Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Supercritical Extraction of Heracleum persicum Plant and Mathematical Modeling

Author(s): Mohammad Hossein Bozorgi Pouya, Bahareh Kamyab Moghadas* and Ali Shokuhi Rad*

Volume 10, Issue 3, 2020

Page: [298 - 311] Pages: 14

DOI: 10.2174/2210315509666190404151351

Price: $65

Abstract

Background: Supercritical CO2 is the most applicable solvent because of its unique properties such as; high selectivity, non-explosivity, non toxicity, low cost of purchasing and its unique critical points. The solubility of this solvent changed rapidly with only a small change in pressure and temperature especially in pressure. According to literatures, the method of supercritical extraction is the best technology for extracting sensitive constituents. Despite of numerous studies in the literature for extracting essential oil from plants, no studies can be found about this valuable medicinal plant by CO2 supercritical extraction method.

Method: In this study, the extraction of main medicinal constituents from Heracleum Persicum and mathematical modeling was done using supercritical carbon dioxide. The experimental data were investigated was analyzed by using gas chromatography (GC) and mass spectrometer chromatography (GC-MS) methods. The model of seed and bed, which includes three parameters of mass transfer, axial dispersion, and effective penetration coefficients, were used for modeling the extraction process. This model was used based on the equilibrium of the fluid phase and solid phase to communicate with the experimental data. Then the obtained yield of supercritical technology was compared with the hydro distillation method.

Results: The main extracted constituents of some different varieties of Heracleum by different methods and solvents have been determined. The extracted chemicals by supercritical fluid technology from the seeds of the Heracleum Persicum encompasses hexyl butanoate, octyl 2- methyl butyrate, octylisobutyrate and anethole which are so effective against epilepsy and has the most antibacterial, antiviral and antifungal effects. So supercritical fluid extraction is more selective than the other methods.

Conclusion: Extracting of essential oil and mathematical modeling from H. persicum were performed under different operating conditions of temperature, pressure, particle size and solvent flow rate. Experimental and modeling results showed that the operating parameters used in different conditions had a different effect on extraction efficiency and model parameters.

Keywords: Carbon dioxide, supercritical extraction, mathematical model, Heracleum persicum, axial dispersion, mass transfer, GC-MS.

Graphical Abstract
[1]
Iscan, G.; Demirci, F.; Kurkcuoglu, M.; Kivanc, M.; Husnucanbaser, K. The bioactive essential oil of Heracleum sphondylium L.subsp. ternatum (Velen.). Zeitschrift für Naturforschung 2003. C.58, 195-200
[2]
Sayyah, M.; Moaied, S.; Kamalinejad, M. Anticonvulsant activity of Heracleum persicum seed. J. Ethnopharmacol., 2005, 98(1-2), 209-211.
[http://dx.doi.org/10.1016/j.jep.2004.12.026] [PMID: 15763386]
[3]
Webster, D.; Taschereau, P.; Lee, T.D.G.; Jurgens, T. Immunostimulant properties of Heracleum maximum Bartr. J. Ethnopharmacol., 2006, 106(3), 360-363.
[http://dx.doi.org/10.1016/j.jep.2006.01.018] [PMID: 16504434]
[4]
Barzegari Firouzabadi, F.; Mirhosseini, M. The effect of Persian hogweed (Heracleum persicum) on the morphological changes in mice testes and the level of the hormone testosterone. Majallah-i Ulum-i Pizishki-i Razi, 2012, 19(99)
[5]
Kamyab Moghadas, B.; Safekordi, A.; Honarvar, B.; Fathi Kaljahi, J.; Vaziri Yazdi, S.A. Experimental study of Dorema aucheri extraction with supercritical carbon dioxide. Asian J. Chem., 2012, 24, 3691-3694.
[6]
Mohseni, S.; Shokuhi Rad, A. Determination of compositions of Thymus pubescens: The comparison of different solvents towards extraction. Iran J. Sci. Technol. A, 2017, 42, 1923-1928.
[7]
Haghayegh, M.; Zabihi, F.; Eikani, M.H.; Kamyab Moghadas, B.; Vaziri Yazdi, S.A. Supercritical fluid extraction of flavonoids and terpenoids from herbal compounds: Experiments and mathematical modeling. J Essent. Oil Bearing Plants, 2015, 18, 1253-1265.
[8]
Zheng, Sh.; Hu, X.; Ibrahim, A.R.; Tang, D.; Tan, Y.; Lee, J. Supercritical fluid drying: Classification and application. J. Patents Chem. Eng., 2010, 3(3), 230-244.
[http://dx.doi.org/10.2174/2211334711003030230]
[9]
Kamaruzzaman, Y.; Nurfatin Nazirah, H.; Sahena, F.; Zaidul, I.S.; Kashif, G.; Nurul Ashikin, A.B.; Ahmed Jalal Khan, C. Biological activities and extraction technologies of Pheonix dactylifera: A review. Nat. Prod. J., 2019, 9(1), 3-13.
[http://dx.doi.org/10.2174/2210315508666180327152800]
[10]
Kamyab Moghadas, B.; Safekordi, A.; Honarvar, B.; Fathi Kaljahi, J.; Vaziri Yazdi, S.A. Supercritical extraction of flavonoid compounds from Dorema aucheri Boiss. Experimental and modeling using as co-solvent. Asian J. Chem., 2012, 24, 3527-3532.
[11]
Weiqiang, S.; Hongjian, N.; Ruihe, W.; Baojiang, S.; Zhonghou, SH. Pressure transmission in the tubing of supercritical carbon dioxide fracturing. J. CO2 Util. 2017. 21, 467-472
[12]
Melreles, M.A.A.; Zahedi, G.; Hatami, T. Mathematical modeling of supercritical fluid extraction for obtaining extracts from vetiver root. J. Supercrit. Fluids, 2009, 49, 23-31.
[http://dx.doi.org/10.1016/j.supflu.2008.12.009]
[13]
Camposa, L.M.A.S.; Michielin, E.M.Z.; Danielskib, L.; Ferreira, S.R.S. Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin. J. Supercrit. Fluids, 2005, 34, 163-170.
[http://dx.doi.org/10.1016/j.supflu.2004.11.010]
[14]
Ferreira, S.R.S.; Meireles, M.A.A. Modeling the supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. J. Food Eng., 2002, 54, 263-269.
[http://dx.doi.org/10.1016/S0260-8774(01)00212-6]
[15]
Nyama, K.L.; Tan, C.P.; Karim, R.; Lai, O.M.; Long, K. Che Man,Y.B. Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chem., 2010, 119, 1278-1283.
[http://dx.doi.org/10.1016/j.foodchem.2009.08.007]
[16]
Sovova, H.; Galushko, A.A.; Stateva, R.P.; Rochova, K.; Sajfrtova, M.; Bartlova, M. Supercritical fluid extraction of minor components of vegetable oils: b-Sitosterol. J. Food Eng., 2010, 101, 201-209.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.07.002]
[17]
Perakis, C.; Louli, V.; Voutsas, E.; Magoulas, K. Supercritical CO2 extraction of dittany oil: Experiments and modeling. J. Supercrit. Fluids, 2010, 55, 573-578.
[http://dx.doi.org/10.1016/j.supflu.2010.10.020]
[18]
Pilavtepe, M.; Yesil-Celiktas, O. Mathematical modeling and mass transfer considerations in the supercritical fluid extraction of Posidonia oceanica residues. J. Supercrit. Fluids, 2013, 82, 244-250.
[http://dx.doi.org/10.1016/j.supflu.2013.07.020]
[19]
Goodarznia, I.; Eikani, M.H. Supercritical carbon dioxide extraction of essential oils: Modeling and simulation. Chem. Eng. Sci., 1998, 53, 1387-1395.
[http://dx.doi.org/10.1016/S0009-2509(97)90445-0]
[20]
20 Reis-Vasco, E.M.C.; Coelho, J.A.P.; Palavra, A.M.F.; Marrone, C.; Reverchon, E. Mathematical modeling, and simulation of pennyroyal essential oil supercritical extraction. Chem. Eng. Sci., 2000, 55, 2917.
[http://dx.doi.org/10.1016/S0009-2509(99)00561-8]
[21]
Reverchon, E.; Marrone, C. Modeling and simulation of the supercritical CO2 extraction of vegetable oils. J. Supercrit. Fluids, 2001, 19, 161-175.
[http://dx.doi.org/10.1016/S0896-8446(00)00093-0]
[22]
Nei, H.Z.; Fatemi, S.; Mehrnia, M.R.; Salimi, A. Mathematical modeling and study of mass transfer parameters in the supercritical fluid extraction of fatty acids from Trout powder. Biochem. Eng. J., 2008, 40, 72-78.
[http://dx.doi.org/10.1016/j.bej.2007.11.015]
[23]
Rahimi, E.; Prado, J.M.; Zahedi, G.; Meireles, M.A.A. Chamomile extraction with supercritical carbon dioxide mathematical modeling and optimization. J. Supercrit. Fluids, 2011, 56, 80-88.
[http://dx.doi.org/10.1016/j.supflu.2010.11.008]
[24]
Wagner, M.E.; French, J.; Rizvi, S.S.H. Supercritical fluid extraction of oil from potato chips: Two-scale comparison and mathematical modeling. J. Food Eng., 2013, 118, 100-107.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.03.023]
[25]
Ghoreishi, S.; Heidari, E. Extraction of Epigallocatechin gallate from green tea via modified Supercritical CO2: Experimental, modeling and optimization. J. Supercrit. Fluids, 2012, 72, 36-45.
[http://dx.doi.org/10.1016/j.supflu.2012.07.015]
[26]
Yu, W.; Wenbo, G. Study on supercritical fluid extraction of solanesol from industrial tobacco waste. J. Supercrit. Fluids, 2018, 138, 228-237.
[http://dx.doi.org/10.1016/j.supflu.2018.05.001]
[27]
Benito-Román, O.; Rodríguez-Perrino, M.; Teresa Sanz, M.; Melgosa, R.; Beltrán, S. Supercritical carbon dioxide extraction of quinoa oil: Study of the influence of process parameters on the extraction yield and oil quality. J. Supercrit. Fluids, 2018, 139, 62-71.
[http://dx.doi.org/10.1016/j.supflu.2018.05.009]
[28]
Yazdinezhad, A.; Ramezanloo, N.; Mozaffari, Sh. Pharmacognostic and phytochemical investigation of Heracleum persicum Desf. ex Fischer. Res. J. Pharmacogn., 2016, 3(2), 17-24.
[29]
Sajjadi, S.E. Noroozi, p. Isolation, identification of xanthotoxin (8-methoxypsoralen) from the fruits of Heracleum persicum Desf. Ex Fischer. Res. Pharm. Sci., 2007, 2, 13-16.
[30]
Aysu, T.; Küçük, M.M. The liquefaction of Heracleum persicum by Supercritical Fluid Extraction. Energy Sour. Recov. Util. Environ. Effects, 2013, 35(19), 1787-1795.
[http://dx.doi.org/10.1080/15567036.2011.636142]
[31]
Skalicka-Woźniak, K.; Głowniak, K. Pressurized liquid extraction of coumarins from fruits of Heracleum leskowii with application of solvents with different polarity under increasing temperature. Molecules, 2012, 17(4), 4133-4141.
[http://dx.doi.org/10.3390/molecules17044133] [PMID: 22481536]
[32]
Banerjee, S.K.; Gupta, B.D.; Atal, C.K. Coumarin of Heracleum Thomsoni and Claisen rearrangement of Latin. Phytochemistry, 1980, 19, 1256-1258.
[http://dx.doi.org/10.1016/0031-9422(80)83105-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy