Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Potentiation of PBD Dimers by Lipophilicity Manipulation

Author(s): Thaїs Cailleau*, Lauren R. Adams, Neha Arora, Gyoung-Dong Kang, Luke Masterson, Neki Patel, John A. Hartley, Shenlan Mao, Jay Harper and Philip W. Howard

Volume 19, Issue 9, 2019

Page: [741 - 752] Pages: 12

DOI: 10.2174/1568026619666190401112517

Price: $65

Abstract

Background & Introduction: Pyrrolobenzodiazepine (PBD) dimers are highly potent DNA cross-linking agents used as warheads in Antibody Drug Conjugates (ADCs) for cancer therapy. We propose to investigate the correlation existing between the lipophilicity of those molecules and their activity (both in vitro and in vivo) as well as any effect observed during conjugation.

Materials and Methods: Reaction progress was monitored by Thin-Layer Chromatography (TLC) using Merck Kieselgel 60 F254 silica gel, with a fluorescent indicator on aluminium plates. Visualisation of TLC was achieved with UV light or iodine vapour unless otherwise stated. Flash chromatography was performed using Merck Kieselgel 60 F254 silica gel.

Results: We have successfully designed and synthesized a novel PBD warhead (SG3312) with enhanced physicochemical properties. The warhead also displayed increased potency in vitro. After overcoming some epimerization issues, the synthesis of enantiomerically pure payload was achieved (SG3259) and fulfilled our criteria for a simplified and more efficient conjugation. No addition of propylene glycol was required, and high DAR and excellent monomeric purity were achieved.

Conclusion: The ADC (Herceptin-maia-SG3259) has been shown to release the active warhead (SG3312) upon exposure to Cathepsin B and demonstrated encouraging activity both in vitro and in vivo.

Keywords: ADC, Pyrrolobenzodiazepine, P-gp pump, Tesirine, N-Methylpiperazine, Amide coupling, Cathepsin B.

« Previous
Graphical Abstract
[1]
Dan, N.; Setua, S.; Kashyap, V.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel), 2018, 11(2), 32-54. [http://dx.doi.org/10.3390/ph11020032]. [PMID: 29642542].
[2]
Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.; DeBlanc, R.; Toki, B.E.; Law, C-L.; Doronina, S.O.; Siegall, C.B.; Senter, P.D.; Wahl, A.F. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood, 2003, 102(4), 1458-1465. [http://dx.doi.org/10.1182/blood-2003-01-0039]. [PMID: 12714494].
[3]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; Wong, W.L.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290. [http://dx.doi.org/10.1158/0008-5472.CAN-08-1776]. [PMID: 19010901].
[4]
DiJoseph, J.F.; Armellino, D.C.; Boghaert, E.R.; Khandke, K.; Dougher, M.M.; Sridharan, L.; Kunz, A.; Hamann, P.R.; Gorovits, B.; Udata, C.; Moran, J.K.; Popplewell, A.G.; Stephens, S.; Frost, P.; Damle, N.K. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood, 2004, 103(5), 1807-1814. [http://dx.doi.org/10.1182/blood-2003-07-2466]. [PMID: 14615373].
[5]
Hamann, P.R.; Hinman, L.M.; Hollander, I.; Beyer, C.F.; Lindh, D.; Holcomb, R.; Hallett, W.; Tsou, H.R.; Upeslacis, J.; Shochat, D.; Mountain, A.; Flowers, D.A.; Bernstein, I. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem., 2002, 13(1), 47-58. [http://dx.doi.org/10.1021/bc010021y]. [PMID: 11792178].
[6]
Leimgruber, W.; Stefanović, V.; Schenker, F.; Karr, A.; Berger, J. Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc., 1965, 87(24), 5791-5793. [http://dx.doi.org/10.1021/ja00952a050]. [PMID: 5845427].
[7]
Hartley, J.A.; Hamaguchi, A.; Coffils, M.; Martin, C.R.H.; Suggitt, M.; Chen, Z.; Gregson, S.J.; Masterson, L.A.; Tiberghien, A.C.; Hartley, J.M.; Pepper, C.; Lin, T.T.; Fegan, C.; Thurston, D.E.; Howard, P.W. SG2285, a novel C2-aryl-substituted pyrrolobenzodiazepine dimer prodrug that cross-links DNA and exerts highly potent antitumor activity. Cancer Res., 2010, 70(17), 6849-6858. [http://dx.doi.org/10.1158/0008-5472.CAN-10-0790]. [PMID: 20660714].
[8]
Bose, D.S.; Thompson, A.S.; Ching, J.; Hartley, J.A.; Berardini, M.D.; Jenkins, T.C.; Neidle, S.; Hurley, L.H.; Thurston, D.E. Rational design of a highly efficient irreversible DNA interstrand cross-linking agent based on the pyrrolobenzodiazepine ring system. J. Am. Chem. Soc., 1992, 114(12), 4939-4941. [http://dx.doi.org/10.1021/ja00038a089].
[9]
Tiberghien, A.C.; Levy, J-N.; Masterson, L.A.; Patel, N.V.; Adams, L.R.; Corbett, S.; Williams, D.G.; Hartley, J.A.; Howard, P.W. Design and synthesis of Tesirine, a clinical antibody–drug conjugate pyrrolobenzodiazepine dimer payload. ACS Med. Chem. Lett., 2016, 7(11), 983-987. [http://dx.doi.org/10.1021/acsmedchemlett.6b00062]. [PMID: 27882195].
[10]
Zammarchi, F.; Corbett, S.; Adams, L.; Tyrer, P.C.; Kiakos, K.; Janghra, N.; Marafioti, T.; Britten, C.E.; Havenith, C.E.G.; Chivers, S.; D’Hooge, F.; Williams, D.G.; Tiberghien, A.; Howard, P.W.; Hartley, J.A.; van Berkel, P.H. ADCT-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies. Blood, 2018, 131(10), 1094-1105. [http://dx.doi.org/10.1182/blood-2017-10-813493]. [PMID: 29298756].
[11]
Jeffrey, S.C.; Burke, P.J.; Lyon, R.P.; Meyer, D.W.; Sussman, D.; Anderson, M.; Hunter, J.H.; Leiske, C.I.; Miyamoto, J.B.; Nicholas, N.D.; Okeley, N.M.; Sanderson, R.J.; Stone, I.J.; Zeng, W.; Gregson, S.J.; Masterson, L.; Tiberghien, A.C.; Howard, P.W.; Thurston, D.E.; Law, C-L.; Senter, P.D. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug. Chem., 2013, 24(7), 1256-1263. [http://dx.doi.org/10.1021/bc400217g]. [PMID: 23808985].
[12]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463. [http://dx.doi.org/10.1182/blood-2013-03-491506]. [PMID: 23770776].
[13]
MarvinSketch. Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin 14.7.7.0 2014, ChemAxon. http://www.chemaxon.com
[14]
Jeffrey, S.C.; Nguyen, M.T.; Andreyka, J.B.; Meyer, D.L.; Doronina, S.O.; Senter, P.D. Dipeptide-based highly potent doxorubicin antibody conjugates. Bioorg. Med. Chem. Lett., 2006, 16(2), 358-362. [http://dx.doi.org/10.1016/j.bmcl.2005.09.081]. [PMID: 16275070].
[15]
Howard, P.W.; Chen, Z.; Gregson, S.J.; Masterson, L.A.; Tiberghien, A.C.; Cooper, N.; Fang, M.; Coffils, M.J.; Klee, S.; Hartley, J.A.; Thurston, D.E. Synthesis of a novel C2/C2′-aryl-substituted pyrrolo[2,1-c][1,4]benzodiazepine dimer prodrug with improved water solubility and reduced DNA reaction rate. Bioorg. Med. Chem. Lett., 2009, 19(22), 6463-6466. [http://dx.doi.org/10.1016/j.bmcl.2009.09.012]. [PMID: 19811912].
[16]
Grahl-Nielsen, O. Racemisation in peptide synthesis. In: The Peptide; Academic Press, 1979; pp. 315-383. [http://dx.doi.org/10.1039/c29710001588]
[17]
Subirós-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry, 2009, 15(37), 9394-9403. [http://dx.doi.org/10.1002/chem.200900614]. [PMID: 19575348].
[18]
Chen, L.; Li, Y.; Yu, H.; Zhang, L.; Hou, T. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov. Today, 2012, 17(7-8), 343-351. [http://dx.doi.org/10.1016/j.drudis.2011.11.003]. [PMID: 22119877].
[19]
Kerns, E.H.; Di, L. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization., 2008.
[20]
Dimasi, N.; Fleming, R.; Zhong, H.; Bezabeh, B.; Kinneer, K.; Christie, R.J.; Fazenbaker, C.; Wu, H.; Gao, C. Efficient preparation of site-specific antibody-drug conjugates using cysteine insertion. Mol. Pharm., 2017, 14(5), 1501-1516. [http://dx.doi.org/10.1021/acs.molpharmaceut.6b00995]. [PMID: 28245132].
[21]
Tanner, M.; Kapanen, A.I.; Junttila, T.; Raheem, O.; Grenman, S.; Elo, J.; Elenius, K.; Isola, J. Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol. Cancer Ther., 2004, 3(12), 1585-1592. [PMID: 15634652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy