Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Diversity-Oriented Synthetic Approaches for Furoindoline: A Review

Author(s): Ramandeep Kaur, Yagyesh Kapoor, Sundeep K. Manjal, Ravindra K. Rawal* and Kapil Kumar*

Volume 16, Issue 3, 2019

Page: [342 - 368] Pages: 27

DOI: 10.2174/1570179416666190328211509

Price: $65

Abstract

The furo [2,3-b] indoline ring system is one of the most important structural units in various natural products. It has been known to have inherent biological activities and is utilized as a synthetic target for a number of natural compounds; therefore, this has contributed to a great demand for the growth of synthetic methods for this ring system. Most important compounds with furoindoline ring system are physovenine, madindoline A and B and makomotindoline etc. These compounds are well known to exhibit biological activity against different diseases such as glaucoma, cancer, cachexia, Castleman’s disease, rheumatoid arthritis, etc. The current article focuses on various synthetic approaches for furoindoline containing compounds and essential furoindoline moiety, such as oxindole-5-O-tetrahydropyranyl ether route etc., and various other diastereoand enantio- controlled approach in a very concise way.

Keywords: Furoindole, natural product, cancer, chirality, alkaloid, fused heterocycle.

Graphical Abstract
[1]
Triggle, D.J.; Mitchell, J.M.; Filler, R. The pharmacology of physostigmine. CNS Drug Rev., 1998, 4(2), 87-136.
[2]
Brufani, M.; Castellano, C.; Marta, M.; Murroni, F.; Oliverio, A.; Pagella, P.G.; Pavone, F.; Pomponi, M.; Rugarli, P.L. From Physostigmine to Physostigmine Derivatives as New Inhibitors of Cholinesterase. In: Current Research in Alzheimer Therapy: Cholinesterase Inhibitors; Giacobini, E.; Becker, R., Eds.; Tylor & Francis: New York, 1988; pp. 343-355.
[3]
Kulkarni, M.G.; Dhondge, A.P.; Borhade, A.S.; Gaikwad, D.D.; Chavhan, S.W.; Shaikh, Y.B.; Nigdale, V.B.; Desai, M.P.; Birhade, D.R.; Shinde, M.P. Total synthesis of (±)‐physovenine. Eur. J. Org. Chem., 2009, 23, 3875-3877.
[4]
Sneader, W. From ordeal poison to Alzheimer’s therapy. Drug News Perspect., 1999, 12(7), 433-437.
[5]
Kawagishi, H.; Hota, K.; Masuda, K.; Yamaguchi, K.; Yazawa, K.; Shibata, K.; Uzuka, N.; Matahira, Y. Osteoclast-forming suppressive compounds from makomotake, Zizania latifolia Infected with Ustilago esculenta. Biosci. Biotechnol. Biochem., 2006, 70(11), 2800-2802.
[6]
Hayashi, M.; Kim, Y.P.; Takamatsu, S.; Enomoto, A.; Shinose, M.; Takahashi, Y.; Tanaka, H.; Komiyama, K.; Omura, S. Madindoline, a novel inhibitor of IL-6 activity from Streptomyces sp. K93-0711. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot., 1996, 49(11), 1091-1095.
[7]
Kishimoto, T.; Akira, S.; Taga, T. Interleukin-6 and its receptor: a paradigm for cytokines. Science, 1992, 258(5082), 593-597.
[8]
Hirano, T. Interleukin 6 and its receptor: ten years later. Int. Rev. Immunol., 1998, 16(3-4), 249-284.
[9]
Strassmann, G.; Masui, Y.; Chizzonite, R.; Fong, M. Mechanisms of experimental cancer cachexia. Local involvement of IL-1 in colon-26 tumor. J. Immunol., 1993, 150(6), 2341-2345.
[10]
Yoshizaki, K.; Matsuda, T.; Nishimoto, N.; Kuritani, T.; Taeho, L.; Aozasa, K.; Nakahata, T.; Kawai, H.; Tagoh, H.; Komori, T. Kishimoto, S.; Hirano, T.; Kishimoto, T. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood, 1989, 74(4), 1360-1367.
[11]
Takagi, N.; Mihara, M.; Moriya, Y.; Nishimoto, N.; Yoshizaki, K.; Kishimoto, T.; Takeda, Y.; Ohsugi, Y. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum., 1998, 41(12), 2117-2121.
[12]
De La Mata, J.; Uy, H.L.; Guise, T.A.; Story, B.; Boyce, B.F.; Mundy, G.R.; Roodman, G.D. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J. Clin. Invest., 1995, 95(6), 2846-2852.
[13]
Zhang, X.G.; Bataille, R.; Jourdan, M.; Saeland, S.; Banchereau, J.; Mannoni, P.; Klein, B. Granulocyte-macrophage colony-stimulating factor synergizes with interleukin-6 in supporting the proliferation of human myeloma cells. Blood, 1990, 76(12), 2599-2605.
[14]
Kulkarni, M.G.; Chavhan, S.W.; Desai, M.P.; Shaikh, Y.B.; Gaikwad, D.D.; Dhondge, A.P.; Borhade, A.S.; Ningdale, V.B.; Birhade, D.R.; Dhatrak, N.R. A short and efficient synthesis of furo[2,3-b]indoles. Tetrahedron Lett., 2010, 51(34), 4494-4496.
[15]
Onaka, T. One-step construction of 2,3,3a,8a-tetrahydrofuro[2,3-b]indole system: An application to physovenine synthesis. Tetrahedron Lett., 1971, 12(46), 4391-4392.
[16]
Hoshino, T.; Kobayashi, T. Synthesis of the d, l-ether. Synthetic experiments on Eserin. IV. Syntheses in the indole group. XIII. Liebigs Ann., 1935, 520(1), 11-19.
[17]
Calvert, M.B.; Sperry, J. A furoindoline synthesis by remote radical functionalization. Tetrahedron Lett., 2012, 53(40), 5426-5429.
[18]
Koag, M.; Lee, S. Discovery of hypoiodite-mediated aminyl radical cyclization lacking a nitrogen radical-stabilizing group: Application to synthesis of an oxazaspiroketal-containing cephalostatin analog. Org. Lett., 2011, 13(18), 4766-4769.
[19]
Suzuki, T.; Choi, J.H.; Kawaguchi, T.; Yamashita, K.; Morita, A.; Hirai, H.; Nagai, K.; Hirsoe, T.; Omura, S.; Sunazuka, T. Makomotindoline from Makomotake, Zizania latifolia infected with Ustilago esculenta. Bioorg. Med. Chem. Lett., 2012, 22(13), 4246-4248.
[20]
Butera, J.A.; Antane, S.A.; Hirth, B.; Lennox, J.R.; Sheldon, J.H.; Norton, N.W.; Warga, D.; Argentieri, T.M. Synthesis and potassium channel opening activity of substituted 10H-benzo[4,5]furo[3,2-b]indole-and 5,10-dihydro-indeno[1,2-b]indole-1-carboxylic acids. Bioorg. Med. Chem. Lett., 2001, 11(16), 2093-2097.
[21]
Clark, A.J.; Jones, K. Cobalt-mediated aryl radical cyclization: A formal synthesis of physovenine. Tetrahedron, 1992, 48(33), 6875-6882.
[22]
Morales-Ríos, M.S.; Santos-Sánchez, N.F.; Fragoso-Vázquez, M.J.; Alagille, D.; Villagómez-Ibarra, J.R.; Joseph-Nathan, P. A convenient preparation of furo[2,3-b]indoles by conjugated addition of organomagnesium reagents to 2-hydroxyindolylidenemalonates. Tetrahedron, 2003, 59(16), 2843-2853.
[23]
Shishido, K.; Azuma, T.; Shibuya, M. Novel and facile route to (+)-physovenine via intramolecular [2+2] cycloaddition reaction. Tetrahedron Lett., 1990, 31(2), 219-220.
[24]
Yamamoto, D.; Sunazuka, T.; Hirose, T.; Kojima, N.; Kaji, E.; Omura, S. Design, synthesis, and biological activities of madindoline analogues. Bioorg. Med. Chem. Lett., 2006, 16(10), 2807-2811.
[25]
Sunazuka, T.; Yoshida, K.; Kojima, N.; Shirahata, T.; Hirsoe, T.; Handa, M.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Omura, S. Total synthesis of (−)-physovenine from (−)-3a-hydroxyfuroindoline. Tetrahedron Lett., 2005, 46(9), 1459-1461.
[26]
Ishibashi, H.; Kobayashi, T.; Machida, N.; Tamura, O. A new efficient route to (±)-physostigmine and (±)-physovenine by means of 5-exo selective aryl radical cyclization of o-bromo-N-acryloylanilides. Tetrahedron, 2000, 56(11), 1469-1473.
[27]
Luo, Y.L.; Yu, Q.S.; Chrisey, L.; Brossi, A. Synthesis of (±)-physovenine and (±)-7-bromophysovenine from intermediates of the synthesis of physostigmines. Heterocycles, 1990, 31(2), 283-287.
[28]
Zhang, T.Y.; Zhang, H. Palladium-catalyzed intramolecular arylation of an anilide enolate, application to an efficient formal total synthesis of physovenine. Tetrahedron Lett., 2002, 43(8), 1363-1365.
[29]
Clark, A.J.; Jones, K. Cobalt-mediated aryl radical cyclisations: A formal synthesis of physovenine. Tetrahedron, 1992, 48(33), 6875-6882.
[30]
Tanaka, K.; Taniguchi, T.; Ogasawara, K. 7,7-Dimethyl-6,8-dioxabicyclo[3.3.0]oct-3-en-2-one as a synthetic equivalent of ketodicyclopentadiene: a new route to (−)-physostigmine, (−)-physovenine, and (−)-aphanorphine. Tetrahedron Lett., 2001, 42(6), 1049-1052.
[31]
Kulkarni, M.G.; Desai, M.P.; Birhade, D.R.; Shaikh, Y.B.; Dhatrak, A.N.; Gannimani, R. A Wittig-olefination-Claisen-rearrangement approach to the 3-methylquinoline-4-carbaldehyde synthesis. J. Org. Chem., 2012, 8, 1725-1729.
[32]
Liu, C.; Yin, Q.; Dai, L.X.; You, S.L. Synthesis of pyrroloindolines and furoindolines via cascade dearomatization of indole derivatives with carbenium ion. Chem. Commun., 2015, 51(27), 5971-5974.
[33]
Zhu, X.; Xu, X.P.; Sun, C.; Chen, T.; Shen, Z.L.; Ji, S.J. I-MCR-Ullmann cascade toward furo[2,3-b]indole scaffold. Tetrahedron, 2011, 67(34), 6375-6381.
[34]
Matsuura, T.; Overman, L.E.; Poon, D.J. Catalytic asymmetric synthesis of either enantiomer of the calabar alkaloids physostigmine and physovenine. J. Am. Chem. Soc., 1998, 120(26), 6500-6503.
[35]
Morales-Ríos, M.; Joseph-Nathan, P. NMR studies of indoles and their N‐carboalkoxy derivatives. Magn. Reson. Chem., 1987, 25(10), 911-918.
[36]
Takano, S.; Goto, E.; Hirama, E.; Ogasawara, K. Enantioselective Synthesis of (-)-Physostigmine. Chem. Pharm. Bull., 1982, 30(7), 2641-2643.
[37]
Sunazuka, T.; Hirose, T.; Shirahata, T.; Harigaya, Y.; Hayashi, M.; Komiyana, K.; Omura, S.; Smith, A.B. Total synthesis of (+)-madindoline a and (−)-madindoline b, potent, selective inhibitors of interleukin 6. Determination of the relative and absolute configurations. J. Am. Chem. Soc., 2000, 122(9), 2122-2123.
[38]
Hirsoe, T.; Sunazuka, T.; Shirahata, T.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Omura, S. Short total synthesis of (+)-madindolines A and B. Org. Lett., 2002, 4(4), 501-503.
[39]
Shishido, K.; Shitara, E.; Komatsu, H.; Hiroya, K.; Fukumoto, K.; Kametani, T. Total syntheses of (.+-.)-physovenine and (.+-.)-physostigmine. An application of tandem electrocyclic-[3,3]sigmatropic reaction of benzocyclobutenes. J. Org. Chem., 1986, 51(15), 3007-3011.
[40]
Takano, S.; Moriya, M.; Ogasawara, K. Enantiocontrolled total syntheses of (-)-physovenine and (-)-physostigmine. J. Org. Chem., 1991, 56(21), 5982-5984.
[41]
ElAzab, A.S.; Taniguchi, T.; Ogasawara, K. An expedient route to the calabar bean alkaloids (−)-physovenine and (−)-physostigmine. Org. Lett., 2000, 2(18), 2757-2759.
[42]
Dhiman, S.; Mathew, J.; Ramasastry, S.S.V. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 3-(2-aminophenyl)-1,4-enynols. Org. Biomol. Chem., 2016, 14(24), 5563-5568.
[43]
Ikeda, M.; Ohno, K.; Katsura, M.; Chun, M.W.; Tamura, Y. Reactions of tryptophols and Ná-acetyltryptamines with iodine azide. Formation of 3a-azido-3,3a,8,8a-tetrahydro-2H-furo- and 3a-azido-1,2,3,3a,8,8a-hexahydro-pyrrolo-[2,3-b]indoles. J. Chem. Soc., 1979, 1, 3061-3063.
[44]
Yu, Q.S.; Lu, B.Y.; Pei, X.F. Total synthesis of racemic physostigmine, physovenine and its sulfur analogue by the oxindole-5-o-tetrahydropyranyl ether route. Heterocycles, 1994, 39(2), 519-525.
[45]
Chouhan, M.; Kumar, K.; Sharma, R.; Grover, V.; Nair, V.A. NiCl2.6H2O/NaBH4 in methanol: a mild and efficient strategy for chemoselective deallylation/debenzylation of aryl ethers. Tetrahedron Lett., 2013, 54(34), 4540-4543.
[46]
Goyal, S.; Patel, J.K.; Gangar, M.; Kumar, K.; Nair, V.A. Zirconocene dichloride catalysed one-pot synthesis of pyrroles through nitroalkeneenamine assembly. RSC Adv., 2015, (5), 3187-3195.
[47]
Chouhan, M.; Senwar, K.R.; Sharma, R.; Grover, V.; Nair, V.A. Regiospecific epoxide opening: A facile approach for the synthesis of 3-hydroxy-3-aminomethylindolin-2-one derivatives. Green Chem., 2011, 13(9), 2553-2560.
[48]
Kumar, V.; Kumar, K.; Pal, A.; Khatik, G.L.; Nair, V.A. Aldol reactions of 2-thioxotetrahydropyrimidin-4(1H)-ones: stereoregulations from endo- and exocyclic chiral centres. Tetrahedron, 2013, 69(6), 1747-1754.
[49]
Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisations of 1,2-diamines and phenacyl bromides. Tetrahedron Lett., 2015, 56(10), 1266-1271.
[50]
Chouhan, M.; Senwar, K.R.; Kumar, K.; Sharma, R.; Nair, V.A. Catalytic C–H activation of aryl acetylenes: A fast assembly of 3-(arylethynyl)-3-hydroxyindolin-2-ones Using CuI/DBU. Synthesis, 2014, 46(2), 195-202.
[51]
Sharma, R.; Kumar, K.; Chouhan, M.; Grover, V.; Nair, V.A. Lithium hydroxide mediated synthesis of 3, 4-disubstituted pyrroles. RSC Adv, 2013, 3(34), 14521-14527.
[52]
Goyal, S.; Patel, B.K.; Sharma, R.; Chouhan, M.; Kumar, K.; Gangar, M.; Nair, V.A. An efficient strategy for the synthesis of syn 1,3-diols via iterative acetate aldol reactions and synthesis of atorvastatin lactone. Tetrahedron Lett., 2015, 56(40), 5409-5412.
[53]
Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from α, β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett., 2016, 57(21), 2315-2319.
[54]
Kumar, K.; Siddique, J.; Gangar, M.; Goyal, S.; Rawal, R.K.; Nair, V.A. ZrCl4 catalysed diastereoselective synthesis of spirocarbocyclic oxindoles via [4+2] cycloaddition. Chem. Select., 2016, 1(10), 2409-2412.
[55]
Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. AlCl3/cyclohexane mediated electrophilic activation of isothiocyanates: an efficient synthesis of thioamides. Chem. Select., 2016, 1(12), 3228.
[56]
Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. Water-promoted regiospecific azidolysis and copper-catalyzed azide-alkyne cycloaddition: One-pot synthesis of 3-hydroxy-1-alkyl-3-[(4-aryl/alkyl-1H-1,2,3-triazol-1-yl)methyl]indolin-2-ones. J. Org. Chem., 2016, 81(20), 9757-9764.
[57]
Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem., 2017, 25(17), 4533-4552.
[58]
Manjal, S.K.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[59]
Mittal, M.; Kumar, K.; Anghore, D.; Rawal, R.K. ICP-MS: Analytical method for identification and detection of elemental impurities. Curr. Drug Discover. Tech., 2017, 14(2), 106-120.
[60]
Kaur, R.; Choudhry, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[61]
Kumar, B.; Singh, V.; Shankar, R.; Kumar, K.; Rawal, R.K. Synthetic and medicinal prospective of structurally modified curcumins. Curr. Topics. Med. Chem., 2017, 17(2), 148-161.
[62]
Talwan, P.; Choudhary, S.; Kumar, K.; Rawal, R.K. Chemical and medicinal versatility of substituted 1, 4-dihydropyridines. Curr. Bioact. Compd., 2017, 13(2), 109-120.
[63]
Kumar, K.; More, S.S.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A highly stereoselective chiral auxiliary‐assisted reductive cyclization to furoindoline. J. Heterocycl. Chem., 2017, 54(5), 2696-2702.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy