Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

In Silico Study of 1, 4 Alpha Glucan Branching Enzyme and Substrate Docking Studies

Author(s): Farzane Kargar, Amir Savardashtaki*, Mojtaba Mortazavi*, Masoud Torkzadeh Mahani, Ali Mohammad Amani, Younes Ghasemi and Navid Nezafat

Volume 17, Issue 1, 2020

Page: [40 - 50] Pages: 11

DOI: 10.2174/1570164616666190401204009

Price: $65

Abstract

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server.

Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina.

Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence.

Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.

Keywords: Neisseria, molecular modeling, phylogenetic tree, bioinformatics, AutoDock Vina, glucan.

Graphical Abstract
[1]
Stone, B.A.; Clarke, A.E. 1st Ed: Chemistry and biology of 1, 3-β-glucans. Editors: Bacic, A.; Fincher, G.; Stone, B. Int. Specialized Book Service Inc:, 1992, pp. 350.
[2]
Bayram, A.G.; Gul, O.; Sezerman, U.O. From in silico to in vitro: modelling and production of trichoderma reesei endoglucanase 1 and its mutant in Pichia pastoris. J. Biotechnol., 2012, 159(1), 61-68.
[3]
Kasana, R.C.; Salwan, R.; Dhar, H.; Dutt, S.; Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol., 2008, 57(5), 503-507.
[4]
Kuhad, R.C.; Gupta, R.; Singh, A. Microbial cellulases and their industrial applications. Enzyme Res., 2011, 2011, 10.
[5]
Ryoyama, K.; Kidachi, Y.; Yamaguchi, H.; Kajiura, H.; Takata, H. Anti-tumor activity of an enzymatically synthesized α-1, 6 branched α-1, 4-glucan, glycogen. Biosci. Biotechnol. Biochem., 2004, 68(11), 2332-2340.
[6]
Carrasco, M.; Villarreal, P.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol., 2016, 16(1), 21.
[7]
Greene, H.L.; Brown, B.I.; McClenathan, D.T.; Agostini, R.M.; Taylor, S.R. A new variant of type IV glycogenosis: Deficiency of branching enzyme activity without apparent progressive liver disease. Hepatology, 1988, 8(2), 302-306.
[8]
Wagner, M.; Valberg, S.; Ames, E.; Bauer, M.; Wiseman, J.; Penedo, M.; Kinde, H.; Abbitt, B.; Mickelson, J. Allele frequency and likely impact of the glycogen branching enzyme deficiency gene in quarter horse and paint horse populations. J. Vet. Intern. Med., 2006, 20(5), 1207-1211.
[9]
Guan, H.; Kuriki, T.; Sivak, M.; Preiss, J. Maize branching enzyme catalyzes synthesis of glycogen-like polysaccharide in glgB-deficient Escherichia coli. Proc. Natl. Acad. Sci., 1995, 92(4), 964-967.
[10]
Pal, K.; Kumar, S.; Sharma, S.; Garg, S.K.; Alam, M.S.; Xu, H.E.; Agrawal, P.; Swaminathan, K. Crystal structure of full length mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal β-sandwich in substrate specificity and enzymatic activity. J. Biol. Chem., 2010, M110121707
[11]
Devillers, C.H.; Piper, M.E.; Ballicora, M.A.; Preiss, J. Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch. Biochem. Biophys., 2003, 418(1), 34-38.
[12]
Akman, H.O.; Karadimas, C.; Gyftodimou, Y.; Grigoriadou, M.; Kokotas, H.; Konstantinidou, A.; Anninos, H.; Patsouris, E.; Thaker, H.M.; Kaplan, J.B. Prenatal diagnosis of glycogen storage disease type IV. Prenat. Diagn., 2006, 26(10), 951-955.
[13]
Ariffin, H.; Abdullah, N.; Umi-Kalsom, M.; Shirai, Y.; Hassan, M. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol., 2006, 3(1), 47-53.
[14]
Okada, G.; Hehre, E.J. New studies on amylosucrase, a bacterial α-D-glucosylase that directly converts sucrose to a glycogen-like α-glucan. J. Biol. Chem., 1974, 249(1), 126-135.
[15]
Sarçabal, P.; Remaud-Simeon, M.; Willemot, R.M.; Potocki de Montalk, G.; Svensson, B.; Monsan, P. Identification of key amino acid residues in Neisseria polysaccharea amylosucrase. FEBS Lett., 2000, 474(1), 33-37.
[16]
Zhang, Y. I-Tasser server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[17]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[18]
Floratos, A.; Smith, K.; Ji, Z.; Watkinson, J.; Califano, A. geWorkbench: an open source platform for integrative genomics. Bioinformatics, 2010, 26(14), 1779-1780.
[19]
Trott, O.; Olson, A.J. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[20]
Emanuelsson, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, signalP and related tools. Nat. Protoc., 2007, 2(4), 953.
[21]
Combet, C.; Jambon, M.; Deléage, G.; Geourjon, C. Geno3D an automated protein modelling web server. Bioinformatics, 2002, 18, 213-214.
[22]
Müller, A.; MacCallum, R.M.; Sternberg, M.J. Benchmarking PSI-BLAST in genome annotation. J. Mol. Biol., 1999, 293(5), 1257-1271.
[23]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[24]
Truglio, J.J.; Theis, K.; Leimkühler, S.; Rappa, R.; Rajagopalan, K.; Kisker, C. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure, 2002, 10(1), 115-125.
[25]
Clarke, N.D.; Kissinger, C.R.; Desjarlais, J.; Gilliland, G.L.; Pabo, C.O. Structural studies of the engrailed homeodomain. Protein Sci., 1994, 3(10), 1779-1787.
[26]
Meng, M.; Bagdasarian, M.; Zeikus, J.G. The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase. Proc. Natl. Acad. Sci., 1993, 90(18), 8459-8463.
[27]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[28]
OLBoyle. N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[29]
Hayashi, M.; Suzuki, R.; Colleoni, C.; Ball, S.G.; Fujita, N.; Suzuki, E. Bound substrate in the structure of cyanobacterial branching enzyme supports a new mechanistic model. J. Biol. Chem., 2017, M116755629
[30]
Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: an important software for molecular biology. GERF Bull. Biosci., 2011, 2(1), 60-61.
[31]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook; Springer, 2005; pp. 571-607.
[33]
Zhang, Y.H.P.; Himmel, M.E.; Mielenz, J.R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv., 2006, 24(5), 452-481.
[34]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[35]
Letunic, I.; Bork, P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2006, 23(1), 127-128.
[36]
Liu, Y.; Ban, X.; Li, C.; Gu, Z.; Cheng, L.; Hong, Y.; Li, Z. Met349 mutations enhance the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02. J. Agric. Food Chem., 2017, 65(28), 5674-5680.
[37]
Zhang, S.; Wu, G.; Feng, S.; Liu, Z. Improved thermostability of esterase from Aspergillus fumigatus by site-directed mutagenesis. Enzyme Microb. Technol., 2014, 64, 11-16.
[38]
Takata, H.; Akiyama, T.; Kajiura, H.; Kakutani, R.; Furuyashiki, T.; Tomioka, E.; Kojima, I.; Kuriki, T. Application of branching enzyme in starch processing. Biocatal. Biotransform., 2010, 28(1), 60-63.
[39]
Mortazavi, M.; Hosseinkhani, S. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb. Technol., 2017, 96, 47-59.
[40]
Mortazavi, M.; Zarenezhad, M.; Alavian, S.M.; Gholamzadeh, S.; Malekpour, A.; Ghorbani, M.; Mahani, M.T.; Lotfi, S.; Fakhrzad, A. Bioinformatics analysis of codon usage and phylogenetic relationships in different genotypes of the hepatitis C virus. Hep. Month, 2016, 16(10)e39196
[41]
Mortazavi, M.; Zarenezhad, M.; Gholamzadeh, S.; Alavian, S.M.; Ghorbani, M.; Dehghani, R.; Malekpour, A.; Meshkibaf, M.; Fakhrzad, A. Bioinformatics identification of Rare Codon Clusters (RCCs) in HBV genome and evaluation of RCCs in proteins structure of hepatitis B virus. Hep. Month, 2016, 16(10)
[42]
Mortazavi, M.; Hosseinkhani, S. Design of thermostable luciferases through arginine saturation in solvent-exposed loops. Protein Eng. Des. Sel., 2011, 24(12), 893-903.
[43]
Yousefi, F.; Ataei, F.; Mortazavi, M.; Hosseinkhani, S. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity. Int. J. Biol. Macromol., 2017, 101, 67-74.
[44]
Fattahi, M.; Malekpour, A.; Mortazavi, M.; Safarpour, A.; Naseri, N. The characteristics of rare codon clusters in the genome and proteins of hepatitis C virus; a bioinformatics look. Middle East J. Dig. Dis., 2014, 6(4), 214.
[45]
Kargar, F.; Mortazavi, M.; Savardashtaki, A.; Hosseinkhani, S.; Mahani, M.T.; Ghasemi, Y. Genomic and protein structure analysis of the luciferase from the Iranian bioluminescent beetle, Luciola sp. Int. J. Biol. Macromol., 2019, 124, 689-698.
[46]
Mortazavi, M.; Nezafat, N.; Negahdaripour, M.; Gholami, A.; Torkzadeh-Mahani, M.; Lotfi, S.; Ghasemi, Y. In silico evaluation of rare codons and their positions in the structure of cytosine deaminase and substrate docking studies. Trends Pharmacol. Sci., 2016, 2(2)
[47]
Marri, P.R.; Paniscus, M.; Weyand, N.J.; Rendón, M.A.; Calton, C.M.; Hernández, D.R.; Higashi, D.L.; Sodergren, E.; Weinstock, G.M.; Rounsley, S.D. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One, 2010, 5(7)e11835
[48]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[49]
Van De Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[50]
Nyein, M.K.; Jason, A.M.; Yu, L.; Pita, C.M.; Joannopoulos, J.D.; Moore, D.F.; Radovitzky, R.A. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci., 2010, 107(48), 20703-20708.
[51]
Edwards, J.S.; Ibarra, R.U.; Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol., 2001, 19(2), 125.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy