Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of Genetic Polymorphism in the Formation of Arterial Hypertension, Type 2 Diabetes and their Comorbidity

Author(s): Anna Shalimova*, Galyna Fadieienko, Olena Kolesnikova, Anna Isayeva, Vira Zlatkina, Valeriya Nemtsova, Kostyantyn Prosolenko, Valentyna Psarova, Natalia Kyrychenko and Maryna Kochuieva

Volume 25, Issue 3, 2019

Page: [218 - 227] Pages: 10

DOI: 10.2174/1381612825666190314124049

Price: $65

Abstract

Background: Hereditary component plays a significant role in the formation of insulin resistance (IR) - one of the pathogenetic links of arterial hypertension (AH) and type 2 diabetes mellitus (DM2). However, the genetic predisposition to IR can not be realized and does not manifest itself clinically in the absence of appropriate factors of the environment (excessive nutrition, low physical activity, etc.).

Objective: The review summarizes the results of studies which describe the contribution of genetic polymorphism to the formation and progression of AH, DM2 and their comorbidity in various populations.

Results: In many studies, it has been established that genetic polymorphism of candidate genes is influenced by the formation, course and complication of AH and DM2. According to research data, the modulating effect of polymorphism of some genetic markers of AH and DM2 on metabolism and hemodynamics has been established. The results of numerous studies have shown a higher frequency of occurrence of AH and DM2, as well as their more severe course with adverse genetic polymorphisms. At the same time, the role of genetic polymorphism in the formation of AH and DM2 differs in different populations.

Conclusion: Contradictory data on the influence of gene polymorphisms on the formation of AH and DM2 in different populations, as well as a small number of studies on the combined effects of several polymorphisms on the formation of comorbidity, determine the continuation of research in this direction.

Keywords: Genetic polymorphism, arterial hypertension, type 2 diabetes, insulin resistance, risk factors, comorbidity.

[1]
Semple RK. EJE PRIZE 2015: How does insulin resistance arise, and how does it cause disease? Human genetic lessons. Eur J Endocrinol 2016; 174(5): R209-23.
[2]
Parks BW, Sallam T, Mehrabian M, et al. Genetic architecture of insulin resistance in the mouse. Cell Metab 2015; 21(2): 334-47.
[3]
Sokhi J, Sikka R, Raina P, et al. Association of genetic variants in INS (rs689), INSR (rs1799816) and PP1G.G (rs1799999) with type 2 diabetes (T2D): A case-control study in three ethnic groups from North-West India. Mol Genet Genomics 2016; 291(1): 205-16.
[4]
Guo X, Cheng K, Taylor D. Hypertention genes are genetic markers for insulin sensitivity and resistance. Hypertention 2005; 45(45): 799-803.
[5]
Gan W, Guan Y, Wu Q, et al. Association of TMPRSS6 polymorphisms with ferritin, hemoglobin, and type 2 diabetes risk in a Chinese Han population. Am J Clin Nutr 2012; 95(3): 626-32.
[6]
van Ittersum FJ, de Man AM, Thijssen S, et al. Genetic polymorphisms of the renin-angiotensin system and complications of insulin-dependent diabetes mellitus. Nephrol Dial Transplant 2000; 15(7): 1000-7.
[7]
Grant RW, Moore AF, Florez JC. Genetic architecture of type 2 diabetes: recent progress and clinical implications. Diabetes Care 2009; 32(6): 1107-14.
[8]
Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001; 409(6821): 729-33.
[9]
Strawbridge RJ, Dupuis J, Prokopenko I, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 2011; 60(10): 2624-34.
[10]
Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44(9): 981-90.
[11]
Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40(5): 638-45.
[12]
Rhee EP, Ho JE, Chen MH, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab 2013; 18(1): 130-43.
[13]
Xie HG, Dishy V, Sofowora G, et al. Arg389Gly beta 1-adrenoceptor polymorphism varies in frequency among different ethnic groups but does not alter response in vivo. Pharmacogenetics 2001; 11(3): 191-7.
[14]
Brodde OE. Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 2008; 117(1): 1-29.
[15]
Ahluwalia TS, Allin KH, Sandholt CH, et al. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes. J Clin Endocrinol Metab 2015; 100(4): E664-71.
[16]
Chen Z, Vigueira PA, Chambers KT, et al. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor γ-sparing thiazolidinedione. J Biol Chem 2012; 287(28): 23537-48.
[17]
Aprile-Garcia F, Antunica-Noguerol M, Budziñski ML, Liberman AC, Arzt E. Novel insights into the neuroendocrine control of inflammation: the role of GR and PARP1. Endocr Connect 2013; 3(1): R1-R12.
[18]
Ohshima K, Mogi M, Horiuchi M. Role of peroxisome proliferator-activated receptor-γ in vascular inflammation. Int J Vasc Med 2012; 2012508416
[19]
Sigmund CD. Endothelial and vascular muscle PPARgamma in arterial pressure regulation: lessons from genetic interference and deficiency. Hypertension 2010; 55(2): 437-44.
[20]
He W. PPARγ2 polymorphism and human health. PPAR Res 2009; 2009849538
[21]
Yen CJ, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 1997; 241(2): 270-4.
[22]
Trombetta M, Bonetti S, Boselli ML, et al. PPARG2 Pro12Ala and ADAMTS9 rs4607103 as “insulin resistance loci” and “insulin secretion loci” in Italian individuals. The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4. Acta Diabetol 2013; 50(3): 401-8.
[23]
Temelkova-Kurktschiev T, Hanefeld M, Chinetti G, et al. Ala12Ala genotype of the peroxisome proliferator-activated receptor gamma2 protects against atherosclerosis. J Clin Endocrinol Metab 2004; 89(9): 4238-42.
[24]
Motavallian A, Andalib S, Vaseghi G, Mirmohammad-Sadeghi H, Amini M. Association between PRO12ALA polymorphism of the PPAR-γ2 gene and type 2 diabetes mellitus in Iranian patients. Indian J Hum Genet 2013; 19(2): 239-44.
[25]
Byrne CD, Olufadi R, Bruce KD, Cagampang FR, Ahmed MH. Metabolic disturbances in non-alcoholic fatty liver disease. Clin Sci (Lond) 2009; 116(7): 539-64.
[26]
Sydorchuk LP. Polimorfizm p’jaty geniv, kompleks intyma–media sonnyh arterij ta endotelial'na dysfunkcija u hvoryh na arterial'nu gipertenziju Ukr terapevt zhurn 2009. 1: 76-84.
[27]
Villegas R, Williams S, Gao Y, et al. Peroxisome proliferator-activated receptor delta (PPARD) genetic variation and type 2 diabetes in middle-aged Chinese women. Ann Hum Genet 2011; 75(5): 621-9.
[28]
Hu C, Jia W, Fang Q, et al. Peroxisome proliferator-activated receptor (PPAR) delta genetic polymorphism and its association with insulin resistance index and fasting plasma glucose concentrations in Chinese subjects. Diabet Med 2006; 23(12): 1307-12.
[29]
Villegas R, Williams S, Gao Y, et al. Peroxisome proliferator-activated receptor delta (PPARD) genetic variation and type 2 diabetes in middle-aged Chinese women. Ann Hum Genet 2011; 75(5): 621-9.
[30]
Raj R, Bhatti JS, Bhadada SK, Ramteke PW. Association of polymorphisms of peroxisome proliferator activated receptors in early and late onset of type 2 diabetes mellitus. Diabetes Metab Syndr 2017; 11(Suppl. 1): S287-93.
[31]
Kilpeläinen TO, Zillikens MC, Stančákova A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43(8): 753-60.
[32]
Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 2001; 15(12): 2099-111.
[33]
Taniguchi CM, Ueki K, Kahn R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 2005; 115(3): 718-27.
[34]
McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem 2005; 280(8): 6441-6.
[35]
Hribal ML, Tornei F, Pujol A, et al. Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion. J Cell Mol Med 2008; 12(5B): 2096-106.
[36]
Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP. Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: A meta-analysis of 27 studies. Diabetologia 2003; 46(7): 990-5.
[37]
Burguete-Garcia AI, Cruz-Lopez M, Madrid-Marina V, et al. Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: A candidate gene study. Metabolism 2010; 59(1): 38-45.
[38]
Bodhini D, Radha V, Mohan V. Association study of IRS1 gene polymorphisms with type 2 diabetes in south Indians. Diabetes Technol Ther 2011; 13(7): 767-72.
[39]
Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009; 41(10): 1110-5.
[40]
Morini E, Prudente S, Succurro E, et al. IRS1 G972R polymorphism and type 2 diabetes: A paradigm for the difficult ascertainment of the contribution to disease susceptibility of ‘low-frequency-low-risk’ variants. Diabetologia 2009; 52(9): 1852-7.
[41]
Celi FS, Negri C, Tanner K, et al. Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Mexican Americans with Type 2 diabetes mellitus. Diabetes Metab Res Rev 2000; 16(5): 370-7.
[42]
Orkunogulu Suer FE, Mergen H, Bolu E, Ozata M. Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Turkish population with type 2 diabetes mellitus. Endocrinol Jpn 2005; 52(5): 593-8.
[43]
Majorov A. Sostojanie insulinorezistentnosti v jevoljucii saharnogo diabeta 2 tipa: Avtoref dis doktora med nauk : spec 140003 – «Jendokrinologija » Moskva 2007; 60 s [Synopsis in Russian]
[44]
Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52(2): 568-72.
[45]
Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 2003; 81(2): 133-76.
[46]
Birjukova EV. Molekuljarno-geneticheskie, gormonal'nometabolicheskie aspekty metabolicheskogo sindromA : Avtoref dis doktora med nauk : spec 140003 – «Jendokrinologija» – Moskva, 2009; 49 s [Synopsis in Russian]
[47]
Slingerland AS, Hattersley AT. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med 2005; 37(3): 186-95.
[48]
Nielsen EM, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003; 52(2): 573-7.
[49]
Ginsberg HN, Zhang YL, Hernandez-Ono A. Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 2006; 14(1)(Suppl. 1): 41S-9S.
[50]
Potapov VA. Poisk geneticheskih markerov, opredeljajushhih predraspolozhennost' k saharnomu diabetu tipa 2: Avtoref dis kand biol nauk : spec 030103 – «Molekuljarnaja biologija» – Moskva, 2010 2010; 24 s [Synopsis in Russian]
[51]
Kumar S, O’Rahylly S. Insulin resistance insulin action and its disturbances in disease Chicheste 2005.
[52]
Peters KE, Beilby J, Cadby G, et al. A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome. BMC Med Genet 2013; 14: 15.
[53]
Silkov AN, Sennikova NS, Goreva EP. Polimorfizm promotora gena FNO-α i uroven' produkcii mediatora mononuklearnymi kletkami. Vestnik Ural'skoj medicinskoj akademicheskoj nauki 2010. 2/1(29): 71-2. [Article in Russian]
[54]
Skoog T, Dichtl W, Boquist S, et al. Plasma tumour necrosis factor-alpha and early carotid atherosclerosis in healthy middle-aged men. Eur Heart J 2002; 23(5): 376-83.
[55]
Perticone F, Maio R, Tripepi G, et al. Inflammation mediates the link between endothelial dysfunction and mild to moderate renal insufficiency in essential hypertension. J Hypertens 2005; 23(2): 178.
[56]
Sydorchuk LP. Insulinorezystentnist' i polimorfizm geniv ASE, AGTR1, ADRbeta1, eNOS ta PPARgama2 u hvoryh na arterial'nu gipertenziju. Krovoobig ta gemostaz 2008. 3: 27-34. [Article in Ukrainian]
[57]
Kirchhoff K, Machicao F, Haupt A, et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 2008; 51(4): 597-601.
[58]
Marchenko IV, Dubovyk YI, Matlai OI, Biesiedina AA, Kniazkova PV, Harbuzova YA. The analysis of association between ENPP1 K121Q polymorphism and risk factors of type 2 diabetes mellitus in ukrainian population. Wiad Lek 2018; 71(4): 815-20.
[59]
Coto E, Díaz-Corte C, Tranche S, et al. Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and their association with type 2 diabetes and impaired renal function. Hum Immunol 2018; 79(6): 494-8.
[60]
Song Y, Yeung E, Liu A, et al. Pancreatic β-cell function and type 2 diabetes risk: quantify the causal effect using a Mendelian randomization approach based on meta-analyses. Hum Mol Genet 2012; 21(22): 5010-8.
[61]
Hingorani AD, Jia H, Stevens PA, Hopper R, Dickerson JE, Brown MJ. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J Hypertens 1995; 13(12 Pt 2): 1602-9.
[62]
Flammer AJ, Lüscher TF. Human endothelial dysfunction: EDRFs. Pflugers Arch 2010; 459(6): 1005-13.
[63]
Florez JC. The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care 2007; 10(4): 391-6.
[64]
Goldman-Levine JD. Combination therapy when metformin is not an option for type 2 diabetes. Ann Pharmacother 2015; 49(6): 688-99.
[65]
Færch K, Pilgaard K, Knop FK, et al. Incretin and pancreatic hormone secretion in Caucasian non-diabetic carriers of the TCF7L2 rs7903146 risk T allele. Diabetes Obes Metab 2013; 15(1): 91-5.
[66]
Schäfer SA, Tschritter O, Machicao F, et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 2007; 50(12): 2443-50.
[67]
Chimienti F, Devergnas S, Pattou F, et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006; 119(Pt 20): 4199-206.
[68]
Lukacs K, Hosszufalusi N, Dinya E, Bakacs M, Madacsy L, Panczel P. The type 2 diabetes-associated variant in TCF7L2 is associated with latent autoimmune diabetes in adult Europeans and the gene effect is modified by obesity: A meta-analysis and an individual study. Diabetologia 2012; 55(3): 689-93.
[69]
Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38(3): 320-3.
[70]
Dunn MF. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review. Biometals 2005; 18(4): 295-303.
[71]
Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 2007; 50(1): 63-7.
[72]
Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007; 117(8): 2155-63.
[73]
Bondar' IA, Filipenko ML, Shabel'nikova O. Associacija polimorfnyh markerov rs7903146 gena TCF7L2 i rs1801282 gena PPARG (Pro12Ala) s saharnym diabetom 2 tipa v Novosibirskoj oblasti. Saharnyj diabet 2013. 4: 17-22. [Article in Russian]
[74]
Nikitin AG, Potapov VA, Brovkin AN. i dr. Associacija polimorfnyh markerov gena TCF7L2 s saharnym diabetom tipa 2. Klinichna praktika 2014. 1: 4-11. [Article in Russian]
[75]
Neve B, Le Bacquer O, Caron S, et al. Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia 2014; 57(4): 785-96.
[76]
Srinivasan S, Kaur V, Chamarthi B, et al. TCF7L2 genetic variation augments incretin resistance and influences response to a sulfonylurea and metformin: The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH). Diabetes Care 2018; 41(3): 554-61.
[77]
Chung CM, Lin TH, Chen JW, et al. Common quantitative trait locus downstream of RETN gene identified by genome-wide association study is associated with risk of type 2 diabetes mellitus in Han Chinese: A Mendelian randomization effect. Diabetes Metab Res Rev 2014; 30(3): 232-40.
[78]
Nelson CP, Hamby SE, Saleheen D, et al. Genetically determined height and coronary artery disease. N Engl J Med 2015; 372(17): 1608-18.
[79]
Shljahto EV, Konradi AO. Rol' geneticheskih faktorov v remodelirovanii serdechno-sosudistoj sistemy pri gipertonicheskoj bolezni. Consilium medicum Arterial'naja gipertenzija 2002. 4(3): 107-13. [Article in Russian]
[80]
Jabluchanskij NI, Dacenko EG, Krajz IG. Nasledstvennye faktory riska arterial'noj gipertenzii : obzor 2004. 1: 117-21. [Article in Russian]
[81]
Karvonen J, Kauma H, Kervinen K, et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism and blood pressure, left ventricular mass and carotid artery atherosclerosis in a population-based cohort. J Intern Med 2002; 251(2): 102-10.
[82]
Niu WQ, Qi Y, Zhang LT, et al. Endothelial nitric oxide synthase genetic variation and essential hypertension risk in Han Chinese: the Fangshan study. J Hum Hypertens 2009; 23(2): 136-9.
[83]
Hoffmann IS, Tavares-Mordwinkin R, Castejon AM, Alfieri AB, Cubeddu LX. Endothelial nitric oxide synthase polymorphism, nitric oxide production, salt sensitivity and cardiovascular risk factors in Hispanics. J Hum Hypertens 2005; 19(3): 233-40.
[84]
Czarnecka D, Kawecka-Jaszcz K, Stolarz K, Olszanecka A, Kieć-Wilk B, Dembińska-Kieć A. Genetic factors in hypertension. Angiotensin-converting enzyme polymorphism. Kardiol Pol 2004; 61(7): 1-10.
[85]
Castellano M, Glorioso N, Cusi D, et al. Genetic polymorphism of the renin-angiotensin-aldosterone system and arterial hypertension in the Italian population: the GENIPER Project. J Hypertens 2003; 21(10): 1853-60.
[86]
Pontremoli R, Ravera M, Viazzi F, et al. Genetic polymorphism of the renin-angiotensin system and organ damage in essential hypertension. Kidney Int 2000; 57(2): 561-9.
[87]
Milionis HJ, Kostapanos MS, Vakalis K, et al. Impact of renin-angiotensin-aldosterone system genes on the treatment response of patients with hypertension and metabolic syndrome. J Renin Angiotensin Aldosterone Syst 2007; 8(4): 181-9.
[88]
Bengtsson K, Melander O, Orho-Melander M, et al. Polymorphism in the β(1)-adrenergic receptor gene and hypertension. Circulation 2001; 104(2): 187-90.
[89]
Pruijm M, Bochud M, Burnier M. Génétique et hypertension artérielle: qu’avons nous-appris? Rev Med Suisse 2009; 216: 1763-4.
[90]
Takaoka M. NOS gene polymorphism. Nihon Rinsho 2004; 62(1): 103-9.
[91]
Ilhan N, Kucuksu M, Kaman D, Ilhan N, Ozbay Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch Med Res 2008; 39(1): 125-30.
[92]
Gjesing AP, Andersen G, Albrechtsen A, et al. Studies of associations between the Arg389Gly polymorphism of the beta1-adrenergic receptor gene (ADRB1) and hypertension and obesity in 7677 Danish white subjects. Diabet Med 2007; 24(4): 392-7.
[93]
Hernández Ortega E, Medina Fernández-Aceituno A, Rodríguez Esparragón FJ, et al. The involvement of the renin-angiotensin system gene polymorphisms in coronary heart disease. Rev Esp Cardiol 2002; 55(2): 92-9.
[94]
Andrikopoulos GK, Richter DJ, Needham EW, et al. The paradoxical association of common polymorphisms of the renin-angiotensin system genes with risk of myocardial infarction. Eur J Cardiovasc Prev Rehabil 2004; 11(6): 477-83.
[95]
Xin Y, Song X, Xue H, et al. A common variant of the eNOS gene (E298D) is an independent risk factor for left ventricular hypertrophy in human essential hypertension. Clin Sci (Lond) 2009; 117(2): 67-73.
[96]
Penesova A, Cizmarova E, Kvetnansky R, Koska J, Sedlakova B, Krizanova O. Insertion/deletion polymorphism on ACE gene is associated with endothelial dysfunction in young patients with hypertension. Horm Metab Res 2006; 38(9): 592-7.
[97]
Marques G, Krieger JE, Casarini DE. Angiotensin-converting enzyme: A possible genetic marker of hypertension. Hypertension 2002; 20(4): 263.
[98]
Agerholm-Larsen B, Nordestgaard BG, Tybiarg-Hansen A. ACE gene polymorphism in cardiovascular disease: metaanalysis of small and large studies in whites / B. Agerholm-Larsen. Arterioscler Thromb Vasc Biol 2000; 20: 484-92.
[99]
Celik O, Yesilada E, Hascalik S, et al. Angiotensin-converting enzyme gene polymorphism and risk of insulin resistance in PCOS. Reprod Biomed Online 2010; 20(4): 492-8.
[100]
Gomez-Angelats E, de la Sierra A, Enjuto M, et al. Lack of association between ACE gene polymorphism and left ventricular hypertrophy in essential hypertension. J Hum Hypertens 2000; 14(1): 47-9.
[101]
Conen D, Cheng S, Steiner LL, Buring JE, Ridker PM, Zee RY. Association of 77 polymorphisms in 52 candidate genes with blood pressure progression and incident hypertension: the Women’s Genome Health Study. J Hypertens 2009; 27(3): 476-83.
[102]
Pan YH, Wang M, Huang YM, et al. ACE Gene I/D polymorphism and obesity in 1,574 patients with type 2 diabetes mellitus. Dis Markers 2016; 20167420540
[103]
Bozec E, Fassot C, Tropeano AI, et al. Angiotensinogen gene M235T polymorphism and reduction in wall thickness in response to antihypertensive treatment. Clin Sci (Lond) 2003; 105(5): 637-44.
[104]
Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens 2010; 28(1): 65-75.
[105]
Mondry A, Loh M, Liu P, Zhu AL, Nagel M. Polymorphisms of the insertion / deletion ACE and M235T AGT genes and hypertension: surprising new findings and meta-analysis of data. BMC Nephrol 2005; 6(1): 1.
[106]
Martynovich TV, Akimova NS, Fedotov Je. i dr. Analiz geneticheskih faktorov u bol'nyh hronicheskoj serdechnoj nedostatochnost'ju. Mezhdunar med zhurn 2014. 1: 21-9. [Article in Russian]
[107]
Pan YH, Huang YM, Qiao YC, et al. Family history and renin-angiotensin system gene polymorphisms in Chinese patients with type 2 diabetes mellitus. Medicine (Baltimore) 2017; 96(51)e9148
[108]
Qiao YC, Wang M, Pan YH, et al. The relationship between ACE/AGT gene polymorphisms and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes. J Renin Angiotensin Aldosterone Syst 2018; 19(1)1470320317752955
[109]
Wang X, Zhu H, Dong Y, Treiber FA, Snieder H. Effects of angiotensinogen and angiotensin II type I receptor genes on blood pressure and left ventricular mass trajectories in multiethnic youth. Twin Res Hum Genet 2006; 9(3): 393-402.
[110]
Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF. Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens 2001; 10(2): 247-55.
[111]
Kalina A, Alwazir F, Volf P, et al. Relationship between diastolic function by TDI and angiotensin converting enzyme I/D, angiotensin II type 1 receptor A1166C and endothelial nitric oxide synthase G894T gene polymorphisms in hypertension. J Hypertens 2007; 25(2): 17-27.
[112]
Abdollahi MR, Lewis RM, Gaunt TR, et al. Quantitated transcript haplotypes (QTH) of AGTR1, reduced abundance of mRNA haplotypes containing 1166C (rs5186:A>C), and relevance to metabolic syndrome traits. Hum Mutat 2007; 28(4): 365-73.
[113]
Yasovanthi J, Sharath A, Jyothy A. Angiotensin II type 1 receptor gene polymorphism in myocardial infarction patients. J Renin Angiotensin Aldosterone Syst 2009; 10(3): 174-8.
[114]
Palatini P, Ceolotto G, Dorigatti F, et al. Angiotensin II type 1 receptor A1166C gene polymorphism predict development of metabolic syndrome. J Hypertens 2007; 25: 188-97.
[115]
Barnes KM, Miner JL. Role of resistin in insulin sensitivity in rodents and humans. Curr Protein Pept Sci 2009; 10(1): 96-107.
[116]
Araújo MA, Menezes BS, Lourenço C, Cordeiro ER, Gatti RR, Goulart LR. The A1166C polymorphism of the angiotensin II type- 1 receptor in acute myocardial infarction. Arq Bras Cardiol 2004. 83(5): 409-413, 404-408.
[117]
Malendowicz SL, Jorde UP, Ennezat PV, et al. The 1166A/C Polymorphism of the Angiotensin II Type 1 Receptor Gene does not Correlate with the Blood Pressure Response to Angiotensin II in Patients with CHF. J Clin Basic Cardiol 2001; 4: 75-7.
[118]
Zhu S, Meng QH. Association of angiotensin II type 1 receptor gene polymorphism with carotid atherosclerosis. Clin Chem Lab Med 2006; 44(3): 282-4.
[119]
Lehtonen J, Paukku K, Daviet L, Kontula K. Angiotensin II type 1 receptor 1166 polymorphism A to C Increases mRNA stability and steady-state levels. Circulation 2006; 114(II): 190.
[120]
Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994; 24(1): 63-9.
[121]
Shalimova A. Heart and vascular remodeling in essential hypertension and type 2 diabetes is dependent on genetic polymorphisms. Vessel Plus 2017; 1: 84-90.
[122]
Das S, Purkayastha S, Roy H, Sinha A, Choudhury Y. Polymorphisms in DNA repair genes increase the risk for type 2 diabetes mellitus and hypertension. Biomol Concepts 2018; 9(1): 80-93.
[123]
Owusu D, Pan Y, Xie C, Harirforoosh S, Wang KS. Polymorphisms in PDLIM5 gene are associated with alcohol dependence, type 2 diabetes, and hypertension. J Psychiatr Res 2017; 84: 27-34.
[124]
Cid-Soto MA, Martínez-Hernández A, García-Ortíz H, et al. Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene 2018; 679: 160-71.
[125]
Devang N, Satyamoorthy K, Rai PS, et al. Association of HSD11B1 gene polymorphisms with type 2 diabetes and metabolic syndrome in South Indian population. Diabetes Res Clin Pract 2017; 131: 142-8.
[126]
Monroy-Muñoz IE, Angeles-Martinez J, Posadas-Sánchez R, et al. PLA2G2A polymorphisms are associated with metabolic syndrome and type 2 diabetes mellitus. Results from the genetics of atherosclerotic disease Mexican study. Immunobiology 2017; 222(10): 967-72.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy