Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Anti-Trypanosoma cruzi Activity and Molecular Docking Studies of 1Hpyrazolo[ 3, 4-b]pyridine Derivatives

Author(s): Camilo Henrique da Silva Lima, Júlio César de Araujo Vanelis Soares, Joana Lucius de Sousa Ribeiro, Estela Maris Freitas Muri, Sérgio de Albuquerque and Luiza Rosaria Sousa Dias*

Volume 17, Issue 2, 2020

Page: [184 - 191] Pages: 8

DOI: 10.2174/1570180816666190305141733

Price: $65

Abstract

Background: Untargeted studies led to the development of some pyrazolopyridine derivatives for the antiparasitic profile, particularly the derivatives containing the structural carbohydrazide subunit. In this work, we proceeded in the biological screening of 27 N’- (substitutedphenylmethylene)- 4-carbohydrazide-3-methyl-1-phenyl-1H-pyrazolo[3, 4-b]pyridine derivatives against T. cruzi as well as the cytotoxic evaluation. To obtain more information about the trypanocidal activity of this class of compounds, we carried out molecular docking simulations to get an insight into putative targets in T. cruzi.

Methods: The assays were evaluated against both trypomastigote and amastigote forms of T. cruzi and cytotoxicity assays on LLCMK2 cells. The predominant conformational compounds were analyzed and molecular docking simulations performed.

Results: The results from trypanocidal activity screening of this series showed that just the compounds with phenyl group at C-6 position exhibited activity and the N’-4-hydroxyphenylmethylene derivative presented the best profile against both trypomastigote and amastigote forms of T. cruzi. Docking simulation results showed that this compound has a binding affinity with both CYP51 and cruzain targets of T. cruzi.

Conclusion: Our results indicate that the hydroxyl substituent at the N’-substituted-phenylmethylene moiety and the phenyl ring at C-6 of 1H-pyrazolo[3,4-b]pyridine system are relevant for the trypanocidal activity of this class of compounds. Also, docking simulations showed that activity presented can be related to more than one target of the parasite.

Keywords: N-heterocycles, 1H-pyrazolo[3, 4-b]pyridine, biological activity, trypanosoma cruzi, trypanocidal activity, docking simulation, CYP51, cruzain.

Graphical Abstract
[1]
Global report for research on infectious diseases of poverty. https://www.who.int/tdr/publications/global_report/en/ [January 10, 2019
[2]
Chatelain, E. Chagas disease drug discovery: Toward a new era. J. Biomol. Screen., 2015, 20(1), 22-35.
[http://dx.doi.org/10.1177/1087057114550585] [PMID: 25245987]
[3]
Melchiorre, C.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V. Polyamines in drug discovery: from the universal template approach to the multitarget-directed ligand design strategy. J. Med. Chem., 2010, 53(16), 5906-5914.
[http://dx.doi.org/10.1021/jm100293f] [PMID: 20420456]
[4]
Eleftheriou, P.; Geronikaki, A.; Hadjipavlou-Litina, D.; Vicini, P.; Filz, O.; Filimonov, D.; Poroikov, V.; Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 47(1), 111-124.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.029] [PMID: 22119153]
[5]
Talevi, A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[6]
Chatelain, E.; Ioset, J-R. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin. Drug Discov., 2018, 13(2), 141-153.
[http://dx.doi.org/10.1080/17460441.2018.1417380] [PMID: 29235363]
[7]
Rodriguez-Garcia, A.; Hosseini, S.; Martinez-Chapa, S.O.; Cordell, G.A. Multi-target activities of selected alkaloids and terpenoids. Mini Rev. Org. Chem., 2017, 14(4), 272-279.
[http://dx.doi.org/10.2174/1570193X14666170518151027]
[8]
Wiggers, H.J.; Rocha, J.R.; Fernandes, W.B.; Sesti-Costa, R.; Carneiro, Z.A.; Cheleski, J.; da Silva, A.B.F.; Juliano, L.; Cezari, M.H.S.; Silva, J.S.; McKerrow, J.H.; Montanari, C.A. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis., 2013, 7(8)e2370
[http://dx.doi.org/10.1371/journal.pntd.0002370] [PMID: 23991231]
[9]
Choi, J.Y.; Roush, W.R. Structure based design of CYP51 inhibitors. Curr. Top. Med. Chem., 2017, 17(1), 30-39.
[http://dx.doi.org/10.2174/1568026616666160719164933] [PMID: 27449014]
[10]
Cosentino, R.O.; Agüero, F. Genetic profiling of the isoprenoid and sterol biosynthesis pathway genes of Trypanosoma cruzi. PLoS One, 2014, 9(5)e96762
[http://dx.doi.org/10.1371/journal.pone.0096762] [PMID: 24828104]
[11]
Duschak, V.G. Targets and patented drugs for chemotherapy of Chagas disease in the last 15 years-period. Recent Pat. Antiinfect. Drug Discov., 2016, 11(2), 74-173.
[http://dx.doi.org/10.2174/1574891X11666161024165304] [PMID: 27784230]
[12]
Duschak, V.G.; Couto, A.S. Cruzipain, the major cysteine protease of Trypanosoma cruzi: A sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr. Med. Chem., 2009, 16(24), 3174-3202.
[http://dx.doi.org/10.2174/092986709788802971] [PMID: 19689291]
[13]
Dias, L.R.S.; Freitas, A.C.C.; Barreiro, E.J.; Goins, D.K.; Nanayakkara, D.; McChesney, J.D. Synthesis and biological activity of new potential antimalarial: 1H-pyrazolo[3,4-b]pyridine derivatives. Boll. Chim. Farm., 2000, 139(1), 14-20.
[PMID: 10829547]
[14]
Bernardino, A.M.; Gomes, A.O.; Charret, K.S.; Freitas, A.C.C.; Machado, G.M.; Canto-Cavalheiro, M.M.; Leon, L.L.; Amaral, V.F. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur. J. Med. Chem., 2006, 41(1), 80-87.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.007] [PMID: 16300859]
[15]
Vera-Divaio, M.A.F.; Freitas, A.C.C.; Castro, H.C.; de Albuquerque, S.; Cabral, L.M.; Rodrigues, C.R.; Albuquerque, M.G.; Martins, R.C.A.; Henriques, M.G.M.O.; Dias, L.R.S. Synthesis, antichagasic in vitro evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-carbohydrazide series. Bioorg. Med. Chem., 2009, 17(1), 295-302.
[http://dx.doi.org/10.1016/j.bmc.2008.10.085] [PMID: 19036592]
[16]
Dias, L.R.S.; Salvador, R.R.S. Pyrazole carbohydrazide derivatives of pharmaceutical interest. Pharmaceuticals (Basel), 2012, 5(3), 317-324.
[http://dx.doi.org/10.3390/ph5030317] [PMID: 24281381]
[17]
Salvador, R.R.S.; Bello, M.L.; Barreto, I.R.L.; Vera, M.A.F.; Muri, E.M.F.; Albuquerque, S.; Dias, L.R.S. New carbohydrazide derivatives of 1H-pyrazolo[3,4-b]pyridine and trypanocidal activity. An. Acad. Bras. Cienc., 2016, 88(4), 2341-2348.
[http://dx.doi.org/10.1590/0001-3765201620160087] [PMID: 27925033]
[18]
Dias, L.R.S.; Santos, M.B.; Albuquerque, Sd.; Castro, H.C.; de Souza, A.M.T.; Freitas, A.C.C.; DiVaio, M.A.V.; Cabral, L.M.; Rodrigues, C.R. Synthesis, in vitro evaluation, and SAR studies of a potential antichagasic 1H-pyrazolo[3,4-b]pyridine series. Bioorg. Med. Chem., 2007, 15(1), 211-219.
[http://dx.doi.org/10.1016/j.bmc.2006.09.067] [PMID: 17064907]
[19]
Tyler, K.M.; Engman, D.M. The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol., 2001, 31(5-6), 472-481.
[http://dx.doi.org/10.1016/S0020-7519(01)00153-9] [PMID: 11334932]
[20]
Branquinha, M.H.; Oliveira, S.S.C.; Sangenito, L.S.; Sodre, C.L.; Kneipp, L.F.; d’Avila-Levy, C.M.; Santos, A.L.S. Cruzipain: An update on its potential as chemotherapy target against the human pathogen Trypanosoma cruzi. Curr. Med. Chem., 2015, 22(18), 2225-2235.
[http://dx.doi.org/10.2174/0929867322666150521091652] [PMID: 25994861]
[21]
Brener, Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev. Inst. Med. Trop. São Paulo, 1962, 4, 389-396.
[PMID: 14015230]
[22]
Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother., 1996, 40(11), 2592-2597.
[http://dx.doi.org/10.1128/AAC.40.11.2592] [PMID: 8913471]
[23]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix, 2001, 3(Appendix), 3B.
[24]
Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107(13), 3902-3909.
[http://dx.doi.org/10.1021/ja00299a024]
[25]
Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem., 2006, 27(10), 1101-1111.
[http://dx.doi.org/10.1002/jcc.20425] [PMID: 16691568]
[26]
Vieira, D.F.; Choi, J.Y.; Calvet, C.M.; Siqueira-Neto, J.L.; Johnston, J.B.; Kellar, D.; Gut, J.; Cameron, M.D.; McKerrow, J.H.; Roush, W.R.; Podust, L.M. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J. Med. Chem., 2014, 57(23), 10162-10175.
[http://dx.doi.org/10.1021/jm501568b] [PMID: 25393646]
[27]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Auto Dock 4 and Auto Dock Tools 4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[28]
Craig, P.N. Interdependence between physical parameters and selection of substituent groups for correlation studies. J. Med. Chem., 1971, 14(8), 680-684.
[http://dx.doi.org/10.1021/jm00290a004] [PMID: 5114063]
[29]
Geraldo, R.B.; Bello, M.L.; Dias, L.R.S.; Vera, M.A.F.; Nagashima, T.; Abreu, P.A.; Santos, M.B.; Albuquerque, M.G.; Cabral, L.M.; Freitas, A.C.C.; Kalil, M.V.; Rodrigues, C.R.; Castro, H.C. Antiplatelet activity and structure-activity relationship study of Pyrazolopyridine Derivatives as potential series for treating thrombotic diseases. J. Atheroscler. Thromb., 2010, 17(7), 730-739.
[http://dx.doi.org/10.5551/jat.3293] [PMID: 20523012]
[30]
Vega, C.; Rolón, M.; Martínez-Fernández, A.R.; Escario, J.A.; Gómez-Barrio, A. A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing beta-galactosidase. Parasitol. Res., 2005, 95(4), 296-298.
[http://dx.doi.org/10.1007/s00436-005-1300-3] [PMID: 15682334]
[31]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[32]
Bolognesi, M.L. Multi-target-directed ligands as innovative tools to combat trypanosomatid diseases. Curr. Top. Med. Chem., 2011, 11(22), 2824-2833.
[http://dx.doi.org/10.2174/156802611798184391] [PMID: 22039880]
[33]
Reddy, A.S.; Zhang, S. Polypharmacology: Drug Discovery for the future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47.
[http://dx.doi.org/10.1586/ecp.12.74] [PMID: 23272792]
[34]
Achenbach, J.; Klingler, F-M.; Blöcher, R.; Moser, D.; Häfner, A-K.; Rödl, C.B.; Kretschmer, S.; Krüger, B.; Löhr, F.; Stark, H.; Hofmann, B.; Steinhilber, D.; Proschak, E. Exploring the chemical space of multitarget ligands using aligned self-organizing maps. ACS Med. Chem. Lett., 2013, 4(12), 1169-1172.
[http://dx.doi.org/10.1021/ml4002562] [PMID: 24900624]
[35]
Scotti, L.; Filho, F.J.; de Moura, R.O.; Ribeiro, F.F.; Ishiki, H.; da Silva, M.S.; Filho, J.M.; Scotti, M.T. Multi-target drugs for neglected diseases. Curr. Pharm. Des., 2016, 22(21), 3135-3163.
[http://dx.doi.org/10.2174/1381612822666160224142552] [PMID: 26907943]
[36]
Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem., 2014, 82, 418-425.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.077] [PMID: 24929292]
[37]
Riley, J.; Brand, S.; Voice, M.; Caballero, I.; Calvo, D.; Read, K.D. Development of a fluorescence-based Trypanosoma cruzi CYP51 inhibition assay for effective compound triaging in drug discovery programmes for Chagas disease. PLoS Negl. Trop. Dis., 2015, 9(9)e0004014
[http://dx.doi.org/10.1371/journal.pntd.0004014] [PMID: 26394211]
[38]
Jacob, K.S.; Ganguly, S.; Kumar, P.; Poddar, R.; Kumar, A. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy. J. Biomol. Struct. Dyn., 2017, 35(7), 1446-1463.
[http://dx.doi.org/10.1080/07391102.2016.1185380] [PMID: 27142238]
[39]
Serafim, R.A.M.; de Oliveira, T.F.; Loureiro, A.P.M.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Molecular modeling and structure – activity relationships studies of bioisoster hybrids of N-acylhydrazone and furoxan groups on cruzain. Med. Chem. Res., 2017, 26(4), 760-769.
[http://dx.doi.org/10.1007/s00044-016-1776-7]
[40]
Taban, I.M.; Elshihawy, H.E.A.E.; Torun, B.; Zucchini, B.; Williamson, C.J.; Altuwairigi, D.; Ngu, A.S.T.; McLean, K.J.; Levy, C.W.; Sood, S.; Marino, L.B.; Munro, A.W.; de Carvalho, L.P.S.; Simons, C. Novel aryl substituted pyrazoles as small molecule inhibitors of cytochrome P450 CYP121A1: Synthesis and antimycobacterial evaluation. J. Med. Chem., 2017, 60(24), 10257-10267.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01562] [PMID: 29185746]
[41]
Duran-Rehbein, G.A.; Vargas-Zambrano, J.C.; Cuéllar, A.; Puerta, C.J.; Gonzalez, J.M. Mammalian cellular culture models of Trypanosoma cruzi infection: A review of the published literature. Parasite, 2014, 21, 38.
[http://dx.doi.org/10.1051/parasite/2014040] [PMID: 25083732]
[42]
Friggeri, L.; Hargrove, T.Y.; Rachakonda, G.; Williams, A.D.; Wawrzak, Z.; Di Santo, R.; De Vita, D.; Waterman, M.R.; Tortorella, S.; Villalta, F.; Lepesheva, G.I. Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: Two regions of the enzyme molecule potentiate its inhibition. J. Med. Chem., 2014, 57(15), 6704-6717.
[http://dx.doi.org/10.1021/jm500739f] [PMID: 25033013]
[43]
Hargrove, T.Y.; Wawrzak, Z.; Alexander, P.W.; Chaplin, J.H.; Keenan, M.; Charman, S.A.; Perez, C.J.; Waterman, M.R.; Chatelain, E.; Lepesheva, G.I. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J. Biol. Chem., 2013, 288(44), 31602-31615.
[http://dx.doi.org/10.1074/jbc.M113.497990] [PMID: 24047900]
[44]
Huang, L.; Brinen, L.S.; Ellman, J.A. Crystal structures of reversible ketone-based inhibitors of the cysteine protease cruzain. Bioorg. Med. Chem., 2003, 11(1), 21-29.
[http://dx.doi.org/10.1016/S0968-0896(02)00427-3] [PMID: 12467703]
[45]
Durrant, J.D.; Keränen, H.; Wilson, B.A.; McCammon, J.A. Computational identification of uncharacterized cruzain binding sites. PLoS Negl. Trop. Dis., 2010, 4(5)e676
[http://dx.doi.org/10.1371/journal.pntd.0000676] [PMID: 20485483]
[46]
Avelar, L.A.A.; Camilo, C.D.; de Albuquerque, S.; Fernandes, W.B.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; McKerrow, J.H.; Montanari, C.A.; Orozco, E.V.M.; Ribeiro, J.F.R.; Rocha, J.R.; Rosini, F.; Saidel, M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis., 2015, 9(7)e0003916
[http://dx.doi.org/10.1371/journal.pntd.0003916] [PMID: 26173110]
[47]
Sajid, M.; Robertson, S.A.; Brinen, L.S.; Mckerrow, J.H. Cruzain: The path from target validation to the clinic. In: Robinson, M. W.; Dalton, J. P. (Ed.). Cysteine proteases of pathogenic organisms. 1. ed. Austin, Texas: Springer Science and Business Media, 2011, 100-115.
[48]
Pech-Canul, Á.C.; Monteón, V.; Solís-Oviedo, R.L. Monteón, V.; Solís-Oviedo, R.-L. A brief view of the surface membrane proteins from Trypanosoma cruzi. J. Parasitol. Res., 2017, •••20173751403
[http://dx.doi.org/10.1155/2017/3751403] [PMID: 28656101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy