G.; Sauvanaud, L.; Oconnor, P. Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal., 2007, 247(2), 307-327.
[58]
He, P.; Song, H. Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind. Eng. Chem. Res., 2014, 53, 15862-15870.
[59]
Xiao, Y.; He, P.; Cheng, W.; Liu, J.; Shan, W.; Song, H. Converting solid wastes into liquid fuel using a novel methanolysis process. Waste Manag., 2016, 49, 304-310.
[60]
He, P.; Song, H. Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind. Eng. Chem. Res., 2014, 53(41), 15862-15870.
[61]
George, W.; Huber, S.I.; Avelino, C. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[62]
Adjaye, J.D.; Bakhshi, N.N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways. Biomass Bioenergy, 1995, 8(3), 131-149.
[63]
Zaidi, H.A.; Pant, K.K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catal. Today, 2004, 96(3), 155-160.
[64]
Bjorgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal., 2007, 249(2), 195-207.
[65]
Narula, C.K.; Li, Z.; Casbeer, E.M.; Geiger, R.A.; Moses-Debusk, M.; Keller, M.; Buchanan, M.V.; Davison, B.H. Heterobimetallic Zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci. Rep., 2015, 5, 16039.
[66]
Viswanadham, N.; Saxena, S.K.; Kumar, J.; Sreenivasulu, P.; Nandan, D. Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel, 2012, 95, 298-304.
[67]
Zhou, C.H.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 2008, 37(3), 527-549.
[68]
Wang, A.; He, P.; Yung, M.; Zeng, H.; Qian, H.; Song, H. Catalytic co-aromatization of ethanol and methane. Appl. Catal. B, 2016, 198, 480-492.
[69]
Austin, D.; Wang, A.; He, P.; Qian, H.; Zeng, H.; Song, H. Catalytic valorization of biomass derived glycerol under methane: Effect of catalyst synthesis method. Fuel, 2018, 216, 218-226.
[70]
Galadima, A.; Muraza, O. Zeolite catalysts in upgrading of bioethanol to fuels range hydrocarbons: A review. J. Ind. Eng. Chem., 2015, 31, 1-14.
[71]
Basagiannis, A.C.; Verykios, X.E. Catalytic steam reforming of acetic acid for hydrogen production. Int. J. Hydrogen Energy, 2007, 32, 3343-3355.
[72]
Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Li, Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Appl. Catal. A Gen., 2012, 411-412, 95-104.
[73]
Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Zhang, B.; Li, Y. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. J. Mol. Catal. Chem., 2011, 351, 217-227.
[74]
Chang, C.D.C.N.Y.; Koenig, L.R.; Walsh, D.E. Synergism in acetic acid/methanol reactions over ZSM-5 zeolites In 185: American Chemical Society national meeting, Prepr. Pap. D.F.C.U.S., Ed.; Seattle, WA, USA,. , 1983; Vol. 28., .
[75]
Wang, A.; Austin, D.; Karmakar, A.; Bernard, G.M.; Michaelis, V.K.; Yung, M.M.; Zeng, H.; Song, H. methane upgrading of acetic acid as a model compound for a biomass-derived liquid over a modified zeolite catalyst. ACS Catal., 2017, 7(5), 3681-3692.
[76]
Wang, S.; Guo, Z.; Cai, Q.; Guo, L. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy, 2012, 45, 138-143.
[77]
Viswanadham, N.; Saxena, S.K. Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel, 2013, 105, 490-495.
[78]
Cruz-Cabeza, A.J.; Esquivel, D.; Jimenez-Sanchidrian, C.; Romero-Salguero, F.J. Metal-exchanged beta zeolites as catalysts for the conversion of acetone to hydrocarbons. Materials (Basel), 2012, 5(1), 121-134.
[79]
Austin, D.; Wang, A.; Harrhy, J.H.; Mao, X.; Zeng, H.; Song, H. Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment. Catal. Sci. Technol., 2018, 8(19), 5104-5114.
[80]
Lohitharn, N.; Shanks, B.H. Upgrading of bio-oil: Effect of light aldehydes on acetic acid removal via esterification. Catal. Commun., 2009, 11(2), 96-99.
[81]
Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Thermochemical conversion of lignin for fuels and chemicals: A Review. Oil & Gas Science Technology - Revue d’IFP Energies nouvelles, 2013, 68(4), 753-763.
[82]
Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev., 2013, 21, 506-523.
[83]
Galadima, A.; Muraza, O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Convers. Manage., 2015, 105, 338-354.
[84]
Li, X.; Su, L.; Wang, Y.; Yu, Y.; Wang, C.; Li, X.; Wang, Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front. Environ. Sci. Eng., 2012, 6(3), 295-303.
[85]
Kim, J-Y.; Lee, J.H.; Park, J.; Kim, J.K.; An, D.; Song, I.K.; Choi, J.W. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrolysis, 2015, 114, 273-280.
[86]
Shen, D.; Zhao, J.; Xiao, R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species. Energy Convers. Manage., 2016, 124, 61-72.
[87]
Das, A.; Rahimi, A.; Ulbrich, A.; Alherech, M.; Motagamwala, A.H.; Bhalla, A.; da Costa Sousa, L.; Balan, V.; Dumesic, J.A.; Hegg, E.L.; Dale, B.; Ralph, J.; Coon, J.J.; Stahl, S.S. Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of different Lignin Sources. ACS Sustain. Chem.& Eng., 2018, 6(3), 3367-3374.
[88]
Zhang, J.; Asakura, H.; Van Rijn, J.; Yang, J.; Duchesne, P.; Zhang, B.; Chen, X.; Zhang, P.; Saeys, M.; Yan, N. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem., 2014, 16(5), 2432-2437.
[89]
Laskar, D.D.; Tucker, M.P.; Chen, X.; Helms, G.L.; Yang, B. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem., 2014, 16(2), 897.
[90]
Chen, P.; Zhang, Q.; Shu, R.; Xu, Y.; Ma, L.; Wang, T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour. Technol., 2017, 226, 125-131.
[91]
Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci., 2013, 6(3), 994-1007.
[92]
Deuss, P.J.; Scott, M.; Tran, F.; Westwood, N.J.; de Vries, J.G.; Barta, K. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc., 2015, 137(23), 7456-7467.
[93]
Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515(7526), 249-252.
[94]
Toledano, A.; Serrano, L.; Labidi, J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116, 617-624.
[95]
Oregui Bengoechea, M.; Miletic, N.; Vogt, M.H.; Arias, P.L.; Barth, T. Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design. Bioresour. Technol., 2017, 234, 86-98.
[96]
Oregui-Bengoechea, M.; Gandarias, I.; Miletić, N.; Simonsen, S.F.; Kronstad, A.; Arias, P.L.; Barth, T. Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Appl. Catal. B, 2017, 217, 353-364.
[97]
Deepa, A.K.; Dhepe, P.L. Lignin Depolymerization into Aromatic Monomers over solid acid catalysts. ACS Catal., 2014, 5(1), 365-379.
[98]
Wang, A.; Song, H. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresour. Technol., 2018, 268, 505-513.
[99]
Gu, G.H.; Mullen, C.A.; Boateng, A.A.; Vlachos, D.G. Mechanism of dehydration of phenols on noble metals via First-Principles Microkinetic Modeling. ACS Catal., 2016, 6(5), 3047-3055.
[100]
Mortensen, P.M.; Grunwaldt, J-D.; Jensen, P.A.; Jensen, A.D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for Bio-oil. ACS Catal., 2013, 3(8), 1774-1785.
[101]
Do, P.T.M.; Foster, A.J.; Chen, J.; Lobo, R.F. Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem., 2012, 14(5), 1388.
[102]
Tan, Q.; Wang, G.; Nie, L.; Dinse, A.; Buda, C.; Shabaker, J.; Resasco, D.E. Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts. ACS Catal., 2015, 5(11), 6271-6283.
[103]
Robinson, A.; Ferguson, G.A.; Gallagher, J.R.; Cheah, S.; Beckham, G.T.; Schaidle, J.A.; Hensley, J.E.; Medlin, J.W. Enhanced hydrodeoxygenation ofm-cresol over bimetallic Pt-Mo catalysts through an oxophilic metal-induced tautomerization pathway. ACS Catal., 2016, 6(7), 4356-4368.
[104]
Liu, G.; Robertson, A.W.; Li, M.M-J.; Kuo, W.C.H.; Darby, M.T.; Muhieddine, M.H.; Lin, Y-C.; Suenaga, K.; Stamatakis, M.; Warner, J.H.; Tsang, S.C.E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem., 2017, 9(8), 810.
[105]
Griffin, M.B.; Ferguson, G.A.; Ruddy, D.A.; Biddy, M.J.; Beckham, G.T.; Schaidle, J.A. Role of the support and reaction conditions on the vapor-phase deoxygenation ofm-Cresol over Pt/C and Pt/TiO2Catalysts. ACS Catal., 2016, 6(4), 2715-2727.
[106]
Hong, Y.; Zhang, H.; Sun, J.; Ayman, K.M.; Hensley, A.J.R.; Gu, M.; Engelhard, M.H.; McEwen, J-S.; Wang, Y. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-Cresol. ACS Catal., 2014, 4(10), 3335-3345.
[107]
Prasomsri, T.; To, A.T.; Crossley, S.; Alvarez, W.E.; Resasco, D.E. Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of different hydrocarbon mixtures., Appl. Catal. B, . 2011. 21,106(1-2), 204-11.
[108]
Peters, J.E.; Carpenter, J.R.; Dayton, D.C. Anisole and guaiacol hydrodeoxygenation reaction pathways over selected catalysts. Energy Fuels, 2015, 29(2), 909-916.
[109]
Xiao, Y.; Varma, A. Kinetics of guaiacol deoxygenation using methane over the Pt–Bi catalyst. React. Chem. Eng., 2017, 2(1), 36-43.
[110]
Gao, D.; Xiao, Y.; Varma, A. Guaiacol Hydrodeoxygenation over platinum catalyst: reaction pathways and kinetics., Ind. Eng. Chem. Res. 2015. 54 43), 10638-10644
[111]
Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Pd/C-catalyzed deoxygenation of phenol derivatives using Mg metal and MeOH in the presence of NH4OAc. Org. Lett., 2006, 8(5), 987-990.
[112]
Choudhary, T.V.; Phillips, C.B. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A Gen., 2011, 397(1-2), 1-12.
[113]
Wang, X.; Rinaldi, R. A route for lignin and bio-oil conversion: Dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11499-11503.
[114]
Rogers, K.A.; Zheng, Y. Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new insights. ChemSusChem, 2016, 9(14), 1750-1772.
[115]
Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catal., 2017, 7(6), 169.
[116]
Xiao, Y.; Varma, A. Catalytic deoxygenation of guaiacol using methane. ACS Sustain. Chem.& Eng., 2015, 3(11), 2606-2610.
[117]
Wang, A.; Austin, D.; He, P.; Ha, M.; Michaelis, V.K.; Liu, L.; Qian, H.; Zeng, H.; Song, H. Mechanistic investigation on catalytic deoxygenation of phenol as a model compound of biocrude under methane. ACS Sustain. Chem.& Eng., 2018, 7(1), 1512-1523.
[118]
Zanuttini, M.S.; Dalla Costa, B.O.; Querini, C.A.; Peralta, M.A. Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl. Catal. A Gen., 2014, 482, 352-361.
[119]
Liu, G.; Zhao, Y.; Guo, J. High selectively catalytic conversion of lignin-based phenols into para-/m-Xylene over Pt/HZSM-5. Catalysis, 2016, 6(2), 19.
[120]
Zhu, X.; Nie, L.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Efficient conversion of m-cresol to aromatics on a bifunctional Pt/HBeta Catalyst. Energy Fuels, 2014, 28(6), 4104-4111.
[121]
Zanuttini, M.S.; Lago, C.D.; Querini, C.A.; Peralta, M.A. Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts. Catal. Today, 2013, 213, 9-17.
[122]
Hensley, A.J.R.; Wang, Y.; McEwen, J-S. Phenol Deoxygenation Mechanisms on Fe(110) and Pd(111). ACS Catal., 2014, 5(2), 523-536.
[123]
Chen, H-Y.T.; Pacchioni, G. Role of oxide reducibility in the deoxygenation of phenol on ruthenium clusters supported on the anatase titania (101) Surface. ChemCatChem, 2016, 8(15), 2492-2499.
[124]
de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of support on reaction mechanism and catalyst deactivation. ACS Catal., 2017, 7(3), 2058-2073.
[125]
de Souza, P.M.; Nie, L.; Borges, L.E.P.; Noronha, F.B.; Resasco, D.E. Role of oxophilic supports in the selective hydrodeoxygenation of m-Cresol on Pd Catalysts. Catal. Lett., 2014, 144(12), 2005-2011.
[126]
Popov, A.; Kondratieva, E.; Mariey, L.; Goupil, J.M.; El Fallah, J.; Gilson, J-P.; Travert, A.; Maugé, F. Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. J. Catal., 2013, 297, 176-186.
[127]
Nie, L.; de Souza, P.M.; Noronha, F.B.; An, W.; Sooknoi, T.; Resasco, D.E. Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J. Mol. Catal. Chem., 2014, 388-389, 47-55.
[128]
Nie, L.; Resasco, D.E. Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. J. Catal., 2014, 317, 22-29.
[129]
Shafaghat, H.; Sirous Rezaei, P.; Daud, W.M.A.W. Catalytic hydrogenation of phenol, cresol and guaiacol over physically mixed catalysts of Pd/C and zeolite solid acids. RSC Advances, 2015, 5(43), 33990-33998.
[130]
Xiao, S.; Liu, B.; Wang, Y.; Fang, Z.; Zhang, Z. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures. Bioresour. Technol., 2014, 151, 361-366.
[131]
Wattanapaphawong, P.; Sato, O.; Sato, K.; Mimura, N.; Reubroycharoen, P.; Yamaguchi, A. Conversion of cellulose to lactic acid by using ZrO2-Al2O3 catalysts. Catalysts, 2017, 7(7), 221.
[132]
Onda, A.; Ochi, T.; Yanagisawa, K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem., 2008, 10(10), 1033-1037.
[133]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J. Am. Chem. Soc., 2008, 130(38), 12787-12793.
[134]
Zhou, L.; Liang, R.; Ma, Z.; Wu, T.; Wu, Y. Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol., 2013, 129, 450-455.
[135]
Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem., 2010, 12(4), 696-700.
[136]
Zhang, G.; Ni, C.; Huang, X.; Welgamage, A.; Lawton, L.A.; Robertson, P.K.; Irvine, J.T. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. Chem. Commun. (Camb), 2016, 52(8), 1673-1676.
[137]
Carlson, T.R.; Jae, J.; Lin, Y-C.; Tompsett, G.A.; Huber, G.W. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. J. Catal., 2010, 270(1), 110-124.
[138]
Chen, K.; Tamura, M.; Yuan, Z.; Nakagawa, Y.; Tomishige, K. One-Pot conversion of sugar and sugar polyols to n-Alkanes without C-C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem, 2013, 6, 613-621.
[139]
Gunawardena, D.A.; Fernando, S.D. Thermal conversion of glucose to aromatic hydrocarbons via pressurized secondary pyrolysis. Bioresour. Technol., 2011, 102(21), 10089-10093.
[140]
Gunawardena, D.A.; Sandun, D.; Fernando, S.D. Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energy Technol. , 2017, 5, 1-8.
[141]
Carlson, T.R.; Jae, J.; Huber, G.W. Mechanistic insights from isotopic studies of glucose conversion to aromatics over ZSM-5. ChemCatChem, 2009, 1(1), 107-110.
[142]
Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Zhao, K.; Wu, H.; Wang, X.; He, F.; Li, H. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production. Green Chem., 2014, 16(5), 2580-2586.
[143]
Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal., 2016, 6(11), 7621-7640.
[144]
Xu, W.; Wang, H.; Liu, X.; Ren, J.; Wang, Y.; Lu, G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/CO2AlO4 catalyst. Chem. Commun. , 2011, 47, 3924-3926.
[145]
Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem., 2013, 15, 1932-1940.
[146]
Sitthisa, S.; An, W.; Resasco, D.E. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal., 2011, 284(1), 90-101.
[147]
Cheng, Y.T.; Huber, G.W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction. ACS Catal., 2011, 1, 611-628.
[148]
Cheng, Y-T.; Huber, G.W. Production of targeted aromatics by using diels-alder classes of reactions with furans and olefins over ZSM-5. Green Chem., 2012, 14(11), 3114-3125.
[149]
Williams, C.L.; Chang, C.C.; Do, P.; Nikbin, N.; Caratzoulas, S. Cycloaddition of Biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal., 2012, 2, 935-939.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy