Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

In-Vitro CYP3A4, CYP2E1 and UGT Activity in Human Liver Microsomes by Strobilanthes crispus Leaf Extracts

Author(s): Gabriel Akyirem Akowuah*, Jin Han Chin, Siew Wei Yeong, Suk Yen Quah and Mariam Ahmad*

Volume 10, Issue 2, 2020

Page: [104 - 112] Pages: 9

DOI: 10.2174/2210315509666190304124328

Price: $65

Abstract

Background: Strobilanthes crispus (L.) Bremek (Acanthaceae) leaves are used traditionally in Malaysia, Thailand, and Indonesia for anti-diabetic, anti-lytic, diuretic, and laxative purposes. Herb-drug interactions may potentiate or antagonize the absorption and metabolism of drugs which may result in potential toxicity. The aim of the present study was to investigate the effect of juice, hot aqueous, cold aqueous and methanol extracts of S. crispus leaves on phase I cytochrome 3A4 (CYP3A4) and Cytochrome 2E1 (CYP2E1) and phase II human liver enzyme UDP-Glucuronosyl Transferase (UGT).

Methods: The herb-drug interactions of the leaf extracts and juice were determined by specific enzyme activity of CYP isoforms with specific probe substrate using spectrophotometry. CYP3A4 activity was measured for aminopyrine specific metabolite (formaldehyde) at 415 nm. CYP2E1 activity was determined using p-nitrophenol specific metabolite (p-nitrocatechol) at 535 nm. UGT activity was quantified through the consumption of p-nitrophenol by UGT at 405 nm.

Results: All the S. crispus preparations showed significant inhibition of CYP3A4 activity. Only the methanolic extract showed a significant inhibition in CYP2E1. All the S. crispus extracts showed a significant effect on UGT activation at the higher concentration (1000 ng/ml). Only the cold aqueous extract and the juice showed UGT inhibition at lower concentration (1 ng/ml).

Conclusion: S. crispus preparations showed in-vitro drug-herb interaction effects on human liver microsomes. Therefore, there is a possibility of drug-herb interaction could occur with S. crispus leaves through its effect on CYP3A4. Inhibition of the herb extracts on CYP2E1 could show anticarcinogenesis effects. The potency of drugs that metabolized via UGT pathway may be affected when co-administered with S. crispus leaf preparations.

Keywords: Strobilanthes crispus, cytochrome 3A4 and 2E1, extracts, human liver microsomes, UDP-glucuronosyltransferase, herb-drug interaction.

Graphical Abstract
[1]
Fauziah, O.; Hanachi, P.; Yogespiriya, S.; Asmah, R. Reducing Effect of Strobilanthes crispus leaf extract in hepatocarcinogenesis rats. Int. J. Cancer Res., 2005, 1, 109-112.
[2]
Chong, H.Z.; Rahmat, A.; Yeap, S.K.; Akim, A.; Alitheen, N.B.; Othman, F. In vitro cytotoxicity of Strobilanthes crispus ethanol extract on hormone dependent human breast adenocarcinoma MCF-7 cell. BMC Complement. Altern. Med., 2012, 12, 35-37.
[3]
Yaacob, N.S.; Kamal, N.N.; Norazmi, M.N. Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines. BMC Complement. Altern. Med., 2014, 14, 252-253.
[4]
Norfarizan, H.; Asmah, R.; Rokiah, M.; Fauziah, O.; Faridah, H. Effect of Strobilanthes crispus juice on wound healing and antioxidant enzymes in normal and streptozocin-induced biabetic rats. J. Biol. Sci., 2009, 9, 662-668.
[5]
Lim, K.T.; Lim, V.; Chin, J.H. Sub-acute oral toxicity study of methanol leaves extract of Strobilanthes crispus in rats. Asian Pac. J. Trop. Biomed., 2012, 2, 948-952.
[6]
Muslim, N.; Ng, K.; Itam, A.; Nassar, Z. Evaluation of cytotoxic, anti-angiogenic and antioxidant properties of standardized extracts of Strobilanthes crispus leaves. Int. J. Pharmacol., 2010, 6(5), 1-9.
[7]
Mohamed, I.; Shuid, A.; Borhanuddin, B.; Fozi, N. The application of phytomedicine in modern drug development. Internet J. Herbal Plant Med, 2012, 1, 1-9.
[8]
Tsai, H.H.; Lin, H.W.; Pickard, S.A.; Mahady, G.B. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: A systematic literature review. Int. J. Clin. Pract., 2012, 66, 1019-1020.
[9]
Gibson, G.G.; Skett, P. Introduction to drug metabolism; Springer: Cheltenham, 2013.
[10]
Iqbal, F.; Ahmad, S.; Parray, S. Herb-drug interaction and role for pharmacovigilance. Int. J. Advances Pharm. Med. Bioallied Sci., 2005, 3, 75-78.
[11]
Terry, V.V.; Bombick, D.W.; Coulombe, R.A. Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol. Sci., 2001, 64, 185-191.
[12]
Cederbaum, A.I. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction. Redox Biol., 2014, 2C, 1048-1054.
[13]
Desai, A.; Innocenti, F.; Ratain, M. UGT pharmacogenomics: implications for cancer risk and cancer therapeutics. Pharmacogenetics, 2003, 13, 517-523.
[14]
Chow, H.H.; Hakim, I.A.; Vining, D.R.; Crowell, J.A.; Cordova, C.A.; Chew, W.M. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol. Biomarkers Prev., 2006, 15, 473-476.
[15]
Chin, J.H.; Hussin, A.H. Effect of methanol leaf extract of Orthosiphon stamineus Benth. on hepatic drug metabolising enzymes in Sprague Dawley rats. J. Biosci., 2008, 19, 21-31.
[16]
Brantley, S.J.; Graf, T.N.; Oberlies, N.H.; Paine, M.F. A systematic approach to evaluate herb-drug interaction mechanisms: Investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab. Dispos., 2009, 41, 1662-1670.
[17]
Chew, K.K.; Khoo, M.Z.; Ng, S.Y.; Thoo, Y.Y.; Aida, W.M.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int. Food Res. J., 2009, 18, 1427-1435.
[18]
Yuan, R.; Madani, S.; Wei, X.X.; Kellie, R.; Huang, S.M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos., 2002, 30, 1311-1319.
[19]
Leveque, D.; Jehl, F. Molecular pharmacokinetics of Cathranthus (Vinca) alkaloids. J. Clin. Pharmacol., 2007, 47, 579-588.
[20]
Pekal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods, 2014, 7, 1776-1782.
[21]
Nicolas, J.M.; Collart, P.; Gerin, B.; Mather, G.; Trager, W.; Levy, R. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab. Dispos., 1999, 27, 250-254.
[22]
Phillips, I.R.; Shephard, E.A.; de Montellano, P.R.O. Cytochrome P450 protocols, 1998 eds.; Humana Press Totowa: New Jersey. 107 1998
[23]
Oliveira, E.J.; Watson, D.G. In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes. FEBS Lett., 2000, 471, 1-6.
[24]
Brown, J.; Gould, K.S.; Cheynier, V.; Grayer, R.J.; Clifford, M.; Hostettmann, K. Dietary Flavonoids and Health - Broadening the Perspective.Flavonoids: Chemistry, Biochemistry and Applications; Anderson, O.M.; Markham, K.R., Eds.; CRC Press Taylor & Francis Group: Boca Raton, Florida, 2006, pp. 1212-1214.
[25]
Zohra, M.; Fawzia, A. Haemolytic activity of different herbal extracts used in Algeria. Int. J. Pharm. Sci. Res., 2014, 5, 495-450.
[26]
Shimada, T.; Tanaka, K.; Takenaka, S.; Murayama, N.; Martin, M.V.; Foroozesh, M.K. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem. Res. Toxicol., 2010, 23, 1921-1935.
[27]
Chao, P.; Hsiu, S.; Hou, Y. Flavonoids in Herbs: Biological fates and potential interactions with xenobiotics. J. Food Drug Anal, 2002, 10, 219-228.
[28]
Deng, S.; West, B.J.; Jensen, C.J. Thermal degradation of flavonol glycosides in noni leaves during roasting. Adv. J. Food Sci. Tech, 2011, 3, 155-159.
[29]
Brandon, E.F.; Raap, C.D.; Meijerman, I.B.; Schellens, J.H.M. An update on in vitro test methods in human hepatic drug biotransformation research: Pros and cons. Toxicol. Appl. Pharmacol., 2003, 189, 233-246.
[30]
Ho, P.C.S.; Dorothy, J. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J. Pharm. Pharmaceut. Sci., 2001, 4, 217-227.
[31]
Hodek, P.; Trefil, P.; Stiborova, M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact., 2002, 139, 1-21.
[32]
Yao, H.T.; Lin, J.H.; Chiang, M.T.; Chiang, W.; Luo, M.N.; Lii, C.K. Suppressive effect of the ethanolic extract of adlay bran on cytochrome P-450 enzymes in rat liver and lungs. J. Agric. Food Chem., 2011, 59, 4306-4314.
[33]
Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G. Phytochemical screening and extraction: A Review. Int. Pharm. Sciencia, 2011, 1, 9-12.
[34]
Tsai, H.H.; Lin, H.W.; Pickard, S.A.; Mahady, G.B. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review. Int. J. Clin. Pract., 2012, 66, 1019-1020.
[35]
Walle, U.; Walle, T. Induction of human UDP-glucuronosyl-transferase UGT1A1 by flavonoids-structural requirement. Drug Metab. Dispos., 2002, 30, 564-569.
[36]
Zou, C.G.; Agar, N.S.; Jones, G.L. Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture. Life Sci., 2001, 69, 75-86.
[37]
Ebrahimzadeh, M.A.; Nabavi, S.F.; Nabavi, S.M.; Eslami, B. Antihemolytic and antioxidant activities of Allium paradoxum. Cent. Eur. J. Biol., 2010, 5, 338-345.
[38]
Nabavi, S.; Ebrahimzadeh, M.; Nabavi, S.; Eslami, B.; Dehpour, A. Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). Eur. Rev. Med. Pharmacol. Sci., 2011, 15, 157-164.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy