Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Iron Oxide Nanoparticles: An Efficient Nano-catalyst

Author(s): Tokeer Ahmad*, Ruby Phul and Huma Khan

Volume 23, Issue 9, 2019

Page: [994 - 1004] Pages: 11

DOI: 10.2174/1385272823666190314153208

Price: $65

Abstract

Magnetic iron oxide nanoparticles have attracted attention because of their idiosyncratic physicochemical characteristics and vast range of applications such as protein separations, catalysis, magnetic resonance imaging (MRI), magnetic sensors, drug delivery, and magnetic refrigeration. The activity of the catalyst depends on the chemical composition, particle size, morphology and also on the atomic arrangements at the surface. The catalytic properties of iron oxide nanoparticles can be easily altered by controlling the shape, size, morphology and surface modification of nanomaterials. This review is focused on the use of iron oxide as a catalyst in various organic reactions viz. oxidation, hydrogenation, C-C coupling, dihydroxylation reactions and its reusability/recoverability.

Keywords: Iron oxide, catalysis, reusability, functionalized nanoparticles, mixed ferrites, magnetic resonance imaging (MRI).

Graphical Abstract
[1]
Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
[2]
Somorjai, G.A.; Frei, H.; Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc., 2009, 131, 16589-16605.
[3]
Benaglia, M. Recoverable and Recyclable Catalysts; John Wiley & Sons: Chichester, 2009.
[4]
Rossi, L.M.; Costa, N.J.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem., 2014, 16(6), 2906-2933.
[5]
Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev., 2018.
[http://dx.doi.org/10.1021/acs.chemrev.8b00547]
[6]
Aliofkhazraei, M. Handbook of nanoparticlesed.; Springer, , 2016.
[7]
Mahmoudi, H.; Jafari, A.A. Facial preparation of sulfonic acid-functionalized magnetite-coated maghemite as a magnetically separable catalyst for pyrrole synthesis. ChemCatChem, 2013, 12, 3743-3749.
[8]
Varma, R.S. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustainable Chem. Processes., 2014, 2 11 (1-8).
[9]
Gedanken, A.; Mastai, Y. Sonochemistry and other novel methods developed for the synthesis of nanoparticles.In:The Chemistry of Nanomaterials: Synthesis, Properties and Applications; Rao, C.N.R.; Müller, H.C.M.A.; Cheetham, A.K., Eds.; Wiley-VCH Verlag GmbH & Co, 2004, pp. 113-169.
[10]
Cao, J.L.; Wang, Y.; Yu, X.L.; Wang, S.R.; Wu, S.H.; Yuan, Z.Y. Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B-Environ., 2008, 79(1), 26-34.
[11]
Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward suzuki coupling reactions. J. Mater. Chem., 2012, 22(42), 22750-22755.
[12]
Gao, Q.X.; Wang, X.F.; Di, J.L.; Wu, X.C.; Tao, Y.R. Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with 110 and 001 planes for methane combustion and CO oxidation. Catal. Sci. Technol., 2011, 1(4), 574-577.
[13]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Accounts Chem. Res., 2013, 46(8), 1825-1837.
[14]
Yan, W.; Fan, H.; Zhai, Y.; Yang, C.; Ren, P.; Huang, L. Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B Chem., 2011, 160(1), 1372-1379.
[15]
Patil, P.R.; Joshi, S.S. Synthesis of α-Fe2O3 nanocubes. Synth. React. Inorg. M., 2007, 37(6), 425-429.
[16]
Reinemann, C.; Strehlitz, B. Aptamer-Nanomaterial Conjugates for Medical Applications In: Bioengineered Nanomaterials; Tiwari A.; Tiwari A., 1st Ed.,. , 2013, pp. 42-73.
[17]
Sadeghzadeh, S.M.; Mogharabi, M. Metal complexes immobilized on magnetic nanoparticles In: Green Nanotechnology-Overview and Further Prospects ; Larramendy M , Sonia Soloneski, Ed.; Jenza Trdine, Croatia.. , 2016.
[18]
Mpungose, P.; Vundla, Z.; Maguire, G.; Friedrich, H. The current status of heterogeneous palladium catalysed heck and suzuki cross-coupling reactions. Molecules, 2018, 7, 1676.
[19]
Wittmann, S.; Schätz, A.; Grass, R.N.; Stark, W.J.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water. Angew. Chem. Int. Ed., 2010, 49, 1867-1870.
[20]
Copéret, C.; Chabanas, M.; Saint-Arroman, R.P.; Basset, J-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed., 2003, 42, 156-181.
[21]
Basset, J-M.; Copéret, C.; Soulivong, D.; Taoufik, M. ThivolleCazat, J. Metathesis of alkanes and related reactions. J. Acc. Chem. Res., 2010, 43, 323-334.
[22]
Bönnemann, H.; Brijoux, W. Catalytically active metal powders and colloids.In:Active Metals: Preparation, characterization, applications; Alois, Fürstner, Ed.; Wiley-VCH: Weinheim, 1996, pp. 339-379.
[23]
Bӧnnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joußen, T.; Korall, B. Formation of colloidal transition metals in organic phases and their application in catalysis. Angew. Chem. Int. Ed., 1991, 30, 1312-1314.
[24]
Narayanan, R.; El-Sayed, M.A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B, 2005, 109, 12663-12676.
[25]
Kim, S-W.; Son, S.U.; Lee, S.S.; Hyeon, T.; Chung, Y.K. Colloidal cobalt nanoparticles: a highly active and reusable Pauson-Khand catalyst. Chem. Commun. , 2001, 0, 2212-2213.
[26]
Son, S.U.; Lee, S.I.; Chung, Y.K.; Kim, S-W.; Hyeon, T. The first intramolecular Pauson-Khand reaction in water using aqueous colloidal cobalt nanoparticles as catalysts. Org. Lett., 2002, 4, 277-279.
[27]
Lewis, L.N. Chemical catalysis by colloids and clusters. Chem. Rev., 1993, 93, 2693-2730.
[28]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104, 293-346.
[29]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44, 7852-7872.
[30]
Dahl, J.A.; Maddux, B.L.S.; Hutchinson, J.E. Toward greener nanosynthesis. Chem. Rev., 2007, 107, 2228-2269.
[31]
Shylesh, S.; Schunemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49, 3428-3459.
[32]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem., 2004, 14, 3406-3410.
[33]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci., 2006, 8, 425-430.
[34]
Ahmad, T.; Chopra, R.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Canted antiferromagnetism in CuO nanoparticles synthesized by the reverse-micellar route. Solid State Sci., 2005, 7, 891-895.
[35]
Ahmed, J.; Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Development of microemulsion-based process for pure cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from sub-micron rods of cobalt oxalate. J. Colloid Interface Sci., 2008, 321, 434-441.
[36]
Khatoon, S.; Ahmad, T. Synthesis, optical and magnetic properties of Nidoped ZnO nanoparticles. J. Mater. Sci. Engg., B,, 2012, 2, 325-333.
[37]
Ahmad, T.; Khatoon, S.; Coolahan, K.; Lofland, S.E. Solvothermal Synthesis, Optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04 < x = 0.10) Solid Solutions. J. Alloys Compd., 2013, 558, 117-124.
[38]
Ahmad, T.; Khatoon, S.; Coolahan, K.; Lofland, S.E. Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res., 2013, 28, 1245-1253.
[39]
Al-Hartomy, O.A.; Ubaidullah, M.; Kumar, D.; Madani, J.H.; Ahmad, T. Dielectric properties of Ba1-xSrxZrO3 (0 ≤ x ≤ 1) nanoceramics developed by citrate precursor route. J. Mater. Res., 2013, 28, 1070-1077.
[40]
Ahmad, T.; Lone, I.H.; Ansari, S.G.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Mater. Des., 2017, 126, 331-338.
[41]
Ahmad, T.; Phul, R.; Alam, P.; Lone, I.H.; Shahazad, M.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Dielectric, optical and enhanced Photo-catalytic properties of CuCrO2 Nanoparticles. RSC Advances, 2017, 7, 27549-27557.
[42]
Kalam, A.; Al-Sehemi, A.G.; Al-Shihri, A.S.; Du, G.; Ahmad, T. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Mater. Charact., 2012, 68, 77-81.
[43]
Ganguly, A.; Ahmad, T.; Ganguli, A.K. Silica mesostructures: control of pore size and surface area using a surfactant template hydrothermal process. Langmuir, 2010, 26, 14901-14908.
[44]
Ahmad, T.; Phul, R. Magnetic iron oxide nanoparticles as contrast agents: hydrothermal synthesis, characterization and properties. SSP, 2015, 232, 111-145.
[45]
Ahmad, T.; Ganguli, A.K. Structural and dielectric characterization of nanocrystalline (Ba,Pb)ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc., 2006, 89(10), 3140-3146.
[46]
Ganguli, A.K.; Vaidya, S.; Ahmad, T. Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides. Bull. Mater. Sci., 2008, 31, 415-419.
[47]
Ahmad, T.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3): Ramifications of size considerations. J. Chem. Sci., 2006, 118(6), 513-518.
[48]
Ahmad, T.; Ganguli, A.K. Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4 and PbTiO3): Structural aspects and dielectric properties. J. Am. Ceram. Soc., 2006, 89, 1326-1332.
[49]
Darken, L.S.; Gurry, P.W. The system iron-oxygen II equilibrium and thermodynamics of liquid oxide and other phases. J. Am. Chem. Soc., 1946, 68, 798-816.
[50]
Osterhout, V. In Magnetic Oxides; Craik, D.S., Ed.; Wiley: New York, 1975.
[51]
Shen, L.; Laibinis, P.E.; Hatton, T.A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir, 1999, 15, 447-453.
[52]
Kang, Y.S.; Risbud, S.; Rabolt, J.F.; Stroeve, P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater., 1996, 8, 2209-2211.
[53]
Fried, T.; Shemer, G.; Markovich, G. Ordered two-dimensional arrays of ferrite nanoparticles. Adv. Mater., 2001, 13, 1158-1161.
[54]
Kumar, R.V.; Koltypin, Y.; Cohen, Y.S.; Cohen, Y.; Aurbach, D.; Palchik, O.; Felner, I.; Gedanken, A. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem., 2000, 10, 1125-1129.
[55]
Ganguli, A.K.; Ahmad, T. Nanorods of iron oxalate synthesized using reverse micelles: facile route for Fe2O3 and Fe3O4 nanoparticles. J. Nanosci. Nanotechnol., 2007, 7, 2029-2035.
[56]
Khollam, Y.B.; Dhage, S.R.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Kulkarni, S.D.; Date, S.K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett., 2001, 56, 571-577.
[57]
Dhage, S.R.; Khollam, Y.B.; Potadar, H.S.; Deshpande, S.B.; Bakare, P.P.; Sainkar, S.R.; Date, S.K. Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis. Mater. Lett., 2002, 57, 457-462.
[58]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42, 3371-3393.
[59]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49, 752-770.
[60]
Baig, R.B.N.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
[61]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Bassett, J-M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[62]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[63]
Yoon, T-J.; Lee, W.; Oh, Y-S.; Lee, J-K. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem., 2003, 27, 227-229.
[64]
Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5, 412-434.
[65]
Alshehri, S.M.; Ahmed, J.; Alhabarah, A.N.; Ahamad, T.; Ahmad, T. Nitrogen doped cobalt ferrite/carbon nanocomposites for supercapacitor application. ChemElectroChem, 2017, 4, 2952-2958.
[66]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[67]
Gupta, V.K.; Yola, M.L.; Eren, T.; Kartal, F. Çagˇlayan, M.O.; Atar, N. Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J. Mol. Liq., 2014, 190, 133-138.
[68]
Atar, N.; Eren, T.; Yola, M.L.; Hassan, K-M.; Demirdögena, B. Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulphur functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Advances, 2015, 5, 26402-26409.
[69]
Gupta, V.K.; Atar, N.; Yola, M.L.; Üstündağ, Z.; Uzun, L. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 2014, 48, 210-217.
[70]
Atar, N.; Eren, T.; Yola, M.L.; Gerengi, H.; Wang, S. Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics, 2015, 21, 3185-3192.
[71]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[72]
Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed., 2008, 47, 3317-3321.
[73]
Bolm, C.; Legros, J.; Paih, J.L.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104, 6217-6254.
[74]
Hudson, R. Copper ferrite (CuFe2O4) nanoparticles. Synlett, 2013, 24, 1309-1310.
[75]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 2009, 11, 127-131.
[76]
Zhang, Z.J.; Wang, Z.L.; Chakoumakos, B.C.; Yin, J.S. Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc., 1998, 120, 1800-1804.
[77]
Ahmad, T.; Lone, I.H. Development of multifunctional lutetium ferrite nanoparticles: structural characterization and properties. Mater. Chem. Phys., 2017, 202, 50-55.
[78]
Mathew, T.; Shiju, N.R.; Sreekumar, K.; Rao, B.S.; Gopinath, C.S. Cu-Co synergism in Cu1−xCoxFe2O4-catalysis and XPS aspects. J. Catal., 2002, 210, 405-417.
[79]
Mathew, T.; Shylesh, S.; Reddy, S.N.; Sebastian, C.P.; Date, S.K.; Rao, B.S.; Kulkarni, S.D. Redistribution of cations amongst different lattice sites in Cu1-xCoxFe2O4 ferrospinels during alkylation: magnetic study. Catal. Lett., 2004, 93, 155-163.
[80]
Faust, B.C.; Hoffmann, M.R.; Bahnemann, D.W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem., 1989, 93, 6371-6381.
[81]
Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; Wiley-VCH: Weinheim, 1996.
[82]
Han, J.S.; Bredow, T.; Davey, D.E.; Yu, A.B. Mulcahy, D.E. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens. Actuators B, 2001, 75, 18-23.
[83]
Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 nanotubes in gas sensors and lithium-ion batteries applications. Adv. Mater., 2005, 17, 582-586.
[84]
Wen, X.; Wang, S.; Ding, Y.; Wang, Z.L.; Yang, S. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B, 2005, 109, 215-220.
[85]
Niederberger, M.; Krumeich, F.; Hegetschweiler, K.; Nesper, R. An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem. Mater., 2002, 14, 78-82.
[86]
Srivastava, D.N.; Perkas, N.; Gedanken, A.; Felner, I. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B, 2002, 106, 1878-1883.
[87]
Anand, N.; Reddy, K.H.P.; Satyanarayana, T.; Rao, K.S.R.; Burri, D.R. A magnetically recoverable γ-Fe2O3 nanocatalyst for the synthesis of 2-phenylquinazolines under solvent-free conditions. Catal. Sci. Technol., 2012, 2, 570-574.
[88]
Zheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B, 2006, 110(7), 3093-3097.
[89]
Li, P.; Miser, D.E.; Rabiei, S.; Yadav, R.T.; Hajaligol, M.R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B: Environ., 2003, 43, 151-162.
[90]
Rao, Y.K. A physico-chemical model for reactions between particulate solids occurring through gaseous intermediates-I. Reduction of hematite by carbon. Chem. Eng. Sci., 1974, 29(6), 1435-1445.
[91]
Shi, F.; Tse, M.K.; Pohl, M-M.; Brückner, A.; Zhang, S.M.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed., 2007, 46, 8866-8868.
[92]
Shi, F.; Tse, M.K.; Pohl, M-M.; Radnik, J.; Brückner, A.; Zhang, S.; Beller, M. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J. Mol. Catal. A: Chem, 2008, 292, 28-35.
[93]
Zhao, N.; Ma, W.; Cui, Z.M.; Song, W.G.; Xu, C.L.; Gao, M.Y. Polyhedral maghemite nanocrystals prepared by a flame synthetic method: preparations, characterizations, and catalytic properties. ACS Nano, 2009, 3, 1775-1780.
[94]
Chaudhari, K.N.; Chaudhari, N.K.; Yu, J-S. Peroxidase mimic activity of hematite iron oxides (α-Fe2O3) with different nanostructures. Catal. Sci. Technol., 2012, 2, 119-124.
[95]
Zeng, T.Q.; Chen, W-W.; Cirtiu, C.M.; Moores, A.; Song, G.H.; Li, C.J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12, 570-573.
[96]
Zhang, Z-H.; Lü, H-Y.; Yang, S-H.; Gao, J-W. Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646.
[97]
Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem., 2014, 16, 4493-4505.
[98]
Reddy, B.V.S.; Krishna, A.S.; Ganesh, A.V.; Narayanakumar, G.G.K.S. Nano Fe3O4 as magnetically recyclable catalyst for the synthesis of α-aminophosphonates in solvent-free conditions. Tetrahedron Lett., 2011, 52, 1359-1362.
[99]
Ghasemzadeh, M.A.; Safaei-Ghomi, J.; Molaei, H. Fe3O4 nanoparticles: As an efficient, green and magnetically reusable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent-free conditions. C. R. Chim., 2012, 15, 969-974.
[100]
Jagadeesh, R.V.; Stemmler, T.; Surkus, A-E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nat. Protoc., 2015, 10, 548-557.
[101]
Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc., 2011, 133, 12875-12879.
[102]
Cui, X.; Zhou, X.; Dong, Z. Ultrathin γ-Fe2O3 nanosheets as a highly efficient catalyst for the chemoselective hydrogenation of nitroaromatic compounds. Catal. Commun., 2018, 107, 57-61.
[103]
Papadas, I.T.; Fountoulaki, S.; Lykakis, I.N.; Armatas, G.S. Controllable Synthesis of mesoporous iron oxide nanoparticle assemblies for chemoselective catalytic reduction of nitroarenes. Chem. Eur. J., 2016, 22, 4600-4607.
[104]
Tian, M.; Cui, X.; Liang, K.; Ma, J.; Dong, Z. Efficient and chemoselective hydrogenation of nitroarenes by γ-Fe2O3 modified hollow mesoporous carbon microspheres. Inorg. Chem. Front., 2016, 3, 1332-1340.
[105]
Tian, M.; Cui, X.; Yuan, M.; Yang, J.; Ma, J.; Dong, Z. Efficient chemoselective hydrogenation of halogenated nitrobenzenes over an easily prepared γ-Fe2O3-modified mesoporous carbon catalyst. Green Chem., 2017, 19, 1548-1554.
[106]
Cui, X.; Zhang, Q.; Tian, M.; Dong, Z. Facile fabrication of γ-Fe2O3-nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaromatic compounds. New J. Chem., 2017, 41, 10165-10173.
[107]
Li, Y.; Zhou, Y-X.; Ma, X.; Jiang, H.L. A metal–organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chem. Commun., 2016, 52, 4199-4202.
[108]
Vestal, C.R.; Zhang, Z.J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett., 2003, 3, 1739-1743.
[109]
Jacintho, G.V.M.; Brolo, A.G.; Corio, P.; Suarez, P.A.Z.; Rubin, J.C. Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J. Phys. Chem. B, 2009, 113, 7684-7691.
[110]
Black, C.T.; Murray, C.B.; Sandstorm, R.L.; Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science, 2000, 290, 1131-1134.
[111]
Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater., 2006, 18, 393-403.
[112]
Park, J-I.; Kim, M.G.; Jun, Y-W.; Lee, J.S.; Lee, W-R.; Cheon, J. Characterization of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc., 2004, 126, 9072-9078.
[113]
Tong, J.; Bo, L.; Li, Z.; Lei, Z.; Xia, C. Magnetic CoFe2O4 nanocrystal: A novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. J. Mol. Catal. A: Chem., 2009, 307, 58-63.
[114]
Kooti, M.; Afshari, M. Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. F., 2012, 19, 1991-1995.
[115]
Ishikawa, S.; Hudson, R.; Moores, A.; Li, C-J. Ligand modified CuFe2O4 nanoparticles as magnetically recoverable and reusable catalyst for azide-alkyne click condensation. Heterocycles, 2012, 86, 1023-1030.
[116]
Ranganath, K.V.S.; Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis-a perfect match. Catal. Sci. Technol., 2011, 1, 13-22.
[117]
Kantam, M.L.; Yadav, J.; Laha, S.; Srinivas, P.; Sreedhar, B.; Figueras, F. Asymmetric hydrosilylation of ketones catalyzed by magnetically recoverable and reusable copper ferrite nanoparticles. J. Org. Chem., 2009, 74, 4608-4611.
[118]
Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for knoevenagel reaction in aqueous medium. J. Mol. Catal. A: Chem., 2011, 339, 24-31.
[119]
Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Nogueira, I.D.; Velhinho, A.; Shrikhande, J.J.; Indulkar, U.U.; Jayaram, R.V.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D. Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite-nickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chem. Eur. J., , 2012, 18, 12628-12632.
[120]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A., 2010, 368, 1333-1383.
[121]
Wang, J.; Han, S.; Ke, D.; Wang, R. Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. J. Nanomater., 2012, 1, 1-8.
[122]
Rossi, L.M.; Garcia, M.A.S.; Vono, L.L.R. Recent advances in the development of magnetically recoverable metal nanoparticle catalysts. J. Braz. Chem. Soc., 2012, 23, 1959-1971.
[123]
Costa, N.J.S.; Rossi, L.M. Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 2012, 4, 5826-5834.
[124]
Xu, H-J.; Wan, X.; Geng, Y.; Xu, X-L. The catalytic application of recoverable magnetic nanoparticles-supported organic compounds. Curr. Org. Chem., 2013, 17, 1034-1050.
[125]
Jin, M-J.; Lee, D-H. A practical heterogeneous catalyst for the suzuki, sonogashira, and stille coupling reactions of unreactive aryl chlorides. Angew. Chem. Int. Ed., 2010, 49, 1119-1122.
[126]
Jung, J-Y.; Kim, J-B.; Taher, A.; Jin, M-J. Pd(OAc)2 Immobilized on Fe3O4 as magnetically separable heterogeneous catalyst for suzuki reaction in water. Bull. Korean Chem. Soc., 2009, 30, 3082-3084.
[127]
Laska, U.; Frost, C.G.; Price, G.J.; Plucinski, P.K. Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use. J. Catal., 2009, 268, 318-328.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy