Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Physicochemical Properties and Photochemical Reactions in Organic Crystals

Author(s): Elisa Leyva*, Denisse de Loera, Claudia G. Espinosa-González and Saúl Noriega

Volume 23, Issue 3, 2019

Page: [215 - 255] Pages: 41

DOI: 10.2174/1385272822666190313152105

Price: $65

Abstract

Background: Molecular organic photochemistry is concerned with the description of physical and chemical processes generated upon the absorption of photons by organic molecules. Recently, it has become an important part of many areas of science: chemistry, biology, biochemistry, medicine, biophysics, material science, analytical chemistry, among others. Many synthetic chemists are using photochemical reactions in crystals to generate different types of organic compounds since this methodology represents a green chemistry approach.

Objective & Method: Chemical reactions in crystals are quite different from reactions in solution. The range of organic solid state reactions and the degree of control which could be achieved under these conditions are quite wider and subtle. Therefore, for a large number of molecular crystals, the photochemical outcome is not the expected product based on topochemical principles. To explain these experimental results, several physicochemical factors in crystal structure have been proposed such as defects, reaction cavity, dynamic preformation or photoinduced lattice instability and steric compression control. In addition, several crystal engineering strategies have been developed to bring molecules into adequate orientations with reactive groups in good proximity to synthesize complex molecules that in many cases are not available by conventional methods. Some strategies involve structural modifications like intramolecular substitution with different functional groups to modify intermolecular interactions. Other strategies involve chemical techniques such as mixed crystal formation, charge transfer complexes, ionic and organometallic interactions. Furthermore, some examples of the single crystal to single crystal transformations have also been developed showing an elegant method to achieve regio and stereoselectivity in a photochemical reaction.

Conclusion: The several examples given in this review paper have shown the wide scope of photochemical reactions in organic molecular crystals. There are several advantages of carrying photochemical reaction in the solid state. Production of materials unobtainable by the traditional solution phase reactions, improved specificity, reduction of impurities, and enhancement in the yields by the reduction of side reactions. These advantages and the multidisciplinary nature of solid-state photochemistry make this discipline quite likely to develop a lot in the future.

Keywords: Photochemistry, solid state, organic crystals, crystalline structure, crystal engineering, physicochemical properties.

Next »
Graphical Abstract
[1]
Klan, P.; Wirz, J. Photochemistry of Organic Compounds: From Concepts to Practice, 3rd ed; Wiley: United Kingdom, 2010.
[2]
Turro, N.J. Modern Molecular Photochemistry, 1st ed; University Science Books: United States of America, 1991.
[3]
Horspool; W.; Lenci, F. CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed; CRC Press: Boca Raton, 2003.
[4]
Turro, N.J. Ramamurthy; V.; Scaiano, J.C. Modern Molecular Photochemistry of Organic Molecules, 1st ed; University Science Books: United States of America, 2010.
[5]
Ramamurthy, V.; Schanze, K.S. Organic Photochemistry and Photophysics, 1st ed; CRC Press: Boca Raton, 2005.
[6]
Ramamurthy, V.; Schanze, K.S. Photochemistry of Organic Molecules in Isotropic and Anisotropic Media, 1st ed; CRC Press: Boca Raton, 2003.
[7]
Ramamurthy, V.; Schanze, K.S. Organic, Physical, and Materials Photochemistry, 1st ed; CRC Press: Boca Raton, 2000.
[8]
García-Garibay, M.A. Advances at the frontiers of photochemical sciences. J. Am. Chem. Soc., 2012, 134(20), 8289-8292.
[9]
Klessinger, M.; Michl, J. Excited States and Photochemistry of Organic Molecules, 1st ed; Wiley-VCH: New York, 1995.
[10]
Michl, J.; Bonacic-Koutecky, V. Electronic Aspects of Organic Photochemistry, 1st ed; John Wiley & Sons, Inc.: New York, 1990.
[11]
Olivucci, M. Theoretical and Computational Chemistry; 1st es.; Elsevier: Amsterdam, 2005.
[12]
Kutateladze, A.G. Computational Methods in Photochemistry, 1st ed; CRC Press: Boca Raton, 2005.
[13]
Ramamurthy, V.; Schanze, K.S. Understanding and Manipulating Excited-State Processes, 1st ed; CRC Press: Boca Raton, 2001.
[14]
Ashfold, M.N.R.; King, G.A.; Murdock, D.; Nix, M.G.D.; Oliver, T.A.A.; Sage, A.G. pi sigma* excited states in molecular photochemistry. Phys. Chem. Chem. Phys., 2010, 12(6), 1218-1238.
[15]
Campos, L.M.; García-Garibay, M.A. Reactive intermediates in crystals: Form and function In: Reviews of Reactive Intermediate Chemistry; Platz, M.S.; Moss, R.; Jones, M., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2007, Vol. 1, pp. 271-331.
[16]
Kuzmanich, G.; Simoncelli, S.; Gard, M.N.; Spanig, F.; Henderson, B.L.; Gudi, D.M.; García-Garibay, M.A. excited state kinetics in crystalline solids: Self-Quenching in Nanocrystals of 4,4 '-Disubstituted Benzophenone Triplets occurs by a reductive quenching mechanism. J. Am. Chem. Soc., 2011, 133(43), 17296-17306.
[17]
García-Garibay, M.A. The entropic enlightenment of organic photochemistry: Strategic modifications of intrinsic decay pathways using an information-based approach. Photochem. Photobiol. Sci., 2010, 9(12), 1574-1588.
[18]
Griesbeck, A.G.; Mattay, J. Synthetic Organic Photochemistry, 1st ed; CRC Press: Boca Raton, 2004.
[19]
Mattay, J.G.A. Photochemical Key Steps in Organic Synthesis, 1st ed; VCH: Weinheim, 1994.
[20]
Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev., 2008, 108(3), 1052-1103.
[21]
Leibovitch, M.; Olovsson, G.; Scheffer, J.R.; Trotter, J. Absolute configuration correlation studies in solid state organic photochemistry. Pure Appl. Chem., 1997, 69(4), 815-823.
[22]
Natarajan, A.; Ng, D.; Yang, Z.; García-Garibay, M.A. Parallel syntheses of (+)- and (-)-alpha-cuparenone by radical combination in crystalline solids. Angew. Chem., 2007, 46(34), 6485-6487.
[23]
Shiraki, S.; Natarajan, A.; García-Garibay, M.A. The synthesis and stereospecific solid-state photodecarbonylation of hexasubstituted meso- and d,l-ketones. Photochem. Photobiol. Sci., 2011, 10(9), 1480-1487.
[24]
Kaupp, G. Solid-state photochemistry: New approaches based on new mechanistic insights. Int. J. Photoenergy, 2001, 3(8), 55-62.
[25]
Toda, F. Thermal and photochemical reactions in the solid state. Top. Curr. Chem., 2005, 254, 1-40.
[26]
Braga, D.; D’Addario, D.; Giaffreda, S.L.; Maini, L.; Polito, M.; Grepioni, F. Intra-solid and Inter-Solid reactions of molecular crystals: A green Route to crystal engineering. Top. Curr. Chem., 2005, 254, 71-94.
[27]
Kaupp, G. Organic Solid-State reactions with 100% Yield. Top. Curr. Chem., 2005, 254, 71-94.
[28]
Komatsu, K. The Mechanochemical solid-state reaction of fullerenes. Top. Curr. Chem., 2005, 254, 185-206.
[29]
Sakamoto, M. Photochemical aspects of thiocarbonyl compounds in the Solid-State. Top. Curr. Chem., 2005, 254, 207-232.
[30]
Scheffer, J.R.; Xia, W.J. Asymmetric Induction in Organic Photochemistry via the Solid-State Ionic Chiral Auxiliary Approach. Top. Curr. Chem., 2005, 254, 233-262.
[31]
Matsumoto, A. Reactions of 1,3-Diene compounds in the crystalline state. Top. Curr. Chem., 2005, 254, 263-305.
[32]
Ramamurthy, V.; Mondal, B. Supramolecular photochemistry concepts highlighted with select examples. J. Photochem. Photobiol. C., 2015, 23, 68-102.
[33]
Ramamurthy, V. Organic photochemistry in organized media. Tetrahedron, 1986, 42(21), 5753-5839.
[34]
Ramamurthy, V.; Eaton, D.F. Photochemistry and photophysics within cyclodextrin cavities. Acc. Chem. Res., 1988, 21(8), 300-306.
[35]
Ramamurthy, V. Photochemistry in organized and constrained media, 1st ed; VCH: New York, 1991.
[36]
Ramamurthy, V. Photochemical and photophysical studies within zeolites. Chimia, 1992, 46(9), 359-376.
[37]
Ramamurthy, V.; Eaton, D.F.; Caspar, J.V. Photochemical and photophysical studies of organic-molecules included within zeolites. Acc. Chem. Res., 1992, 25(7), 299-307.
[38]
Weiss, R.G.; Ramamurthy, V.; Hammond, G.S. Photochemistry in organized and confining media - A model. Acc. Chem. Res., 1993, 26(10), 530-536.
[39]
Ramamurthy, V.; Weiss, R.G.; Hammond, G.S. A Model for the Influence of organized media on photochemical reactions. Adv. Photochem., 1993, 18, 67-234.
[40]
Ramamurthy, V.; Turro, N.J. Photochemistry of organic molecules within zeolites - Role of cations. J. Incl. Phenom. Macrocycl. Chem., 1995, 21(1-4), 239-282.
[41]
Ramamurthy, V. Excited State Chemistry of Organic Molecules Included within Zeolites In:Surface Photochemistry; Anpo, M., Ed.; Wiley: Chichester, 1996, Vol. 1, pp. 65-115.
[42]
Ramamurthy, V.; García-Garibay, M.A. Zeolites as Supramolecular Hosts for Photochemical Transformations In:Comprehensive Supramolecular Chemistry; Bein, T., Ed.; Pergamon Press: Oxford, 1996, Vol. 7, pp. 693-770.
[43]
Ramamurthy, V.; Lakshminarasimhan, P.; Grey, C.P.; Johnston, L.J. Energy transfer, proton transfer and electron transfer reactions within zeolites. Chem. Commun., 1998, 22, 2411-2424.
[44]
Ramamurthy, V.; Robbins, R.J.; K.J., Thomas K.T.; Lakshminarasimhan, P.H. Zeolite as a Medium for Photochemical Reactions In:Organized Molecular Assemblies in the Solid State; Whitsell, J.K., Ed.; John Wiley: Chichester, 1999, Vol. 2, pp. 63-140.
[45]
Joy, A.; Ramamurthy, V. Chiral photochemistry within zeolites. Chem. Eur. J., 2000, 6(8), 1287-1293.
[46]
Sivaguru, J.; Shailaja, J.; Uppili, S.; Ponchot, K.; Joy, A.; Arunkumar, N.; Ramamurthy, V. Achieving Enantio and Diastereoselectivities In:Photoreactions through the use of a Confined Space In: Organic Solid-State Reactions; Toda, F., Ed.; Kluwer Academic Press: Netherlands, 2002, Vol. 1, pp. 159-188.
[47]
Ramamurthy, V.; Shailaja, J.; Kaanumalle, L.S.; Sunoj, R.B.; Chandrasekhar, J. Controlling chemistry with cations: photochemistry within zeolites. Chem. Commun., 2003, 16, 1987-1999.
[48]
Sivaguru, J.; Natarajan, A.; Kaanumalle, L.S.; Shailaja, J.; Uppili, S.; Joy, A.; Ramamurthy, V. Asymmetric photoreactions within zeolites: Role of confinement and alkali metal ions. Acc. Chem. Res., 2003, 36(7), 509-521.
[49]
Ramamurthy, V.; Sivaguru, J.; Arunkumar, N.; Kaanumalle, L.S.; Karthikeyan, S.; Shailaja, J.; Joy, A. Chiral photochemistry within zeolites In: Chiral Photochemistry; Inoue, Y.; Ramamurthy, V., Eds.; CRC Press: Boca Raton, 2004, Vol. 11, pp. 563-631.
[50]
Natarajan, A.; Ramamurthy, V. Solvent-Free Photosynthesis of Cyclobutanes: Photodimerization of Crystalline Olefins In:The Chemistry of Cyclobutanes; Rappoport, Z.; Liebman, J.F., Eds.; John Wiley & Sons Ltd.: Chichester, 2005, Vol. 1, pp. 807-872.
[51]
Ramamurthy, V.; Parthasarathy, A. Chemistry in restricted spaces: Select photodimerizations in cages, cavities, and capsules. Isr. J. Chem., 2011, 51(7), 817-829.
[52]
Ramamurthy, V.; Sivaguru, J. Controlling Photoreactions Through noncovelent interactions within zeolite nanocages In:Supramolecular Photochemistry: Controlling Photochemical Processes; Ramamurthy, V.; Inoue, Y., Eds.; John Wiley & Sons, Inc.: Hoboken, 2011, Vol. 1, pp. 389-442.
[53]
Ramamurthy, V.; Gupta, S. Supramolecular photochemistry: From molecular crystals to water-soluble capsules. Chem. Soc. Rev., 2015, 44(1), 119-135.
[54]
Ramamurthy, V.; Jockusch, S.; Pore, M. Supramolecular photochemistry in solution and on surfaces: Encapsulation and dynamics of guest molecules and communication between encapsulated and free molecules. Langmuir, 2015, 31(20), 5554-5570.
[55]
Ramamurthy, V. Photochemistry within a Water-Soluble organic capsule. Acc. Chem. Res., 2015, 48(11), 2904-2917.
[56]
Ramamurthy, V.; Sivaguru, J. Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem. Rev., 2016, 116(17), 9914-9993.
[57]
Mori, T.; Fukuhara, G.; Wada, T. Yoshihisa Inoue-A researcher’s quest for photochirogenesis. J. Photochem. Photobiol., 2016, 331, 2-7.
[58]
Noh, T.H.; Jung, O.S. Recent advances in various metal-organic channels for photochemistry beyond confined spaces. Acc. Chem. Res., 2016, 49(9), 1835-1843.
[59]
Liebermann, C. Ueber die γ - und δ -Isatropasäure. Ber. Chem, 1889, 22, 124-130.
[60]
Ramamurthy, V.; Venkatesan, K. Photochemical reactions of organic crystals. Chem. Rev., 1987, 87(2), 433-481.
[61]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[62]
Biradha, K.; Santra, R. Crystal engineering of topochemical solid state reactions. Chem. Soc. Rev., 2013, 42(3), 950-967.
[63]
R., S.J.; García-Garibay, M.A.; Nalamasu, O. Influence of the molecular crystalline environment on organic photorearrangements. Org. Photochem, 1987, 8, 249-347.
[64]
Hasegawa, M. Photodimerization and photopolymerization of diolefin crystals. Adv. Phys. Org. Chem., 1995, 30, 117-171.
[65]
Gavezzotti, A.; Simonetta, M. Crystal chemistry in organic solids. Chem. Rev., 1982, 82(1), 1-13.
[66]
Desiraju, G.R. Reactivity of organic solids - Retrospect and prospect. Solid State Ion., 1997, 101, 839-842.
[67]
Keating, A.E.; García-Garibay, M.A. Photochemical solid-to-solid reactions In:Organic and inorganic photochemistry; Ramamurthy, V.; Schanze, K.S., Eds.; Marcel Dekker, Inc.: New York, 1998, Vol. 2, pp. 195-248.
[68]
Desiraju, G. Organic Solid State Chemistry, 1st ed; Elsevier: Amsterdam, 1987.
[69]
Sakamoto, M. Absolute asymmetric synthesis from achiral molecules in the chiral crystalline environment. Chem. Eur. J., 1997, 3(5), 684-689.
[70]
Bonner, W.A. Origins of chiral homogeneity in nature. Top. Stereochem., 1988, 18, 1-98.
[71]
Scheffer, J.R.; García-Garibay, M.A. Absolute asymmetric synthesis via photochemical reactions of chiral crystals In:Photochemistry on Solid Surfaces; Matsuura, T.; Anpo, M., Eds.; Elsevier Science: The Netherlands, 1989, Vol. 47, pp. 501-525.
[72]
Shin, S.H.; Cizmeciyan, D.; Keating, A.E.; Khan, S.I.; García-Garibay, M.A. Control of carbene reactivity by crystals. A highly selective 1,2-H shift in the solid-to-solid reaction of 1-(4′-biphenylyl)-2-phenyldiazopropane to (Z)-1-(4′-biphenylyl)-2-phenylpropene. J. Am. Chem. Soc., 1997, 119(8), 1859-1868.
[73]
Shin, S.H.; Keating, A.E.; García-Garibay, M.A. Transforming a nonselective carbene rearrangement into a highly selective process by using crystalline media. J. Am. Chem. Soc., 1996, 118(32), 7626-7627.
[74]
Mahe, L.; Izuoka, A.; Sugawara, T. How crystalline environment can provide outstanding stability and chemistry for arylnitrenes. J. Am. Chem. Soc., 1992, 114(20), 7904-7906.
[75]
Choi, T.; Peterfy, K.; Khan, S.I.; García-Garibay, M.A. Molecular control of solid-state reactivity and biradical formation from crystalline ketones. J. Am. Chem. Soc., 1996, 118(49), 12477-12478.
[76]
Tomioka, H.; Watanabe, T.; Hirai, K.; Furukawa, K.; Takui, T.; Itoh, K. 2,2′,4,4′,6,6′-hexabromodiphenylcarbene - The first stable triplet carbene in fluid solution at low-temperature and in the crystal-state at room-temperature. J. Am. Chem. Soc., 1995, 117(23), 6376-6377.
[77]
Cohen, M.D.; Schmidt, G.M.J. TOPOCHEMISTRY. 1. Survey. J. Chem. Soc., 1964, 1996-2000.
[78]
Cohen, M.D.; Schmidt, G.M.J.; Sonntag, F.I. TOPOCHEMISTRY. 2. Photochemistry of trans-cinnamic acids. J. Chem. Soc., 1964, 2000-2013.
[79]
Schmidt, G.M.J. TOPOCHEMISTRY. 3. Crystal chemistry of some trans-cinnamic acids. J. Chem. Soc., 1964, 2014-2021.
[80]
Schmidt, G.M.J. Solid State Photochemistry (Monographs in modern chemistry), 1st ed; Wiley-VCH Verlag GmbH: Weinheim, 1976.
[81]
Gnanaguru, K.; Ramasubbu, N.; Venkatesan, K.; Ramamurthy, V. A study on the photochemical dimerization of coumarins in the solid-state. J. Org. Chem., 1985, 50(13), 2337-2346.
[82]
Gnanaguru, K.; Murthy, G.S.; Venkatesan, K.; Ramamurthy, V. A study in crystal engineering - Solid-state photodimerization of chloro-coumarin and methyl-coumarin. Chem. Phys. Lett., 1984, 109(3), 255-258.
[83]
Green, B.S.; Lahav, M.; Schmidt, G.M.J. TOPOCHEMISTRY. 31. Formation of cyclo-octa-1,5-cis,cis-dienes from 1,4-disubstituted s-trans-butadienes in solid state - Contribution to problem of c4-versus c8-cyclodimerisation. J. Chem. Soc. B, 1971, (8), 1552-1564.
[84]
Lahav, M.; Schmidt, G.M.J. TOPOCHEMISTRY. 18. Solid-state photochemistry of some heterocyclic analogues of trans-cinnamic acid. J. Chem. Soc. B, 1967, (3), 239-243.
[85]
Ariel, S.; Askari, S.; Scheffer, J.R.; Trotter, J.; Walsh, L. Steric compression control of photochemical-reactions in the solid-state. J. Am. Chem. Soc., 1984, 106(19), 5726-5728.
[86]
Gnanaguru, K.; Ramasubbu, N.; Venkatesan, K.; Ramamurthy, V. Topochemical solid-state photodimerization of non-ideally oriented monomers - 7-chlorocoumarin and 7-methoxycoumarin. J. Photochem., 1984, 27(3), 355-362.
[87]
Stevens, B.; Sharpe, R.R.; Dickinson, T. Photodimerization in crystalline 9-cyanoanthracene. Nature, 1964, 204(496), 876-877.
[88]
Tapilin, V.M.; Bulgakov, N.N.; Chupakhin, A.P.; Politov, A.A.; Druganov, A.G. On mechanochemical dimerization of anthracene. Different possible reaction pathways. J. Struct. Chem., 2010, 51(4), 635-641.
[89]
Thomas, J.M.; Morsi, S.E.; Desvergne, J.P. Topochemical phenomena in organic solid-state chemistry. Adv. Phys. Org. Chem., 1977, 63-151.
[90]
Cohen, M.D.; Ludmer, Z.; Thomas, J.M.; Williams, J.O. Role of structural imperfections in photodimerization of 9-cyanoanthracene. Proc. R. Soc. Lond. A, 1971, 324(1559), 459-468.
[91]
Cohen, M.D.; Ludmer, Z.; Thomas, J.M.; Williams, J.O. Dislocations and photodimerization of 9-cyanoanthracene. J. Chem. Soc. D, 1969, 20, 1172-1173.
[92]
Wright, J.W. Molecular crystals, 2nd ed; Cambridge University Press: New York, 1995.
[93]
Bart, J.C.J.; Schmidt, G.M.J. TOPOCHEMISTRY. 32. Crystal structures of 9-methyl-, 9-methoxycarbonyl-, and 9-methoxyanthracene. Isr. J. Chem., 1971, 9(4), 429-448.
[94]
Heller, E.; Schmidt, G.M.J. TOPOCHEMISTRY. 33. Solid-state photochemistry of some anthracene derivatives. Isr. J. Chem., 1971, 9(4), 449-462.
[95]
Craig, D.P.; Ogilvie, J.F.; Reynolds, P.A. Calculated molecular orientational disorder in anthracene-crystals. J. Chem. Soc., Faraday Trans. II, 1976, 72, 1603-1612.
[96]
Jones, W.; Thomas, J.M. Applications of electron-microscopy to organic solid-state chemistry. Prog. Solid State Chem., 1979, 12(2), 101-124.
[97]
Cohen, M.D.; Ron, I.; Schmidt, G.M.J.; Thomas, J.M. Photochemical decoration of dislocations inside crystals of acenaphthylene. Nature, 1969, 224(5215), 167-168.
[98]
Rouhi, A.M. C-C bond formation in organic crystals. Chem. Eng. News, 2003, 81(41), 72-72.
[99]
Yin, S.W.; Li, L.L.; Yang, Y.M.; Reimers, J.R. Challenges for the accurate simulation of anisotropic charge mobilities through organic molecular crystals: The beta Phase of mer-Tris(8-hydroxyquinolinato)aluminum(III) (Alq3) Crystal. J. Phys. Chem. C, 2012, 116(28), 14826-14836.
[100]
Thomas, J.M.; Williams, J.O. Dislocations and the reactivity of organic solids. Prog. Solid State Chem., 1971, 6, 119-154.
[101]
Cohen, M.D. Photochemistry of organic solids. Angew. Chem., 1975, 14(6), 386-393.
[102]
Kaiser, J.; Wegner, G.; Fischer, E.W. Topochemical reactions of monomers with conjugated triple-bonds. 7. Mechanism of transition from monomer to polymer phase during solid-state polymerization. Isr. J. Chem., 1972, 10(2), 157-171.
[103]
Morosoff, N.; Morawetz, H.; Post, B. Polymerization in crystalline state. 7. A crystallographic study of radiation-initiated polymerization in single crystals of vinyl stearate. J. Am. Chem. Soc., 1965, 87(14), 3035-3040.
[104]
Chapiro, A.; Perec, L. Sur la polymerisation radiochimique du methacrylate de lauryle en phases liquide et solide. J. Chim. Phys., 1966, 63(6), 842-844.
[105]
Hardy, G.; Nyitrai, K.; Cser, F.; Cselik, G.; Nagy, I. Investigations in field radiation-induced solid-state polymerization. 24. Polymerization of cetyl vinyl ether. Eur. Polym. J., 1969, 5(1), 133-136.
[106]
Yakhot, V.; Cohen, M.D.; Ludmer, Z. What’s New in Excimers? Adv. Photochem., 1979, 11, 489-523.
[107]
Pierrot, M. Structure and properties of molecular crystals, 1st ed; Elsevier: Amsterdam, 1990.
[108]
Birks, J.B. Photophysics of Aromatic Molecules, 1st ed; Wiley-Interscience: New York, 1970.
[109]
Collins, M.A.; Craig, D.P. A simple-model of photoinduced lattice instability. Chem. Phys., 1981, 54(3), 305-321.
[110]
Robertson, J.M. The measurement of bond lengths in conjugated molecules of carbon centres. Proc. R. Soc. London, Ser A, 1951, 207(1088), 101-110.
[111]
Cohen, M.D.; Ludmer, Z.; Yakhot, V. Fluorescence properties of crystalline anthracenes and their dependence on crystal-structures. Phys. Status Solidi, B, 1975, 67(1), 51-61.
[112]
Cohen, M.D.; Green, B.S. Organic-chemistry in solid-state. Chem. Br., 1973, 9(11), 490-497.
[113]
Ludmer, Z. Spectroscopy and photochemistry of excimer-emitting 9-cyanoanthracene crystal - Importance of multiphonon processes. Chem. Phys., 1977, 26(1), 113-121.
[114]
Craig, D.P.; Sartifan, P. Photochemical dimerisation in crystalline anthracenes. Chem. Commun., 1966, 20, 742-743.
[115]
Craig, D.P.; Mallett, C.P. Dynamic instabilities in excited molecular-crystals - Packing calculations in anthracenic systems. Chem. Phys., 1982, 65(2), 129-142.
[116]
Craig, D.P.; Lindsay, R.N.; Mallett, C.P. Mixed-crystal packing calculations - 9-Methoxyanthracene in host 9-cyanoanthracene. Chem. Phys., 1984, 89(2), 187-197.
[117]
Murthy, G.S.; Arjunan, P.; Venkatesan, K.; Ramamurthy, V. Consequences of lattice relaxability in solid-state photodimerizations. Tetrahedron, 1987, 43(7), 1225-1240.
[118]
Zimmerman, H.E.; Zuraw, M.J. Confinement control in solid-state photo-chemistry. J. Am. Chem. Soc., 1989, 111(6), 2358-2361.
[119]
Zimmerman, H.E.; Zuraw, M.J. Photochemical series. 158. Photochemistry in a box - photochemical-reactions of molecules entrapped in crystal lattices - Mechanistic and exploratory organic-photochemistry. J. Am. Chem. Soc., 1989, 111(20), 7974-7989.
[120]
Kim, J.H.; Matsuoka, M.; Fukunishi, K. Selective topochemical photo-reaction of crystallized 2,3-bis(2-phenylethenyl)-4,5-dicyanopyrazines. Chem. Lett., 1999, (2), 143-144.
[121]
Kaliappan, R.; Maddipatla, M.; Kaanumalle, L.S.; Ramamurthy, V. Crystal engineering principles applied to solution photochemistry: controlling the photodimerization of stilbazolium salts within gamma-cyclodextrin and cucurbit 8 uril in water. Photochem. Photobiol. Sci., 2007, 6(7), 737-740.
[122]
Sarma, J.; Desiraju, G.R. The role of Cl=Cl and C-H=O interactions in the crystal engineering of 4-a short-axis structures. Acc. Chem. Res., 1986, 19(7), 222-228.
[123]
Sinnwell, M.A.; MacGillivray, L.R. Halogen-bond-templated 2+2 photodimerization in the solid State: Directed synthesis and rare self-inclusion of a halogenated product. Angew. Chem., 2016, 55(10), 3477-3480.
[124]
The Cambridge Structural Database. https://www.ccdc.cam.ac.uk/solutions/ csd-system/components/csd/ (Accessed October 17, 2018).
[125]
Elgavi, A.; Green, B.S.; Schmidt, G.M.J. Reactions in chiral crystals - optically-active heterophotodimer formation from chiral single-crystals. J. Am. Chem. Soc., 1973, 95(6), 2058-2059.
[126]
Desiraju, G.R.; Kamala, R.; Kumari, B.H.; Sarma, J. Crystal engineering via non-bonded interactions involving oxygen - x-ray crystal-structures of 3,4-methylenedioxycinnamic acid and 3,4-dimethoxycinnamic acid. J. Chem. Soc., Perkin Trans. 2, 1984, 2, 181-189.
[127]
Williams, D.E.; Hsu, L.Y. Transferability of nonbonded Cl=Cl potential-energy function to crystalline chlorine. Acta Crystallogr. A, 1985, 41, 296-301.
[128]
Leyva, E.; Chang, D.H.S.; Platz, M.S.; Watt, D.S.; Crocker, P.J.; Kawada, K. The photochemistry of iodo, methyl and thiomethyl substituted aryl azides in toluene solution and frozen polycrystals. Photochem. Photobiol., 1991, 54(3), 329-333.
[129]
Matsumoto, A.; Tanaka, T.; Tsubouchi, T.; Tashiro, K.; Saragai, S.; Nakamoto, S. Crystal engineering for topochemical polymerization of muconic esters using halogen-halogen and CH/pi interactions as weak intermolecular interactions. J. Am. Chem. Soc., 2002, 124(30), 8891-8902.
[130]
Cheng, X.M.; Huang, Z.T.; Zheng, Q.Y. Topochemical photodimerization of (E)-3-benzylidene-4-chromanone derivatives from beta-type structures directed by halogen groups. Tetrahedron, 2011, 67(47), 9093-9098.
[131]
Ramasubbu, N.; Gnanaguru, K.; Venkatesan, K.; Ramamurthy, V. Topo-chemical photo-dimerization of 7-acetoxycoumarin - the acetoxy group as a steering agent. Can. J. Chem., 1982, 60(16), 2159-2161.
[132]
Murthy, G.S.; Ramamurthy, V.; Venkatesan, K. Structure of 6-acetoxy-coumarin - topochemical photodimerization and analysis of acetoxy - acetoxy interactions in the solid-state. Acta Crystallogr. C, 1988, 44, 307-311.
[133]
Green, B.S.; Lahav, M.; Rabinovich, D. Asymmetric synthesis via reactions in chiral crystals. Acc. Chem. Res., 1979, 12(6), 191-197.
[134]
Addadi, L.; Lahav, M. Towards the planning and execution of an absolute asymmetric synthesis of chiral dimers and polymers with quantitative enantiomeric yield. Pure Appl. Chem., 1979, 51(6), 1269-1284.
[135]
Rosenfield, R.E.; Parthasarathy, R.; Dunitz, J.D. Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc., 1977, 99(14), 4860-4862.
[136]
Row, T.N.G.; Parthasarathy, R. Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S...S interactions and nonspherical shape of sulfur in crystals. J. Am. Chem. Soc., 1981, 103(2), 477-479.
[137]
Nalini, V.; Desiraju, G.R. The role of nonbonded interactions involving sulfur in the crystal engineering of 4a short axis structures - unusual topochemical reactivity of 4-(4-chlorophenyl)thiazole-2(1h)-thione. J. Chem. Soc. Chem. Commun., 1986, 13, 1030-1032.
[138]
Nalini, V.; Desiraju, G.R. Crystal engineering through nonbonded contacts to sulfur - structure and solid-state photoreactivity of 4-(4′-chloro)-phenyl-delta-4-thiazolene-2-thione. Tetrahedron, 1987, 43(7), 1313-1320.
[139]
Venugopalan, P.; Venkatesan, K. Topochemical double photocyclo-dimerization of bis(butoxycarbonyl)-substituted tetrathiafulvalene in the crystalline state. Bull. Chem. Soc. Jpn., 1990, 63(8), 2368-2371.
[140]
Ogaki, T.; Ohta, E.; Yamamoto, A.; Sato, H.; Mizuno, K.; Ikeda, H. One-pot photochemical synthesis of novel thienobis 1 benzothiophene with an angularly-fused structure that promotes unique intermolecular S . . . S contacts in the crystalline state. Tetrahedron Lett., 2014, 55(30), 4269-4273.
[141]
Feldman, K.S.; Campbell, R.F. Efficient stereocontrolled and regiocontrolled alkene photodimerization through hydrogen-bond enforced preorganization in the solid-state. J. Org. Chem., 1995, 60(7), 1924-1925.
[142]
Grove, R.C.; Malehorn, S.H.; Breen, M.E.; Wheeler, K.A. A photoreactive crystalline quasiracemate. Chem. Commun., 2010, 46(39), 7322-7324.
[143]
Wheeler, K.A.; Wiseman, J.D.; Grove, R.C. Enantiocontrolled solid-state photodimerizations via a chiral sulfonamidecinnamic acid. CrystEngComm, 2011, 13(9), 3134-3137.
[144]
Wheeler, K.A.; Malehorn, S.H.; Egan, A.E. Valine sulfonamidecinnamic acid asymmetric crystal reactions. Chem. Commun., 2012, 48(4), 519-521.
[145]
MacGillivray, L.R.; Reid, J.L.; Ripmeester, J.A. Supramolecular control of reactivity in the solid state using linear molecular templates. J. Am. Chem. Soc., 2000, 122(32), 7817-7818.
[146]
Hamilton, T.D.; Papaefstathiou, G.S.; MacGillivray, L.R. A polyhedral host constructed using a linear template. J. Am. Chem. Soc., 2002, 124(39), 11606-11607.
[147]
Hamilton, T.D.; Bucar, D.K.; MacGillivray, L.R. Coding a coordination-driven self-assembly via a hydrogen bond-directed solid-state synthesis: An unexpected chiral tetrahedral capsule. Chem. Commun., 2007, 16, 1603-1604.
[148]
Gao, X.C.; Friscic, T.; MacGillivray, L.R. Supramolecular construction of molecular ladders in the solid state. Angew. Chem., 2004, 43(2), 232-236.
[149]
Friscic, T.; Macgillivray, L.R. ‘Template-switching’: A supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chem. Commun., 2003, 11, 1306-1307.
[150]
Santra, R.; Biradha, K. Stepwise dimerization of double 2+2 reaction in the co-crystals of 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one and phloroglucinol: a single-crystal to single-crystal transformation. CrystEngComm, 2008, 10(11), 1524-1526.
[151]
Santra, R.; Biradha, K. Solid state double 2+2 photochemical reactions in the co-crystal forms of 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one: Establishing mechanism using single crystal X-ray, UV and H-1 NMR. CrystEngComm, 2011, 13(9), 3246-3257.
[152]
Sharma, C.V.K.; Zaworotko, M.J. X-Ray crystal structure of C6H3(CO2H)(3)-1,3,5 center dot 1.5(4,4′-bipy): A ‘super trimesic acid’ chicken-wire grid. Chem. Commun., 1996, 23, 2655-2656.
[153]
Bhogala, B.R.; Vishweshwar, P.; Nangia, A. Four-fold inclined interpenetrated and three-fold parallel interpenetrated hydrogen bond networks in 1,3,5-cyclohexanetricarboxylic acid hydrate and its molecular complex with 4,4 '-bipyridine. Cryst. Growth Des., 2002, 2(5), 325-328.
[154]
Santra, R.; Biradha, K. Two-Dimensional organic brick-wall layers as hosts for the inclusion and study of aromatics ensembles: Acid-Pyridine and Acid-Carbonyl synthons for multicomponent materials. Cryst. Growth Des., 2009, 9(11), 4969-4978.
[155]
Papaefstathiou, G.S.; Kipp, A.J.; MacGillivray, L.R. Exploiting modularity in template-controlled synthesis: A new linear template to direct reactivity within discrete hydrogen-bonded molecular assemblies in the solid state. Chem. Commun., 2001, 23, 2462-2463.
[156]
Friscic, T.; MacGillivray, L.R. Reversing the code of a template-directed solid-state synthesis: a bipyridine template that directs a single-crystal-to-single-crystal 2+2 photodimerisation of a dicarboxylic acid. Chem. Commun., 2005, 46, 5748-5750.
[157]
Bhogala, B.R.; Captain, B.; Parthasarathy, A.; Ramamurthy, V. Thiourea as a template for photodimerization of azastilbenes. J. Am. Chem. Soc., 2010, 132(38), 13434-13442.
[158]
Perutz, M.F.; Fermi, G.; Abraham, D.J.; Poyart, C.; Bursaux, E. Hemoglobin as a receptor of drugs and peptides - x-ray studies of the stereochemistry of binding. J. Am. Chem. Soc., 1986, 108(5), 1064-1078.
[159]
Muehldorf, A.V.; Vanengen, D.; Warner, J.C.; Hamilton, A.D. Aromatic aromatic interactions in molecular recognition - a family of artificial receptors for thymine that shows both face-to-face and edge-to-face orientations. J. Am. Chem. Soc., 1988, 110(19), 6561-6562.
[160]
Desiraju, G.R. Crystal engineering:The design of organic solids, 1st ed; Elsevier: Amsterdam, 1989.
[161]
Gould, R.O.; Gray, A.M.; Taylor, P.; Walkinshaw, M.D. Crystal environments and geometries of leucine, isoleucine, valine, and phenylalanine provide estimates of minimum nonbonded contact and preferred vanderwaals interaction distances. J. Am. Chem. Soc., 1985, 107(21), 5921-5927.
[162]
Burley, S.K.; Petsko, G.A. Dimerization energetics of benzene and aromatic amino-acid side-chains. J. Am. Chem. Soc., 1986, 108(25), 7995-8001.
[163]
Karlstrom, G.; Linse, P.; Wallqvist, A.; Jonsson, B. Intermolecular potentials for the H2O-C6H6 and the C6H6-C6H6 systems calculated in an abinitio scf ci approximation. J. Am. Chem. Soc., 1983, 105(12), 3777-3782.
[164]
Pawliszyn, J.; Szczesniak, M.M.; Scheiner, S. Interactions between aromatic systems - dimers of benzene and s-tetrazine. J. Phys. Chem., 1984, 88(9), 1726-1730.
[165]
Janda, K.C.; Hemminger, J.C.; Winn, J.S.; Novick, S.E.; Harris, S.J.; Klemperer, W. Benzene dimer - polar molecule. J. Chem. Phys., 1975, 63(4), 1419-1421.
[166]
Steed, J.M.; Dixon, T.A.; Klemperer, W. Molecular-beam studies of benzene dimer, hexafluorobenzene dimer, and benzene-hexafluorobenzene. J. Chem. Phys., 1979, 70(11), 4940-4946.
[167]
Sarma, J.; Desiraju, G.R.C-H. O interactions and the adoption of 4-a short-axis crystal-structures by oxygenated aromatic-compounds. J. Chem. Soc., Perkin Trans. 2, 1987, (9), 1195-1202.
[168]
Kishan, K.V.R.; Desiraju, G.R. Crystal engineering a solid-state diels-alder reaction. J. Org. Chem., 1987, 52(20), 4640-4641.
[169]
Desiraju, G.R.; Kishan, K.V.R. Crystal-chemistry of some (alkoxyphenyl)propiolic acids - the role of oxygen and hydrogen-atoms in determining stack structures of planar aromatic-compounds. J. Am. Chem. Soc., 1989, 111(13), 4838-4843.
[170]
Kohmoto, S.; Kobayashi, T.; Nishio, T.; Iida, I.; Kishikawa, K.; Yamamoto, M.; Yamada, K. Inter- and intra-molecular selectivity in the cyclisation of N-cinnamoyl-1-naphthamides in solid-state photochemistry and peri selectivity in their photocyclisation in solution. J. Chem. Soc., Perkin Trans. 1, 1996, 6, 529-535.
[171]
Meng, F.X.; Min, J.; Wang, C.Y.; Wang, L.Y. Preparation of cocrystals of 1,4-Diimidazolylbutadiene with a Template Molecule and Dependence of the Cocrystal photochemical products on wavelength. Eur. J. Org. Chem., 2016, 12, 2220-2225.
[172]
Sekiya, R.; Kuroda, R. Controlling stereoselectivity of solid-state photoreactions by co-crystal formation. Chem. Commun., 2011, 47(36), 10097-10099.
[173]
Duncan, A.J.E.; Dudovitz, R.L.; Dudovitz, S.J.; Stojakovic, J.; Mariappan, S.V.S.; MacGillivray, L.R. Quantitative and regiocontrolled cross-photocycloaddition of the anticancer drug 5-fluorouracil achieved in a cocrystal. Chem. Commun., 2016, 52(89), 13109-13111.
[174]
Rupasinghe, T.P.; Hutchins, K.M.; Bandaranayake, B.S.; Ghorai, S.; Karunatilake, C.; Bucar, D.K.; Swenson, D.C.; Arnold, M.A.; MacGillivray, L.R.; Tivanski, A.V. Mechanical Properties of a Series of Macro- and Nanodimensional Organic Cocrystals Correlate with Atomic Polarizability. J. Am. Chem. Soc., 2015, 137(40), 12768-12771.
[175]
Hung, J.D.; Schmidt, G.M.J.; Lahav, M.; Luwisch, M. TOPOCHEMISTRY. 35. Formation of mixed dimers from solid-solutions of trans-cinnamic acids and trans-cinnamides. Isr. J. Chem., 1972, 10(2), 585-599.
[176]
Theocharis, C.R.; Desiraju, G.R.; Jones, W. The use of mixed-crystals for engineering organic solid-state reactions - application to benzylbenzylidenecyclopentanones. J. Am. Chem. Soc., 1984, 106(12), 3606-3609.
[177]
Jones, W.; Theocharis, C.R.; Thomas, J.M.; Desiraju, G.R. Structural mimicry and the photoreactivity of organic-solids. J. Chem. Soc. Chem. Commun., 1983, 23, 1443-1444.
[178]
Theocharis, C.R.; Jones, W.; Motevalli, M.; Hursthouse, M.B. Crystal and molecular-structures of 2-(p-methylbenzyl)- and 2-(p-chlorobenzyl)-5-(p-bromobenzylidene)cyclopentanone - influence of chloro and methyl substitution on solid-state reactivity. J. Crystallogr. Spectrosc. Res, 1982, 12(4), 377-389.
[179]
Cookson, R.C.; Frankel, J.J.; Hudec, J. Structures of photodimers of dimethyl-p-benzoquinones. Chem. Commun., 1965, 1, 16-16.
[180]
Cookson, R.C.; Hudec, J.; Cox, D.A. Photodimers of alkylbenzoguinones. J. Chem. Soc., 1961, (OCT), 4499-4506.
[181]
Rabinovich, D.; Schmidt, G.M.J. TOPOCHEMISTRY. 5. Crystal structure of 2,5-dimethyl-1,4-benzoquinone. J. Chem. Soc., 1964, (JUN), 2030-2040.
[182]
Rabinovich, D.; Schmidt, G.M.J.; Ubell, E. TOPOCHEMISTRY. 13. Crystal structure of 2,3,5,6-tetramithyl-1,4-benzoquinone (duroquinone). J. Chem. Soc. B, 1967, (2), 131-139.
[183]
Rabinovich, D.; Schmidt, G.M.J. TOPOCHEMISTRY. 15. Solid-state photochemistry of p-quinones. J. Chem. Soc. B, 1967, (2), 144-149.
[184]
Pedregal, C.; Ezquerra, J.; Escribano, A.; Carreno, M.C.; Ruano, J.L.G. Highly chemoselective reduction of n-boc protected lactams. Tetrahedron Lett., 1994, 35(13), 2053-2056.
[185]
Koshima, H.; Chisaka, Y.; Wang, Y.; Yao, X.K.; Wang, H.G.; Wang, R.J.; Maeda, A.; Matsuura, T. Solid-state photochemistry of the mixed-crystals between benzoquinones and polymethylbenzenes. Tetrahedron, 1994, 50(48), 13617-13630.
[186]
Brown, J.F.; White, D.M. Stereospecific polymerization in thiourea canal complexes. J. Am. Chem. Soc., 1960, 82(21), 5671-5678.
[187]
Kaftory, M.; Tanaka, K.; Toda, F. Reactions in the solid-state. 2. the crystal-structures of the inclusion complexes of 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol with benzylideneacetophenone and 2,5-diphenylhydroquinone with dibenzylideneacetone. J. Org. Chem., 1985, 50(12), 2154-2158.
[188]
Kaftory, M. Reactions in the solid-state. 3. Structural aspects of photochemical-reactions in crystalline inclusion-compounds. Tetrahedron, 1987, 43(7), 1503-1511.
[189]
Toda, F. Reaction control of guest compounds in host-guest inclusion complexes. Top. Curr. Chem., 1988, 149, 211-238.
[190]
Weisingerlewin, Y.; Vaida, M.; Popovitzbiro, R.; Chang, H.C.; Mannig, F.; Frolow, F.; Lahav, M.; Leiserowitz, L. Elucidation of reaction pathways in host-guest complexes by crystal engineering - photoaddition of carbonyl group of guest acetophenones and propiophenones to host deoxycholic-acid. Tetrahedron, 1987, 43(7), 1449-1475.
[191]
Chang, H.C.; Popovitzbiro, R.; Lahav, M.; Leiserowitz, L. Reactions in molecular inclusion complexes. 5. Differentiation between reaction pathways in the photoaddition of guest para-fluoroacetophenone to host deoxycholic-acid via x-ray-analysis of a complex undergoing a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc., 1982, 104(2), 614-616.
[192]
Bregman, J.; Schmidt, G.M.J.; Osaki, K.; Sonntag, F.I. TOPOCHEMISTRY. 4. Crystal chemistry of some cis-cinnamic acids. J. Chem. Soc., 1964, (JUN), 2021-2030.
[193]
Lewis, F.D.; Quillen, S.L.; Hale, P.D.; Oxman, J.D. Lewis acid catalysis of photochemical-reactions. 7. Photodimerization and cross-cycloaddition of cinnamic esters. J. Am. Chem. Soc., 1988, 110(4), 1261-1267.
[194]
Alcock, N.W.; Meester, P.D.; Kemp, T.J. Solid-state photochemistry. 1. Nature of the stereocontrol in the photodimerization of dibenzylideneacetone by uo22+ ion - crystal and molecular-structure of trans-dichlorobis(trans,trans-dibenzylideneacetone)dioxouranium(vi) and of its acetic-acid solvate. J. Chem. Soc., Perkin Trans. 2, 1979, (7), 921-926.
[195]
Meng, J.B.; Fu, D.C.; Gao, Z.H.; Wang, R.J.; Wang, H.G.; Saito, I.; Kasatani, R.; Matsuura, T. A multistep photoreaction of 5-formyl-1,3-dimethyluracil with indole in the solid-state. Tetrahedron, 1990, 46(7), 2367-2370.
[196]
Meng, J.B.; Wang, W.G.; Xiong, G.X.; Wang, Y.M.; Fu, D.C.; Du, D.M.; Wang, R.J.; Wang, H.G.; Koshima, H.; Matsuura, T. A multistep photoreaction of aromatic-aldehydes with heteroaromatics in the solid-state. J. Photochem. Photobiol., 1993, 74(1), 43-49.
[197]
Meng, J.B.; Du, D.M.; Xiong, G.X.; Wang, W.G.; Wang, Y.M.; Koshima, H.; Matsuura, T. A dual pathway in the solid-state photoreaction of nitrobenzaldehydes with indole. J. Heterocycl. Chem., 1994, 31(1), 121-124.
[198]
Williams, J.H. The molecular electric quadrupole-moment and solid-state architecture. Acc. Chem. Res., 1993, 26(11), 593-598.
[199]
Dahl, T. The nature of stacking interactions between organic-molecules elucidated by analysis of crystal-structures. Acta Chem. Scand., 1994, 48(2), 95-106.
[200]
Luhmer, M.; Bartik, K.; Dejaegere, A.; Bovy, P.; Reisse, J. The importance of quadrupolar interactions in molecular recognition processes involving a phenyl group. J. Bull. Soc. Chim. Fr, 1994, 131(5), 603-606.
[201]
Gillard, R.E.; Stoddart, J.F.; White, A.J.P.; Williams, B.J.; Williams, D.J. A novel fluorine-containing 2 catenane. J. Org. Chem., 1996, 61(14), 4504-4505.
[202]
Williams, J.H.; Cockcroft, J.K.; Fitch, A.N. Structure of the lowest temperature phase of the solid benzene hexafluorobenzene adduct. Angew. Chem., 1992, 31(12), 1655-1657.
[203]
Cox, E.G.; Cruickshank, D.W.J.; Smith, J.A.S. The crystal structure of benzene at -3-degrees-c. Proc. R. Soc. London, Ser A, 1958, 247(1248), 1-21.
[204]
Hunter, C.A. Arene arene interactions - electrostatic or charge-transfer. Angew. Chem., 1993, 32(11), 1584-1586.
[205]
Brown, N.M.D.; Swinton, F.L. Importance of quadrupolar interactions in determining structure of solid hydrocarbon-fluorocarbon compounds. J. Chem. Soc. Chem. Commun., 1974, 19, 770-771.
[206]
Hunter, C.A.; Lu, X.J.; Kapteijn, G.M.; Vankoten, G. Influence of fluorine on aromatic interactions. J. Chem. Soc., Faraday Trans., 1995, 91(13), 2009-2015.
[207]
Williams, V.E.; Lemieux, R.P.; Thatcher, G.R.J. Substituent effects on the stability of arene-arene complexes: An AM1 study of the conformational equilibria of cis-1,3-diphenylcyclohexanes. J. Org. Chem., 1996, 61(6), 1927-1933.
[208]
HernandezTrujillo. J.; Colmenares, F.; Cuevas, G.; Costas, M. MP2 ab initio calculations of the hexafluorobenzene-benzene and -monofluorobenzene complexes. Chem. Phys. Lett., 1997, 265(3-5), 503-507.
[209]
West, A.P.; Mecozzi, S.; Dougherty, D.A. Theoretical studies of the supramolecular synthon benzene ... hexafluorobenzene. J. Phys. Org. Chem., 1997, 10(5), 347-350.
[210]
Alkorta, I.; Rozas, I.; Elguero, J. An attractive interaction between the pi-cloud of C6F6 and electron-donor atoms. J. Org. Chem., 1997, 62(14), 4687-4691.
[211]
Coates, G.W.; Dunn, A.R.; Henling, L.M.; Dougherty, D.A.; Grubbs, R.H. Phenyl-perfluorophenyl stacking interactions: A new strategy for supermolecule construction. Angew. Chem., 1997, 36(3), 248-251.
[212]
Coates, G.W.; Dunn, A.R.; Henling, L.M.; Ziller, J.W.; Lobkovsky, E.B.; Grubbs, R.H. Phenyl-perfluorophenyl stacking interactions: Topochemical 2+2 photodimerization and photopolymerization of olefinic compounds. J. Am. Chem. Soc., 1998, 120(15), 3641-3649.
[213]
Xu, R.; Schweizer, B.; Frauenrath, H. Soluble poly(diacetylene)s using the perfluorophenyl-phenyl motif as a supermolecule synthon. J. Am. Chem. Soc., 2008, 130(34), 11437-11445.
[214]
Papagni, A.; Del Buttero, P.; Bertarelli, C.; Miozzo, L.; Moret, M.; Pryce, M.T.; Rizzato, S. Novel fluorinated amino-stilbenes and their solid-state photodimerization. New J. Chem., 2010, 34(11), 2612-2621.
[215]
Sharma, C.V.K.; Panneerselvam, K.; Shimoni, L.; Katz, H.; Carrell, H.L.; Desiraju, G.R. 3-(3′,5′-dinitrophenyl)-4-(2′,5′-dimethoxyphenyl)cyclobutane-1,2-dicarbo xylic acid - engineered topochemical synthesis and molecular and supramolecular properties. Chem. Mater., 1994, 6(8), 1282-1292.
[216]
Yang, S.Y.; Naumov, P.; Fukuzumi, S. Topochemical Limits for Solid-State Photoreactivity by Fine Tuning of the pi-pi Interactions. J. Am. Chem. Soc., 2009, 131(21), 7247-7249.
[217]
Desiraju, G.R. Supramolecular synthons in crystal engineering - A new organic-synthesis. Angew. Chem., 1995, 34(21), 2311-2327.
[218]
Ema, F.; Tanabe, M.; Saito, S.; Yoneda, T.; Sugisaki, K.; Tachikawa, T.; Akimoto, S.; Yamauchi, S.; Sato, K.; Osuka, A.; Takui, T.; Kobori, Y. Charge-Transfer character drives mobius antiaromaticity in the excited triplet state of twisted 28 hexaphyrin. J. Phys. Chem. Lett., 2018, 9(10), 2685-2690.
[219]
Mulliken, R.S. Molecular compounds and their spectra 2. J. Am. Chem. Soc., 1952, 74(3), 811-824.
[220]
Foster, R. Organic Charge-Transfer Complexes, 1st ed; Academic Press: New York, 1969.
[221]
Ito, Y.; Asaoka, S.; Saito, I.; Ohba, S. Bimolecular solid-state photoreactions in the adduct crystals of an aromatic nitro compound with an aromatic amine. Tetrahedron Lett., 1994, 35(44), 8193-8196.
[222]
Suzuki, T.; Fukushima, T.; Yamashita, Y.; Miyashi, T. An absolute asymmetric-synthesis of the 2+2 cycloadduct via single crystal-to-single crystal transformation by charge-transfer excitation of solid-state molecular-complexes composed of arylolefins and bis 1,2,5 thiadiazolotetracyanoquinodimethane. J. Am. Chem. Soc., 1994, 116(7), 2793-2803.
[223]
Ito, Y.; Endo, S.; Ohba, S. Novel photocoupling reaction in two-component crystals of tetracyanobenzene with benzyl cyanide. J. Am. Chem. Soc., 1997, 119(25), 5974-5975.
[224]
Meng, J.B.; Zhu, Z.L.; Wang, R.J.; Yao, X.K.; Ito, Y.; Ihara, H.; Matsuura, T. Selectivity in the solid-state photoreaction of 6-cyanouracils with aromatic-hydrocarbons. Chem. Lett., 1990, (8), 1247-1248.
[225]
Haga, N.; Nakajima, H.; Takayanagi, H.; Tokumaru, K. Exclusive production of a cycloadduct from selective excitation of the charge-transfer complex between acenaphthylene and tetracyanoethylene in the crystalline state in contrast to failure of reaction in solution. Chem. Commun., 1997, 13, 1171-1172.
[226]
Yamada, S.; Kawamura, C. 4+4 Photodimerization of azaanthracenes in both solution and solid phase controlled by Cation-pi interactions. Org. Lett., 2012, 14(6), 1572-1575.
[227]
Kole, G.K.; Tan, G.K.; Vittal, J.J. Anion-Controlled stereoselective synthesis of cyclobutane derivatives by Solid-State 2+2 Cycloaddition reaction of the salts of trans-3-(4-Pyridyl) acrylic acid. Org. Lett., 2010, 12(1), 128-131.
[228]
Gamlin, J.N.; Jones, R.; Leibovitch, M.; Patrick, B.; Scheffer, J.R.; Trotter, J. The ionic auxiliary concept in solid state organic photochemistry. Acc. Chem. Res., 1996, 29(4), 203-209.
[229]
Ito, Y.; Borecka, B.; Trotter, J.; Scheffer, J.R. Control of solid-state photodimerization of trans-cinnamic acid by double salt formation with diamines. Tetrahedron Lett., 1995, 36(34), 6083-6086.
[230]
Ito, Y.; Borecka, B.; Olovsson, G.; Trotter, J.; Scheffer, J.R. Control of the solid-state photodimerization of some derivatives and analogs of trans-cinnamic acid by ethylenediamine. Tetrahedron Lett., 1995, 36(34), 6087-6090.
[231]
Gudmundsdottir, A.D.; Scheffer, J.R. Asymmetric induction in the solid-state photochemistry of salts of carboxylic-acids with optically-active amines. Tetrahedron Lett., 1990, 31(47), 6807-6810.
[232]
Gudmundsdottir, A.D.; Scheffer, J.R. Asymmetric induction in the solid-state photochemistry of ammonium-salts. Photochem. Photobiol., 1991, 54(4), 535-538.
[233]
Jones, R.; Scheffer, J.R.; Trotter, J.; Yang, J. Crystal to molecular chirality transfer - supramolecular photochemistry of crystalline carboxylate salts. Tetrahedron Lett., 1992, 33(38), 5481-5484.
[234]
Gudmundsdottir, A.D.; Li, W.N.; Scheffer, J.R.; Rettig, S.; Trotter, J. Asymmetric induction in the photochemistry of crystalline salts - structure-reactivity correlations. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1994, 240, 81-88.
[235]
Jones, R.; Scheffer, J.R.; Trotter, J.; Yang, J. Crystal-structures, chiralities and photochemistry of 2 polymorphs of l-prolinolium alpha-adamantylacetophenone-p-carboxylate. Acta Crystallogr. B, 1994, 50, 601-607.
[236]
Koshima, H.; Maeda, A.; Masuda, N.; Matsuura, T.; Hirotsu, K.; Okada, K.; Mizutari, H.; Ito, Y.; Fu, T.Y.; Scheffer, J.R.; Trotter, J. Ionic chiral handle-induced asymmetric-synthesis in a solid-state norrish type-ii photoreaction. Tetrahedron Asymmetry, 1994, 5(8), 1415-1418.
[237]
Gudmundsdottir, A.D.; Scheffer, J.R.; Trotter, J. Ionic chiral handle-induced solid-state asymmetric-synthesis - origin of the asymmetric induction elucidated through absolute-configuration correlation studies. Tetrahedron Lett., 1994, 35(9), 1397-1400.
[238]
Koshima, H.; Honke, S.; Fujita, J. Generation of chirality in two-component molecular crystals of tryptamine and achiral carboxylic acids. J. Org. Chem., 1999, 64(11), 3916-3921.
[239]
Koshima, H.; Hayashi, E.; Matsuura, T.; Tanaka, K.; Toda, F.; Kato, M.; Kiguchi, M. Preparation, structure and discrimination of a chiral bimolecular crystal by the self-assembly of 3-indolepropionic acid and phenanthridine. Tetrahedron Lett., 1997, 38(28), 5009-5012.
[240]
Koshima, H.; Nakagawa, T.; Matsuura, T.; Miyamoto, H.; Toda, F. Synthesis, structure, and discrimination of chiral bimolecular crystals by using diphenylacetic acid and aza aromatic compounds. J. Org. Chem., 1997, 62(18), 6322-6325.
[241]
Koshima, H.; Honke, S. Chiral bimolecular crystallization of tryptamine and achiral carboxylic acids. J. Org. Chem., 1999, 64(3), 790-793.
[242]
Koshima, H.; Khan, S.I.; García-Garibay, M.A. Chiral crystalline salts from achiral biphenylcarboxylic acids and tryptamine. Tetrahedron Asymmetry, 1998, 9(11), 1851-1854.
[243]
Koshima, H.; Ding, K.L.; Chisaka, Y.; Matsuura, T. Generation of chirality in a two-component molecular crystal of acridine and diphenylacetic acid and its absolute asymmetric photodecarboxylating condensation. J. Am. Chem. Soc., 1996, 118(48), 12059-12065.
[244]
Koshima, H.; Ding, K.L.; Matsuura, T. Stoichiometrically sensitized decarboxylation occurring in a molecular-crystal composed of phenanthridine and 3-indoleacetic acid. J. Chem. Soc. Chem. Commun., 1994, 18, 2053-2054.
[245]
Yamada, S.; Nojiri, Y. Water-assisted assembly of (E)-arylvinylpyridine hydrochlorides: Effective substrates for solid-state 2+2 photodimerization. Chem. Commun., 2011, 47(32), 9143-9145.
[246]
Mondal, B.; Captain, B.; Ramamurthy, V. Photodimerization of HCl salts of azastilbenes in the solid state. Photochem. Photobiol. Sci., 2011, 10(6), 891-894.
[247]
Bakowicz, J.; Olejarz, J.; Turowska-Tyrk, I. Steering photochemical reactivity of 2,4,6-triisopropylbenzophenonate anion in a crystalline state. J. Photochem. Photobiol., 2014, 273, 34-42.
[248]
Turowska-Tyrk, I.; Grzesniak, K.; Trzop, E.; Zych, T. Monitoring structural transformations in crystals. Part 4. Monitoring structural changes in crystals of pyridine analogs of chalcone during 2+2 -photodimerization and possibilities of the reaction in hydroxy derivatives. J. Solid State Chem., 2003, 174(2), 459-465.
[249]
Natarajan, A.; Mague, J.T.; Ramamurthy, V. Asymmetric induction during Yang cyclization of alpha-oxoamides: The power of a covalently linked chiral auxiliary is enhanced in the crystalline state. J. Am. Chem. Soc., 2005, 127(10), 3568-3576.
[250]
Xia, W.J.; Scheffer, J.R.; Botoshansky, M.; Kaftory, M. Photochemistry of 1-isopropylcycloalkyl aryl ketones: Ring size effects, medium effects, and asymmetric induction. Org. Lett., 2005, 7(7), 1315-1318.
[251]
Ito, Y.; Takahashi, H.; Hasegawa, J.Y.; Turro, N.J. Photocyclization of 2,4,6-triethylbenzophenones in the solid state. Tetrahedron, 2009, 65(3), 677-689.
[252]
Lavy, T.; Sheynin, Y.; Sparkes, H.A.; Howard, J.A.K.; Kaftory, M. Controlled photochemical reaction of 4-oxo(phenylacetyl) morpholine and 1-(phenylglyoxylyl)piperidine in solid supramolecular systems. CrystEngComm, 2008, 10(6), 734-739.
[253]
Mahon, M.F.; Raithby, P.R.; Sparkes, H.A. Investigation of the factors favouring solid state 2+2 cycloaddition reactions; the 2+2 cycloaddition reaction of coumarin-3-carboxylic acid. CrystEngComm, 2008, 10(5), 573-576.
[254]
Dutta, S.; Georgiev, I.G.; MacGillivray, L.R. Metal-Organic Frameworks with photochemical Building Units In:Metal-Organic Frameworks: Design and Application; MacGillivray, L.R., Ed.; John Wiley & Sons: USA, 2010, Vol. 1, pp. 301-312.
[255]
Alagesan, M.; Kanagaraj, K.; Wan, S.G.; Sun, H.Q.; Su, D.; Zhong, Z.H.; Zhou, D.Y.; Wu, W.H.; Gao, G.W.; Zhang, H.; Yang, C. Enantio-differentiating 4+4 photocyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron tetrahedral coordination cage. J. Photochem. Photobiol., 2016, 331, 95-101.
[256]
Rajakannu, P.; Hussain, F.; Shankar, B.; Sathiyendiran, M. Unprecedented single-crystal-to-single-crystal topochemical conformational change and photoreduction of ethylene units in pi-stacked metallomacrocycle. Inorg. Chem. Commun., 2012, 26, 46-50.
[257]
Oburn, S.M.; Swenson, D.C.; Mariappan, S.V.S.; MacGillivray, L.R. Supramolecular construction of an aldehyde-cyclobutane via the solid state: Combining reversible imine formation and metal-organic self-assembly. J. Am. Chem. Soc., 2017, 139(25), 8452-8454.
[258]
Hirtenlehner, C.; Krims, C.; Holbling, J.; List, M.; Zabel, M.; Fleck, M.; Berger, R.J.F.; Schoefberger, W.; Monkowius, U. Syntheses, crystal structures, reactivity, and photochemistry of gold(III) bromides bearing N-heterocyclic carbenes. Dalton Trans., 2011, 40(38), 9899-9910.
[259]
Macgillivray, L.R.; Papaefstathiou, G.S.; Friscic, T.; Hamilton, T.D.; Bucar, D.K.; Chu, Q.; Varshney, D.B.; Georgiev, I.G. Supramolecular control of reactivity in the solid state: From templates to ladderanes to metal-organic frameworks. Acc. Chem. Res., 2008, 41(2), 280-291.
[260]
Elacqua, E.; Sinnwell, M.A.; Loren, B.P.; Jurgens, P.T.; Groeneman, R.H.; Reinheimer, E.W.; MacGillivray, L.R. Metal-organic coordination versus hydrogen bonding: Highly efficient templated photocycloadditions of trisubstituted isomeric olefins in the solid state. ChemPlusChem, 2016, 81(8), 893-898.
[261]
Nagarathinam, M.; Vittal, J.J. Anisotropic movements of coordination polymers upon desolvation: Solid-state transformation of a linear 1D coordination polymer to a ladderlike structure. Angew. Chem., 2006, 45(26), 4337-4341.
[262]
Santra, R.; Biradha, K. nitrate ion assisted argentophilic interactions as a template for solid state 2+2 Photodimerization of Pyridyl Acrylic Acid, Its Methyl Ester, and Acryl Amide. Cryst. Growth Des., 2010, 10(8), 3315-3320.
[263]
Laird, R.C.; Sinnwell, M.A.; Nguyen, N.P.; Swenson, D.C.; Mariappan, S.V.S.; MacGillivray, L.R. Intramolecular 2+2 Photodimerization achieved in the solid state via coordination-driven self-assembly. Org. Lett., 2015, 17(13), 3233-3235.
[264]
Leyva, E.; de Loera, D.; Leyva, S.; Jimenez-Cataño, R. Fluorinated Aryl Nitrene Precursors In:Nitrenes and Nitrenium Ions; Falvey, D.E.; Gudmundsdottir, A.D., Eds.; Wiley: New Jersey, 2013, Vol. 6, pp. 451-480.
[265]
Gritsan, N.; Platz, M. Photochemistry of Azides - The Azide-Nitrene Interface In:Organic Azides: Syntheses and Applications; Bräse, S.; Banert, K., Eds.; Wiley: United Kingdom, 2010, Vol. 1, pp. 311-372.
[266]
Iddon, B.; Methcohn, O.; Scriven, E.F.V.; Suschitzky, H.; Gallagher, P.T. Developments in arylnitrene chemistry - Syntheses and mechanisms. Angew. Chem., 1979, 18(12), 900-917.
[267]
Leyva, E.; Platz, M.S. The temperature-dependint photochemistry of phenyl azide in diethylamine. Tetrahedron Lett., 1985, 26(18), 2147-2150.
[268]
Leyva, E.; Platz, M.S.; Persy, G.; Wirz, J. Photochemistry of phenyl azide - the role of singlet and triplet phenylnitrene as transient intermediates. J. Am. Chem. Soc., 1986, 108(13), 3783-3790.
[269]
McDonald, R.N.; Davidson, S.J. Electron photodetachment of the phenylnitrene anion-radical - EA, DELTA-H degrees(f), and the singlet-triplet splitting for phenylnitrene. J. Am. Chem. Soc., 1993, 115(23), 10857-10862.
[270]
Gritsan, N.P.; Zhai, H.B.; Yuzawa, T.; Karweik, D.; Brooke, J.; Platz, M.S. Spectroscopy and kinetics of singlet perfluoro-4-biphenylnitrene and singlet perfluorophenylnitrene. J. Phys. Chem. A, 1997, 101(15), 2833-2840.
[271]
Hrovat, D.A.; Waali, E.E.; Borden, W.T. Ab initio calculations of the singlet triplet energy difference in phenylnitrene. J. Am. Chem. Soc., 1992, 114(22), 8698-8699.
[272]
Karney, W.L.; Borden, W.T. Why does o-fluorine substitution raise the barrier to ring expansion of phenylnitrene? J. Am. Chem. Soc., 1997, 119(14), 3347-3350.
[273]
Ishida, T.; Abe, H.; Nakajima, A.; Kaya, K. Electronic-spectrum of jet-cooled cyanocyclopentadienyl radical. Chem. Phys. Lett., 1990, 170(5-6), 425-429.
[274]
Hart, H.; Kuzuya, M. Degenerate rearrangements of bicyclo 3.2.1 octa-3,6-dien-2-yl cations. J. Am. Chem. Soc., 1973, 95(12), 4096-4098.
[275]
Schrock, A.K.; Schuster, G.B. Photochemistry of phenyl azide - chemical-properties of the transient intermediates. J. Am. Chem. Soc., 1984, 106(18), 5228-5234.
[276]
Platz, M.S. Comparison of phenylcarbene and phenylnitrene. Acc. Chem. Res., 1995, 28(12), 487-492.
[277]
Chapman, O.L.; Leroux, J.P. 1-aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc., 1978, 100(1), 282-285.
[278]
Leyva, E.; Munoz, D.; Platz, M.S. Photochemistry of fluorinated aryl azides in toluene solution and in frozen polycrystals. J. Org. Chem., 1989, 54(25), 5938-5945.
[279]
Sasaki, A.; Mahe, L.; Izuoka, A.; Sugawara, T. Chemical consequences of arylnitrenes in the crystalline environment. Bull. Chem. Soc. Jpn., 1998, 71(6), 1259-1275.
[280]
Leyva, E.; Gonzalez-Balderas, R.M.; de Loera, D.A.; Jimenez-Catano, R. Generation of benzofuroxans by photolysis of crystalline o-nitrophenylazides. A green chemistry reaction. Tetrahedron Lett., 2012, 53(19), 2447-2449.
[281]
Friscic, T.; MacGillivray, L.R. Single-crystal-to-single-crystal 2+2 photodimerizations: from discovery to design. Z. Kristallogr., 2005, 220(4), 351-363.
[282]
Morawetz, H.; Jakabhazy, S.Z.; Shafer, J.; Lando, J.B. Topotactic reactions in organic crystals. Proc. Natl. Acad. Sci., 1963, 49(6), 789-793.
[283]
Schmidt, G.M.J. Photodimerization in the solid state. Pure Appl. Chem., 1971, 24(4), 647-678.
[284]
Biljan, I.; Vancik, H. Aromatic C-Nitroso compounds and their dimers: A model for probing the reaction mechanisms in crystalline molecular solids. Crystals, 2017, 7(12), 15.
[285]
Khorasani, S.; Fernandes, M.A. Cooperativity and feedback mechanisms in the single-Crystal-to-Single-Crystal Solid-State Diels-Alder Reaction of 9-Methylanthracene with Bis(N-cyclobutylimino)-1,4-dithiin. Cryst. Growth Des., 2013, 13(12), 5499-5505.
[286]
García-Garibay, M.A. Molecular crystals on the move: From single-crystal-to-single-crystal photoreactions to molecular machinery. Angew. Chem., 2007, 46(47), 8945-8947.
[287]
Kitaigorodsky, A.I. Molecular Crystals and Molecules, 1st ed; Academic Press: London, 1973.
[288]
Whiting, D.A. Photodimerisation of 2-benzyl-5 para bromobenzylidene-cyclopentanone, a crystal-crystal transformation - x-ray study of dimer. J. Chem. Soc. C, 1971, (20), 3396-3398.
[289]
Authier, A.; Malgrange, C. Diffraction physics. Acta Crystallogr. A, 1998, 54, 806-819.
[290]
Halasz, I. Single-Crystal-to-Single-Crystal Reactivity: Gray, Rather than Black or White. Cryst. Growth Des., 2010, 10(7), 2817-2823.
[291]
Baughman, R.H. Solid-state polymerization of diacetylenes. J. Appl. Phys., 1972, 43(11), 4362-4370.
[292]
Nakanish, H.; Jones, W.; Thomas, J.M.; Hursthouse, M.B.; Motevalli, M. Monitoring the crystallographic course of a single-crystal- single-crystal photo-dimerization by x-ray-diffractometry. J. Chem. Soc. Chem. Commun., 1980, 13, 611-612.
[293]
Jones, W.; Nakanishi, H.; Theocharis, C.R.; Thomas, J.M. Engineering organic-crystals so as to control the photoreactivity of the reactants and the crystallinity of the products. J. Chem. Soc. Chem. Commun., 1980, 13, 610-611.
[294]
Nakanishi, H.; Jones, W.; Thomas, J.M. Topochemical single-crystal-to-single-crystal photo-dimerization. Chem. Phys. Lett., 1980, 71(1), 44-48.
[295]
Nakanishi, H.; Jones, W.; Thomas, J.M.; Hursthouse, M.B.; Motevalli, M. Static and dynamic single-crystal x-ray-diffraction studies of some solid-state photo-dimerization reactions. J. Phys. Chem., 1981, 85(24), 3636-3642.
[296]
Tang, C.P.; Chang, H.C.; Popovitzbiro, R.; Frolow, F.; Lahav, M.; Leiserowitz, L.; McMullan, R.K. Reaction pathways in crystalline host guest inclusion complexes - rotation by a net 180-degrees of the acetyl group on photoaddition of guest acetophenone and meta-chloroacetophenone to the atom c5 of host deoxycholic-acid. J. Am. Chem. Soc., 1985, 107(13), 4058-4070.
[297]
Wang, W.N.; Jones, W. The solid-state chemistry of acridizinium salts. Tetrahedron, 1987, 43(7), 1273-1279.
[298]
Nieuwendaal, R.C.; Bertmer, M.; Hayes, S.E. An Unexpected Phase Transition during the 2+2 Photocycloaddition reaction of Cinnamic Acid to Truxillic Acid: Changes in Polymorphism monitored by Solid-State NMR. J. Phys. Chem. B, 2008, 112(41), 12920-12926.
[299]
Nieuwendaal, R.C.; Mattler, S.J.; Bertmer, M.; Hayes, S.E. Single crystal to single crystal topochemical photoreactions: Measuring the degree of disorder in the 2+2 Photodimerization of trans-Cinnamic Acid Using Single-Crystal C-13 NMR Spectroscopy. J. Phys. Chem. B, 2011, 115(19), 5785-5793.
[300]
de Loera, D.; García-Garibay, M.A. Efficient aziridine synthesis in metastable crystalline phases by photoinduced Denitrogenation of Crystalline Triazolines. Org. Lett., 2012, 14(15), 3874-3877.
[301]
de Loera, D.; Stopin, A.; García-Garibay, M.A. Photoinduced and Thermal Denitrogenation of bulky Triazoline Crystals: Insights into Solid-to-Solid transformation. J. Am. Chem. Soc., 2013, 135(17), 6626-6632.
[302]
Enkelmann, V.; Wegner, G.; Novak, K.; Wagener, K.B. Single-crystal-to-single-crystal photodimerization of cinnamic acid. J. Am. Chem. Soc., 1993, 115(22), 10390-10391.
[303]
McBride, J.M.; Segmuller, B.E.; Hollingsworth, M.D.; Mills, D.E.; Weber, B.A. Mechanical-stress and reactivity in organic-solids. Science, 1986, 234(4778), 830-835.
[304]
McBride, J.M. The role of local stress in solid-state radical reactions. Acc. Chem. Res., 1983, 16(8), 304-312.
[305]
Bucar, D.K.; MacGillivray, L.R. Preparation and reactivity of nanocrystalline cocrystals formed via sonocrystallization. J. Am. Chem. Soc., 2007, 129(1), 32-33.
[306]
Turowska-Tyrk, I. Structural transformations in organic crystals during photochemical reactions. J. Phys. Org. Chem., 2004, 17(10), 837-847.
[307]
Ohashi, Y.; Uchida, A.; Sekine, A. Crystalline-state reaction In:Reactivity in Molecular Crystals; Ohashi, Y., Ed.; VCH: Tokyo, 1993, Vol. 1, pp. 115-153.
[308]
Turowska-Tyrk, I. Structural transformations in a crystal during the photochemical reaction of 2-benzyl-5-benzylidenecyclopentanone. Chem. Eur. J., 2001, 7(15), 3401-3405.
[309]
Turowska-Tyrk, I. Monitoring cooperative effects in a crystal of 2-benzyl-5-benzylidenecyclopentanone. Chem. Phys. Lett., 2002, 361(1-2), 115-120.
[310]
Kim, J.H.; Hubig, S.M.; Lindeman, S.V.; Kochi, J.K. Diels-Alder topochemistry via charge-transfer crystals: Novel (Thermal) single-crystal-to-single-crystal transformations. J. Am. Chem. Soc., 2001, 123(1), 87-95.
[311]
Kim, J.H.; Lindeman, S.V.; Kochi, J.K. Charge-transfer forces in the self-assembly of heteromolecular reactive solids: Successful design of unique (single-crystal-to-single-crystal) Diels-Alder cycloadditions. J. Am. Chem. Soc., 2001, 123(21), 4951-4959.
[312]
Katoh, R.; Tamaki, Y.; Furube, A. Transient absorption microscopic study of triplet excitons in organic crystals. J. Photochem. Photobiol., 2006, 183(3), 267-272.
[313]
Furube, A.; Tamaki, Y.; Katoh, R. Transient absorption measurement of organic crystals with femtosecond-laser scanning microscopes. J. Photochem. Photobiol., 2006, 183(3), 253-260.
[314]
Udagawa, A.; Johnston, P.; Uekusa, H.; Koshima, H.; Saito, K.; Asahi, T. Solid-State photochemical reaction of multisubstituted thymine derivatives. ACS Sustain. Chem.& Eng., 2016, 4(11), 6107-6114.
[315]
Zhu, L.Y.; Tong, F.; Zaghloul, N.; Baz, O.; Bardeen, C.J.; Al-Kaysi, R.O. Characterization of a P-type photomechanical molecular crystal based on the E -> Z photoisomerization of 9-divinylanthracene malonitrile. J. Mater. Chem. C, 2016, 4(35), 8245-8252.
[316]
El-Ballouli, A.O.; Khnayzer, R.S.; Khalife, J.C.; Fonari, A.; Hallal, K.M.; Timofeeva, T.V.; Patra, D.; Castellano, F.N.; Wex, B.; Kaafarani, B.R. Diarylpyrenes vs. diaryltetrahydropyrenes: Crystal structures, fluorescence, and upconversion photochemistry. J. Photochem. Photobiol., 2013, 272, 49-57.
[317]
Sugino, M.; Araki, Y.; Hatanaka, K.; Hisaki, I.; Miyata, M.; Tohnai, N. Elucidation of anthracene arrangement for excimer emission at ambient conditions. Cryst. Growth Des., 2013, 13(11), 4986-4992.
[318]
Hasegawa, M.; Arioka, H.; Harashina, H.; Nohara, M.; Kubo, M.; Nishikubo, T. Topochemical photodimerization of 4-(3-oxo-3-phenyl-1-propenyl)ben-zoic acid and its esters. Isr. J. Chem., 1985, 25(3-4), 302-305.
[319]
Hasegawa, M.; Nohara, M.; Saigo, K.; Mori, T.; Nakanishi, H. Photodi-merization of 1,4-dicinnamoylbenzene crystal via a topochemical process. Tetrahedron Lett., 1984, 25(5), 561-564.
[320]
Hasegawa, M.; Saigo, K.; Mori, T.; Uno, H.; Nohara, M.; Nakanishi, H. Topochemical double photocyclodimerization of the 1,4-dicinnamoyl-benzene crystal. J. Am. Chem. Soc., 1985, 107(9), 2788-2793.
[321]
Swiatkiewicz, J.; Eisenhardt, G.; Prasad, P.N.; Thomas, J.M.; Jones, W.; Theocharis, C.R. Phonon spectroscopy of photochemical-reactions in organic-solids - photo-dimerization of 2-benzyl-5-benzylidenecyclopen-tanone and photo-polymerization of 2,5-distyrylpyrazine. J. Phys. Chem., 1982, 86(10), 1764-1767.
[322]
Dhurjati, M.S.K.; Sarma, J.; Desiraju, G.R. Unusual 2+2 topochemic cycloadditions of 3-cyano-cinnamic and 4-cyano-cinnamic acids - temperature-dependent solid-state photochemical-reactions. J. Chem. Soc. Chem. Commun., 1991, 23, 1702-1703.
[323]
Chung, C.M.; Kunita, A.; Hayashi, K.; Nakamura, F.; Saigo, K.; Hasegawa, M. Topochemical induction to an alternating zigzag linear and syndiotactic chain structure in the course of a 2+2 photoreaction of alkyl alpha-cyano-4- 2-(2-pyridyl)ethenyl cinnamate crystals. J. Am. Chem. Soc., 1991, 113(19), 7316-7322.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy