Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Heart Failure and Cognitive Impairment: Clinical Relevance and Therapeutic Considerations

Author(s): Tuoyo O. Mene-Afejuku*, Monica Pernia, Uzoma N. Ibebuogu, Shobhana Chaudhari, Savi Mushiyev, Ferdinand Visco and Gerald Pekler

Volume 15, Issue 4, 2019

Page: [291 - 303] Pages: 13

DOI: 10.2174/1573403X15666190313112841

Price: $65

Abstract

Heart failure (HF) is a devastating condition characterized by poor quality of life, numerous complications, high rate of readmission and increased mortality. HF is the most common cause of hospitalization in the United States especially among people over the age of 64 years. The number of people grappling with the ill effects of HF is on the rise as the number of people living to an old age is also on the increase.

Several factors have been attributed to these high readmission and mortality rates among which are; poor adherence with therapy, inability to keep up with clinic appointments and even failure to recognize early symptoms of HF deterioration which may be a result of cognitive impairment.

Therefore, this review seeks to compile the most recent information about the links between HF and dementia or cognitive impairment. We also assessed the prognostic consequences of cognitive impairment complicating HF, therapeutic strategies among patients with HF and focus on future areas of research that would reduce the prevalence of cognitive impairment, reduce its severity and also ameliorate the effect of cognitive impairment coexisting with HF.

Keywords: Heart failure, dementia, cognitive impairment, elderly, mortality, patients.

Graphical Abstract
[1]
Liu L. Changes in cardiovascular hospitalization and comorbidity of heart failure in the United States: findings from the National Hospital Discharge Surveys 1980–2006. Int J Cardiol 2011; 149(1): 39-45.
[2]
Gheorghiade M, Vaduganathan M, Fonarow GC, et al. Rehospitalization for heart failure: Problems and perspectives. J Am Coll Cardiol 2013; 61(4): 391-403.
[3]
Jhund PS, MacIntyre K, Simpson CR, et al. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: A population study of 5.1 million people. Circulation 2009; 119(4): 515-23.
[4]
Yancy CW, Jessup M, Bozkurt B, et al. ACCF/AHA Guideline for the Management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62: e147-239.
[5]
Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med 2009; 360(14): 1418.
[6]
Malik AS, Giamouzis G, Georgiopoulou VV, et al. Patient perception versus medical record entry of health-related conditions among patients with heart failure. Am J Cardiol 2011; 107(4): 569-72.
[7]
Dardiotis E, Giamouzis G, Mastrogiannis D, et al. Cognitive impairment in heart failure. Cardiol Res Pract 2012; 2012: 9.
[8]
Vogels RL, Scheltens P, Schroeder‐Tanka JM, et al. Cognitive impairment in heart failure: A systematic review of the literature. Eur J Heart Fail 2007; 9(5): 440-9.
[9]
Gure TR, Blaum CS, Giordani B, et al. Prevalence of cognitive imp airment in older adults with heart failure. J Am Geriatr Soc 2012; 60(9): 1724-9.
[10]
Cannon JA, Moffitt P, Perez-Moreno AC, et al. Cognitive impairment and heart failure: Systematic review and meta-analysis. J Card Fail 2017; 23(6): 464-75.
[11]
Dementia C. Cardiogenic dementia. Lancet 1977; 1(8001): 27-8.
[12]
Wanless RB, Anand IS, Gurden J, et al. Regional blood flow and hemodynamics in the rabbit with adriamycin cardiomyopathy: Effects of isosorbide dinitrate, dobutamine and captopril. J Pharmacol Exp Ther 1987; 243: 1101-6.
[13]
Cermakova P, Lund LH, Fereshtehnejad SM, et al. Heart failure and dementia: Survival in relation to types of heart failure and different dementia disorders. Eur J Heart Fail 2015; 17(6): 612-9.
[14]
Abete P, Della-Morte D, Gargiulo G, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev 2014; 18: 41-52.
[15]
Cermakova P, Eriksdotter M, Lund LH, et al. Heart failure and Alzheimer′ s disease. J Intern Med 2015; 277(4): 406-25.
[16]
Wallin K, Bostrom G, Kivipelto M, et al. Risk factors for incident dementia in the very old. Int Psychogeriatr 2013; 25: 1135-43.
[17]
Alosco ML, Hayes SM. Structural brain alterations in heart failure: A review of the literature and implications for risk of Alzheimer’s disease. Heart Fail Rev 2015; 20(5): 561-71.
[18]
Zekry D, Hauw JJ, Gold G. Mixed dementia: Epidemiology, diagnosis, and treatment. J Am Geriatr Soc 2002; 50: 1431-8.
[19]
De la Toree JC. Alzheimer disease as a vascular disorder: Nosological evidence. Stroke 2002; 33: 1152-62.
[20]
Qiu C, Winblad B, Marengoni A, et al. Heart failure and risk of dementia and Alzheimer disease: A population-based cohort study. Arch Intern Med 2006; 166: 1003-8.
[21]
Montagne A, Barnes SR, Sweeney MD, et al. Blood‐brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85: 296-302.
[22]
Jefferson AL, Liu D, Gupta DK, et al. Lower cardiac index levels relate to lower cerebral blood flow in older adults. Neurology 2017; 89: 2327-34.
[23]
Jefferson AL, Himali JJ, Beiser AS, et al. Cardiac index is associated with brain aging: The Framingham Heart Study. Circulation 2010; 122(7): 690-7.
[24]
Woo MA, Macey PM, Fonarow GC, et al. Regional brain gray matter loss in heart failure. J Appl Physiol 2003; 95(2): 677-84.
[25]
Sila CA. Cognitive impairment in chronic heart failure. Cleve Clin J Med 2007; 74: S132-7.
[26]
Pullicino PM, Hart J. Cognitive impairment in congestive heart failure? Embolism vs hypoperfusion. Neurology 2001; 57(11): 1945-6.
[27]
Austin BP, Nair VA, Meier TB, et al. Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 2011; 26: 123-33.
[28]
Kreisman NR, Soliman S, Gozal D. Regional differences in hypoxic depolarization and swelling in hippocampal slices. J Neurophysiol 2000; 83: 1031-8.
[29]
Meguro T, Meguro Y, Kunieda T. Atrophy of the parahippocampal gyrus is prominent in heart failure patients without dementia. ESC Heart Fail 2017; 4(4): 632-40.
[30]
de la Torre JC. Critically attained threshold of cerebral hypoperfusion: Can it cause Alzheimer’s disease? Ann N Y Acad Sci 2000; 903: 424-36.
[31]
Liebeskind DS. Collateral circulation. Stroke 2003; 34: 2279-84.
[32]
Choi YH, Park HK, Paik NJ. Role of the posterior temporal lobe during language tasks: A virtual lesion study using repetitive transcranial magnetic stimulation. Neuroreport 2015; 26: 314-9.
[33]
Zuccalà G, Cattel C, Manes-Gravina E, et al. Left ventricular dysfunction: A clue to cognitive impairment in older patients with heart failure. J Neurol Neruosurg Psych 1997; 63: 509-12.
[34]
Festa JR, Jia X, Cheung K, et al. Association of low ejection fraction with impaired verbal memory in older patients with heart failure. Arch Neurol 2011; 68(8): 1021-6.
[35]
Bhattacharya P, Bao F, Shah M, et al. Left ventricular dysfunction is associated with cerebral grey matter injury: An in-vivo brain MRI segmentation study. J Neurol Sci 2012; 321: 111-3.
[36]
Jefferson AL, Himali JJ, Au R, et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham Heart Study). Am J Cardiol 2011; 108: 1346-51.
[37]
Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 1981; 47(1): 33-9.
[38]
Gruhn N, Larsen FS, Boesgaard S, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001; 32: 2530-3.
[39]
Dixit NK, Vazquez LD, Cross NJ, et al. Cardiac resynchronization therapy: A pilot study examining cognitive change in patients before and after treatment. Clin Cardiol 2010; 33: 84-8.
[40]
Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 2005; 4(8): 487-99.
[41]
Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: Analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
[42]
Launer LJ. Demonstrating the case that AD is a vascular disease: Epidemiologic evidence. Ageing Res Rev 2002; 1(1): 61-77.
[43]
Iadecola C. The pathobiology of vascular dementia. Neuron 2013; 80(4): 844-66.
[44]
Cacciatore F, Abete P, Ferrara N, et al. The role of blood pressure in cognitive impairment in an elderly population. J Hypertens 1997; 15(2): 135-42.
[45]
Waldstein SR, Giggey PP, Thayer JF, et al. Nonlinear relations of blood pressure to cognitive function: The Baltimore Longitudinal Study of Aging. Hypertension 2005; 45(3): 374-9.
[46]
Kahonen-Vare M, Brunni-Hakala S, Lindroos M, et al. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin Exp Res 2004; 16(2): 147-52.
[47]
Pandav R, Dodge HH, DeKosky ST, et al. Blood pressure and cognitive impairment in India and the United States: A cross-national epidemiological study. Arch Neurol 2003; 60(8): 1123-8.
[48]
de La Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012; 2012367516
[49]
Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality. Lancet 2003; 361(9366): 1391-2.
[50]
Rickards CA, Tzeng YC. Arterial pressure and cerebral blood flow variability: Friend or foe? A review. Front Physiol 2014; 5: 120.
[51]
Numan T, Bain AR, Hoiland RL, et al. Static autoregulation in humans: A review and reanalysis. Med Eng Phys 2014; 36: 1487-95.
[52]
Brassard P, Ferland-Dutil H, Smirl JD, et al. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am J Physiol Heart Circ Physiol 2017; 312: H701-4.
[53]
Sabayan B, van Buchem MA, Sigurdsson S, et al. Cardiac hemodynamics are linked with structural and functional features of brain aging: The age, gene/environment susceptibility (AGES)-Reykjavik study. J Am Heart Assoc 2015; 4e001294
[54]
Erkelens CD, van der Wal HH, de Jong BM, et al. Dynamics of cerebral blood flow in patients with mild non-ischaemic heart failure. Eur J Heart Fail 2017; 19: 261-8.
[55]
Yancy CW, Lopatin M, Stevenson LW, et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: A report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol 2006; 47: 76-84.
[56]
Quiroz R, Doros G, Shaw P, et al. Comparison of characteristics and outcomes of patients with heart failure preserved ejection fraction versus reduced left ventricular ejection fraction in an urban cohort. Am J Cardiol 2014; 113: 691-6.
[57]
Stellos K, Panagiota V, Kögel A, et al. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab 2010; 30(11): 1817-20.
[58]
Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383-421.
[59]
van der Velpen IF, Yancy CW, Sorond FA, Sabayan B. Impaired cardiac function and cognitive brain aging. Can J Cardiol 2017; 33(12): 1587-96.
[60]
Lip GY, Heinzel FR, Gaita F, et al. European heart rhythm association/heart failure association joint consensus document on arrhythmias in heart failure, endorsed by the Heart rhythm society and the Asia Pacific heart rhythm society. Ep Europace 2015; 18(1): 12-36.
[61]
Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res 2017; 120(9): 1501-17.
[62]
Mene-Afejuku TO, López PD, Akinlonu A, et al. Atrial fibrillation in patients with heart failure: Current state and future directions. Am J Cardiovasc Drugs 2018; 18(5): 347-60.
[63]
Kwok CS, Loke YK, Hale R, et al. Atrial fibrillation and incidence of dementia A systematic review and meta-analysis. Neurology 2011; 76(10): 914-22.
[64]
Zito M, Muscari A, Marini E, et al. Silent lacunar infarcts in elderly patients with chronic non valvular atrial fibrillation. Aging Clin Exp Res 1996; 8(5): 341-6.
[65]
Cacciatore F, Testa G, Langellotto A, et al. Role of ventricular rate response on dementia in cognitively impaired elderly subjects with atrial fibrillation: A 10-year study. Dement Geriatr Cogn Disord 2012; 34(3-4): 143-8.
[66]
Alosco ML, Spitznagel MB, Sweet LH, et al. Atrial fibrillation exacerbates cognitive dysfunction and cerebral perfusion in heart failure. Pacing Clin Electrophysiol 2015; 38(2): 178-86.
[67]
Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: An overview. Heart 2004; 90: 464-70.
[68]
Candia AM, Villacorta H Jr, Mesquita ET. Immune-inflammatory activation in heart failure. Arq Bras Cardiol 2007; 89: 183-190, 201-208.
[69]
Athilingam P, Moynihan J, Chen L, et al. Elevated Levels of Interleukin 6 and C-reactive protein associated with cognitive impairment in heart failure. Congest Heart Fail 2013; 19: 92-8.
[70]
Cannon JA, McMurray JJ, Quinn TJ. ‘Hearts and minds’: Association, causation and implication of cognitive impairment in heart failure. Alzheimers Res Ther 2015; 7(1): 22.
[71]
Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res 2014; 114: 1815-26.
[72]
Viswanathan G, Gilbert S. The cardiorenal syndrome: Making the connection. Int J Nephrol 2010; 2011283137
[73]
Kim JH, Shah P, Tantry US, et al. Coagulation abnormalities in heart failure: Pathophysiology and therapeutic implications. Curr Heart Fail Rep 2016; 13(6): 319-28.
[74]
Gupta A, Watkins A, Thomas P, et al. Coagulation and inflammatory markers in Alzheimer’s and vascular dementia. Int J Clin Pract 2005; 59(1): 52-7.
[75]
Moffitt P, Lane DA, Park H, et al. Thromboprophylaxis in atrial fibrillation and association with cognitive decline: Systematic review. Age Ageing 2016; 45(6): 767-75.
[76]
Alagiakrishnan K, Mah D, Dyck JR, et al. Comparison of two commonly used clinical cognitive screening tests to diagnose mild cognitive impairment in heart failure with the golden standard European Consortium Criteria. Int J Cardiol 2017; 228: 558-62.
[77]
Cameron J, Worrall-Carter L, Page K, et al. Screening for mild cognitive impairment in patients with heart failure: Montreal Cognitive Assessment versus Mini Mental State Exam. Eur J Cardiovasc Nurs 2013; 12(3): 252-60.
[78]
Athilingam P, King KB, Burgin SW, Ackerman M, Cushman LA, Chen L. Montreal Cognitive Assessment and Mini-Mental Status Examination compared as cognitive screening tools in heart failure. Heart Lung 2011; 40(6): 521-9.
[79]
Agarwal KS, Kazim R, Xu J, et al. Unrecognized cognitive impairment and its effect on heart failure readmissions of elderly adults. J Am Geriatr Soc 2016; 64(11): 2296-301.
[80]
Scanlan J, Borson S. The Mini-Cog: Receiver operating characteristics with expert and naive raters. Int J Geriatr Psychiatry 2001; 16: 216-22.
[81]
Dodson JA, Truong TT, Towle VR, et al. Cognitive impairment in older adults with heart failure: Prevalence, documentation, and impact on outcomes. Am J Med 2013; 126(2): 120-6.
[82]
Boustani M, Baker MS, Campbell N, et al. Impact and recognition of cognitive impairment among hospitalized elders. J Hosp Med 2010; 5: 69-75.
[83]
Riegel B, Carlson B, Glaser D. Development and testing of a clinical tool measuring self-management of heart failure. Heart Lung 2000; 29(1): 4-15.
[84]
Zhu CW, Sano M, Ferris SH, et al. Health‐related resource use and costs in elderly adults with and without mild cognitive impairment. J Am Geriatr Soc 2013; 61(3): 396-402.
[85]
Cameron J, Worrall‐Carter L, Page K, et al. Does cognitive impairment predict poor self‐care in patients with heart failure? Eur J Heart Fail 2010; 12(5): 508-15.
[86]
Alosco ML, Spitznagel MB, Cohen R, et al. Cognitive impairment is independently associated with reduced instrumental ADLs in persons with heart failure. J Cardiovasc Nurs 2012; 27(1): 44.
[87]
Stilley CS, Bender CM, Dunbar-Jacob J, et al. The impact of cognitive function on medication management: Three studies. Health Psychol 2010; 29(1): 50.
[88]
Bakal JA, McAlister FA, Liu W, Ezekowitz JA. Heart failure re-admission: Measuring the ever shortening gap between repeat heart failure hospitalizations. PLoS One 2014; 9(9)e106494
[89]
Huynh QL, Negishi K, Blizzard L, et al. Mild cognitive impairment predicts death and readmission within 30 days of discharge for heart failure. Int J Cardiol 2016; 221: 212-7.
[90]
Gelow JM, Mudd JO, Chien CV, Lee CS. Usefulness of cognitive dysfunction in heart failure to predict cardiovascular risk at 180 days. Am J Cardiol 2015; 115(6): 778-82.
[91]
Lan H, Hawkins LA, Kashner M, Perez E, Firek CJ, Silvet H. Cognitive impairment predicts mortality in outpatient veterans with heart failure. Heart Lung 2018; 47(6): 546-52.
[92]
Byrne CJ, Toukhsati SR, Toia D, O’Halloran PD, Hare DL. Hopelessness and cognitive impairment are risk markers for mortality in systolic heart failure patients. J Psychosom Res 2018; 109: 12-8.
[93]
Lin AH, Chin JC, Sicignano NM, et al. Repeat hospitalizations predict mortality in patients with heart failure. Mil Med 2017; 182(9): e1932-7.
[94]
Huynh Q, Negishi K, De Pasquale C, et al. Effects of post-discharge management on rates of early re-admission and death after hospitalisation for heart failure. Med J Aust 2018; 208(11): 485-91.
[95]
Rattinger GB, Dutcher SK, Chhabra PT, et al. The effect of dementia on medication use and adherence among medicare beneficiaries with chronic heart failure. Am J Geriatr Pharmacother 2012; 10(1): 69-80.
[96]
Rêgo ML, Cabral DA, Fontes EB. Cognitive deficit in heart failure and the benefits of aerobic physical activity. Arq Bras Cardiol 2018; 110(1): 91-4.
[97]
Fu Q, Levine BD. Exercise and the autonomic nervous system. Handb Clin Neurol 2013; 117: 147-60.
[98]
Tempest GD, Davranche K, Brisswalter J, Perrey S, Radel R. The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain Cogn 2017; 113: 133-41.
[99]
Leeuwis AE, Hooghiemstra AM, Amier R, et al. Design of the ExCersion-VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment. Alzheimers Dement (N Y) 2017; 3(2): 157-65.
[100]
Van Praag H. Neurogenesis and exercise: Past and future directions. Neuromol Med 2008; 10(2): 128-40.
[101]
Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat Rev Neurosci 2008; 9(1): 58.
[102]
Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 2003; 117(4): 1037-46.
[103]
Tanne D, Freimark D, Poreh A, et al. Cognitive functions in severe congestive heart failure before and after an exercise training program. Int J Cardiol 2005; 103(2): 145-9.
[104]
Baldasseroni S, Mossello E, Romboli B, et al. Relationship between cognitive function and 6-minute walking test in older outpatients with chronic heart failure. Aging Clin Exp Res 2010; 22(4): 308-13.
[105]
Salmoirago-Blotcher E, Carey MP. Can mindfulness training improve medication adherence? Integrative review of the current evidence and proposed conceptual model. Explore 2018; 14(1): 59-65.
[106]
Cubbon RM, Gale CP, Kearney LC, et al. Changing characteristics and mode of death associated with chronic heart failure caused by left ventricular systolic dysfunction: A study across therapeutic eras. Circ Heart Fail 2011; 4(4): 396-403.
[107]
Wu JR, Moser DK, Lennie TA, Burkhart PV. Medication adherence in patients who have heart failure: A review of the literature. Nurs Clin North Am 2008; 43(1): 133-53.
[108]
Wu JR, Corley DJ, Lennie TA, Moser DK. Effect of a medication-taking behavior feedback Theory–Based intervention on outcomes in patients with heart failure. J Card Fail 2012; 18(1): 1-9.
[109]
Canter PH, Ernst E. The cumulative effects of Transcendental Meditation on cognitive function-a systematic review of randomised controlled trials. Wien Klin Wochenschr 2003; 115(21-22): 758-66.
[110]
Newberg AB, Wintering N, Khalsa DS, Roggenkamp H, Waldman MR. Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: A preliminary study. J Alzheimers Dis 2010; 20(2): 517-26.
[111]
Chiesa A, Calati R, Serretti A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev 2011; 31(3): 449-64.
[112]
Bratzke LC, Moser DK, Pelter MM, et al. Evidence-based heart failure medications and cognition. J Cardiovasc Nurs 2016; 31(1): 62.
[113]
Juilliere Y, Suty-Selton C, Riant E, et al. Prescription of cardiovascular drugs in the French ODIN cohort of heart failure patients according to age and type of chronic heart failure. Arch Cardiovasc Dis 2014; 107: 21-32.
[114]
Scrutinio D, Passantino A, Ricci VA, Catanzaro R. Association between conformity with performance measures and 1-year postdischarge survival in patients with acute decompensated heart failure. Am J Med Qual 2013; 28(2): 160-8.
[115]
Krantz MJ, Ambardekar AV, Kaltenbach L, Hernandez AF, Heidenreich PA, Fonarow GC. Patterns and predictors of evidence-based medication continuation among hospitalized heart failure patients. Am J Cardiol 2011; 107(12): 1818-23.
[116]
Kfoury AG, French TK, Horne BD, et al. Incremental survival benefit with adherence to standardized heart failure core measures: A performance evaluation study of 2958 patients. J Card Fail 2008; 14(2): 95-102.
[117]
Calvin JE, Shanbhag S, Avery E, Kane J, Richardson D, Powell L. Adherence to evidence-based guidelines for heart failure in physicians and their patients: Lessons from the heart failure adherence retention trial (HART). Congest Heart Fail 2012; 18: 73-8.
[118]
Goh KL, Bhaskaran K, Minassian C, Evans SJ, Smeeth L, Douglas IJ. Angiotensin receptor blockers and risk of dementia: Cohort study in UK Clinical Practice Research Datalink. Br J Clin Pharmacol 2015; 79(2): 337-50.
[119]
Hoth KF, Poppas A, Moser DJ, Paul RH, Cohen RA. Cardiac dysfunction and cognition in older adults with heart failure. Cogn Behav Neurol 2008; 21(2): 65-72.
[120]
Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: Results from the Cardiovascular Health Study. Arch Intern Med 2009; 169(13): 1195-202.
[121]
Ohrui T, Matsui T, Yamaya M, et al. Angiotensin‐converting enzyme inhibitors and incidence of Alzheimer’s disease in Japan. J Am Geriatr Soc 2004; 52(4): 649-50.
[122]
Savaskan E, Hock C, Olivieri G, et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol Aging 2001; 22(4): 541-6.
[123]
Barnes NM, Cheng CH, Costall B, Naylor RJ, Williams TJ, Wischik CM. Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer’s disease. Eur J Pharmacol 1991; 200(2-3): 289-92.
[124]
Tedesco MA, Ratti G, Di Salvo G, Natale F. Does the angiotensin II receptor antagonist losartan improve cognitive function? Drugs Aging 2002; 19(10): 723-32.
[125]
Zuccalà G, Marzetti E, Cesari M, et al. Correlates of cognitive impairment among patients with heart failure: Results of a multicenter survey. Am J Med 2005; 118(5): 496-502.
[126]
Cannon JA, Shen L, Jhund PS, et al. Dementia‐related adverse events in PARADIGM‐HF and other trials in heart failure with reduced ejection fraction. Eur J Heart Fail 2017; 19(1): 129-37.
[127]
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 2014; 6: 235.
[128]
Langenickel TH, Tsubouchi C, Ayalasomayajula S, et al. The effect of LCZ696 (sacubitril/valsartan) on amyloid‐β concentrations in cerebrospinal fluid in healthy subjects. Br J Clin Pharmacol 2016; 81(5): 878-90.
[129]
Zou K, Yamaguchi H, Akatsu H, et al. Angiotensin-converting enzyme converts amyloid β-protein 1-42 (Aβ1-42) to Aβ1-40, and its inhibition enhances brain Aβ deposition. J Neurosci 2007; 27(32): 8628-35.
[130]
De Vecchis R, Ariano C, Di Biase G, Noutsias M. Cognitive performance of patients with chronic heart failure on sacubitril/valsartan. Herz 2018. [Epub ahead of print].
[131]
Aldrugh S, Sardana M, Henninger N, Saczynski JS, McManus DD. Atrial fibrillation, cognition and dementia: A review. J Cardiovasc Electrophysiol 2017; 28(8): 958-65.
[132]
Chen LY, Lopez FL, Gottesman RF, et al. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: The atherosclerosis risk in communities study. Stroke 2014; 45: 2568-74.
[133]
de Bruijn RF, Heeringa J, Wolters FJ, et al. Association between atrial fibrillation and dementia in the general population. JAMA Neurol 2015; 72: 1288-94.
[134]
Thacker EL, McKnight B, Psaty BM, et al. Atrial fibrillation and cognitive decline A longitudinal cohort study. Neurology 2013; 81: 119-25.
[135]
Rivard L, Khairy P. Mechanisms, clinical significance and prevention of cognitive impairment in atrial fibrillation. Can J Cardiol 2017; 33(12): 1556-64.
[136]
Bunch TJ, May HT, Bair TL, et al. Atrial fibrillation patients treated with long‐term warfarin anticoagulation have higher rates of all dementia types compared with patients receiving long‐term warfarin for other indications. J Am Heart Assoc 2016; 5(7)e003932
[137]
Jacobs V, Woller SC, Stevens S, et al. Time outside of therapeutic range in atrial fibrillation patients is associated with long-term risk of dementia. Heart Rhythm 2014; 11: 2206-13.
[138]
Kwok CS, Loke YK, Hale R, Potter JF, Myint PK. Atrial fibrillation and incidence of dementia: A systematic review and meta-analysis. Neurology 2011; 76: 914-22.
[139]
Pettersen JA, Sathiyamoorthy G, Gao FQ, et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol 2008; 65: 790-5.
[140]
Jacobs V, Woller SC, Stevens SM, et al. Percent time with a supratherapeutic INR in atrial fibrillation patients also using an antiplatelet agent is associated with long-term risk of dementia. J Cardiovasc Electrophysiol 2015; 26: 1180-6.
[141]
Jacobs V, May HT, Bair TL, et al. Long-term population-based cerebral ischemic event and cognitive outcomes of direct oral anticoagulants compared with warfarin among long-term anticoagulated patients for atrial fibrillation. Am J Cardiol 2016; 118: 210-4.
[142]
Liao JN, Chao TF, Liu CJ, et al. Risk and prediction of dementia in patients with atrial fibrillationea nationwide population-based cohort study. Int J Cardiol 2015; 199: 25-30.
[143]
Andrade JG, Macle L, Nattel S, Verma A, Cairns J. Contemporary atrial fibrillation management: A comparison of the current AHA/ACC/HRS, CCS, and ESC guidelines. Can J Cardiol 2017; 33: 965-76.
[144]
Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37: 2893-962.
[145]
Shah SR, Moosa PG, Fatima M, et al. Atrial fibrillation and heart failure- results of the CASTLE-AF trial. J Community Hosp Intern Med Perspect 2018; 8(4): 208-10.
[146]
Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med 2018; 378: 417-27.
[147]
Bunch TJ, Crandall BG, Weiss JP, et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J Cardiovasc Electrophysiol 2011; 22: 839-45.
[148]
Kirchhof P, Breithardt G, Camm AJ, et al. Improving outcomes in patients with atrial fibrillation: rationale and design of the early treatment of atrial fibrillation for stroke prevention trial. Am Heart J 2013; 166: 442-8.
[149]
Haegeli L. Cardiopulse articles. Eur Heart J 2015; 36(5): 255-64.
[150]
Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005; 352(15): 1539-49.
[151]
Tanner H. Cardiac resynchronisation therapy in Europe: Are Swiss CRT recipients different? Swiss Med Wkly 2018; 148(3738)w14670
[152]
Butrous H, Hummel SL. Heart failure in older adults. Can J Cardiol 2016; 32(9): 1140-7.
[153]
Duncker D, Friedel K, König T, et al. Cardiac resynchronization therapy improves psycho-cognitive performance in patients with heart failure. Europace 2015; 17(9): 1415-21.
[154]
Bartko PE, Arfsten H, Heitzinger G, et al. Papillary muscle dyssynchrony-mediated functional mitral regurgitation: mechanistic insights and modulation by cardiac resynchronization. JACC Cardiovasc Imaging 2018. [Epub ahead of print].
[155]
Sadeghian H, Lotfi-Tokaldany M, Montazeri M, et al. Early improvement in mitral regurgitation after cardiac resynchronization therapy in cardiomyopathy patients. J Heart Valve Dis 2017; 26(5): 557-63.
[156]
Hess PL, Jackson KP, Hasselblad V, Al-Khatib SM. Is cardiac resynchronization therapy an antiarrhythmic therapy for atrial fibrillation? A systematic review and meta-analysis. Curr Cardiol Rep 2013; 15: 330.
[157]
Conti JB, Sears SF. Cardiac resynchronization therapy: Can we make our heart failure patients smarter? Trans Am Clin Climatol Assoc 2007; 118: 153.
[158]
Matlock DD, Jones J, Nowels CT, Jenkins A, Allen LA, Kutner JS. Evidence of cognitive bias in decision making around implantable-cardioverter defibrillators: A qualitative framework analysis. J Card Fail 2017; 23(11): 794-9.
[159]
Dunbar SB, Dougherty CM, Sears SF, et al. Educational and psychological interventions to improve outcomes for recipients of implantable cardioverter defibrillators and their families: A scientific statement from the American Heart Association. Circulation 2012; 126(17): 2146-72.
[160]
Goldstein NE, Kalman J, Kutner JS, et al. A study to improve communication between clinicians and patients with advanced heart failure: Methods and challenges behind the working to improve discussions about defibrillator management trial. J Pain Symptom Manage 2014; 48(6): 1236-46.
[161]
Green AR, Leff B, Wang Y, et al. Geriatric conditions in patients undergoing defibrillator implantation for prevention of sudden cardiac death: prevalence and impact on mortality. Circ Cardiovasc Qual Outcomes 2016; 9(1): 23-30.
[162]
Setoguchi S, Nohria A, Rassen JA, Stevenson LW, Schneeweiss S. Maximum potential benefit of implantable defibrillators in preventing sudden death after hospital admission because of heart failure. CMAJ 2009; 180: 611-6.
[163]
Jama A, Rabinstein A, Hodge D, et al. Cardiac device complications in the cognitively impaired. Pacing Clin Electrophysiol 2013; 36: 1061-7.
[164]
Feola M, Vallauri P, Salvatico L, Vado A, Testa M. Neuropsychological impact of implantable cardioverter defibrillator in congestive heart failure patients. Int J Cardiol 2013; 166(1): 275-6.
[165]
Fosbol EL, Peterson ED, Holm E, et al. Comparative cardiovascular safety of dementia medications: A cross‐national study. J Am Geriatr Soc 2012; 60(12): 2283-9.
[166]
Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline. Ann Intern Med 2008; 148: 379-97.
[167]
Handa T, Katare RG, Kakinuma Y, et al. Anti-Alzheimer’s drug, donepezil, markedly improves long-term survival after chronic heart failure in mice. J Card Fail 2009; 15: 805-11.
[168]
Sato K, Urbano R, Yu C, et al. The effect of donepezil treatment on cardiovascular mortality. Clin Pharmacol Ther 2010; 88: 335-8.
[169]
Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for bradycardia: A population-based study. PLoS Med 2009; 6e1000157
[170]
Okazaki Y, Zheng C, Li M, Sugimachi M. Effect of the cholinesterase inhibitor donepezil on cardiac remodeling and autonomic balance in rats with heart failure. J Physiol Sci 2010; 60: 67-74.
[171]
Reale M, Iarlori C, Gambi F, Lucci I, Salvatore M, Gambi D. Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 beta and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Exp Gerontol 2005; 40: 165-71.
[172]
Tanaka A, Koga S, Hiramatsu Y. Donepezil-induced adverse side effects of cardiac rhythm: 2 cases report of atrioventricular block and Torsade de Pointes. Intern Med 2009; 48: 1219-23.
[173]
Gallini A, Sommet A, Montastruc JL. Does memantine induce bradycardia? A study in the French PharmacoVigilance Database. Pharmacoepidemiol Drug Saf 2008; 17: 877-81.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy